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ABSTRACT 

A novel filter configuration for the analysis of harmonic musical 
signals is proposed. The method is based on inverse comb filtering 
that allows for the extraction of selected harmonic components or 
the background noise component between the harmonic spectral 
components. A highly accurate delay required in the inverse comb 
filter is implemented with a high-order allpass filter. The paper 
shows that the filter is easy to design, efficient to implement, and 
it enables accurate low-level feature analysis of musical tones. We 
describe several case studies to demonstrate the effectiveness of 
the proposed approach: isolating a single partial from a synthetic 
signal, analyzing the even-to-odd ratio of harmonics in a clarinet 
tone, and extracting the residual from a bowed string tone. 

1. INTRODUCTION 

Analysis of the amplitude envelope of harmonic components of a 
musical tone is a fundamental operation in musical signal process-
ing. We discuss the harmonic extraction using the digital filtering 
approach. This is an old technique that has been proposed in dif-
ferent forms by Moorer in the 1970s for pitch detection of speech 
signals [1] and for analyzing music data for additive synthesis [2]. 
The basic idea is to use a multi-notch filter to extract individual 
harmonic components as signals. The filter structure may be ob-
tained as the inverse transfer function of a comb filter (i.e., a delay 
line in a feedback loop). 

In this paper we expand on a recently proposed idea that the 
delay line can be replaced with a high-order allpass fractional-
delay filter to obtain very accurate cancellation of neighboring 
harmonics to extract a single harmonic [3]. The proposed signal 
analysis method is useful for many practical cases. Numerous 
musical instruments, including all woodwind, brass, and bowed 
string instruments, produce a sound signal that is inherently har-
monic, i.e., the spectral components are integral multiples of a 
fundamental frequency. This follows from the sound-production 
mechanism of these self-excited systems, which involves mode 
locking in the time domain [4]. It forces the sustained tones of 
such instruments to be periodic. There is often a noise component 
in these musical tones making them pseudo-periodic in practice. 

Another method for this kind of signal decomposition is sinu-
soidal modeling [5], [6], [7]. In this method the signal is analyzed 
using the windowed FFT, and the frequency and amplitude tracks 
are obtained by connecting data in the neighboring analysis 
frames. This approach has its roots in the phase vocoder technique 
and its efficient transform-domain implementation. For periodic or 
pseudo-periodic musical tones it is unnecessary to get down to an 
overly generic analysis method, because the frequencies of the 

harmonic components are known after the estimation of the fun-
damental frequency. Advantages of the proposed filter-based 
analysis method – compared with the more general FFT-based 
techniques – are simplicity, which follows mainly from the small 
number of parameters, and the possibility of designing filter coef-
ficients in closed form. Additionally, the resulting decomposition 
is obtained directly as a set of time-domain signals, and no sepa-
rate synthesis stage is required. 

Other signal processing methods proposed for analyzing the 
harmonic structure of musical signals include wavelets [8] and 
high-resolution tracking methods [9], [10]. These methods provide 
excellent frequency accuracy at the expense of a complicated algo-
rithm and a high computational cost. The method proposed in this 
paper can also provide amplitude and frequency accuracy that is 
sufficient for musical signal analysis but at the same time the 
analysis method remains easy to apply. 

This paper is organized as follows. Section 2 discusses the fil-
ter structure for canceling harmonics of a musical signal, and Sec-
tion 3 introduces a filter structure for extracting a single harmonic 
component and another structure for separating even and odd 
harmonics. In Section 4, three test cases are presented to demon-
strate the power of this approach in musical signal analysis. 

2. FRACTIONAL-DELAY INVERSE COMB FILTERS 

The inverse comb filter1 (ICF) is an FIR filter where the input 
signal is delayed by L samples and is then subtracted from the 
original input signal, see Fig. 1(a). The corresponding transfer 
function is H(z) = (1 – z–L)/2, where the scaling factor ½ sets the 
gain to unity in the passband (i.e., between the notches). The mag-
nitude response of this filter features periodic notches at the multi-
ples of fs/L, where fs is the sampling rate (Hz) and L is the delay 
line length in samples, or multiples of the sampling interval. 

When the delay line length is restricted to be an integral mul-
tiple of the sample interval, the accuracy of the notch frequencies 
can be poor. An example is shown in Fig. 2 where the fundamen-
tal frequency is 4186 Hz and the corresponding period length is 
10.5351 samples. Practical ICF implementations employ a frac-
tional-delay filter that replaces the delay line [11], [13], [14]. Al-
ternatively, an FIR [15], [16] or an IIR notch filter [17], [18] can 
be designed to approximate the overall ICF characteristics. 

Figure 1(b) shows the block diagram of a fractional-delay 
ICF, where the delay line is replaced with an allpass filter, as pro-

                                                           
1 Following the convention of [11], the term ‘inverse comb filter’ is used 
for the feedforward system with a delay line. The ‘comb filter’ has a 
delay line inside a feedback loop. 
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posed previously [3]. The transfer function of this system can be 
written as Hfd(z) = [1 – A(z)]/2, where A(z) is the transfer function 
of the allpass filter used for delay approximation. A magnitude 
response of this structure with an 11th-order allpass filter that ap-
proximates the delay of 10.5351 sampling intervals is displayed in 
Fig. 2 (solid line). 

 

Figure 1: (a) Conventional ICF and (b) a fractional-delay 
allpass-filter based ICF (after [3]). 

The transfer function of a digital allpass filter is 
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where N is the order of the filter and D(z) = 1 + a1z–1 + a2z–2 + ... + 
aNz–N is the denominator polynomial with real-valued coefficients 
ak, and the numerator polynomial is a reversed version of the de-
nominator. The symmetry of the numerator and denominator coef-
ficients guarantees the exact allpass property even for rounded 
coefficients. In this application, the allpass filter order is typically 
N = round(L), which is also approximately the period length (in 
samples) to be cancelled. Therefore, the filter order N can be very 
high, such as N = 1000 for a low fundamental frequency of 44.1 
Hz when the sampling rate is 44.1 kHz. Evidently, a method is 
needed that allows for the design of high-order filters. 

We propose two new structures, which are presented in Fig. 3. 
These filter structures offer freedom in the selection of the allpass 
filter order, which was related to the fundamental period in a pre-
vious work [3]. We have found experimentally that the order of 
A(z) may be kept constant (e.g., N = 80), so when the fundamental 
period (T0 = fs/f0) is longer than N samples, L extra samples of 
delay are required in the lower signal path in Fig. 3(a). However, 
when the fundamental period is shorter than N samples, K extra 
samples are required in the upper signal path to synchronize sig-
nals for subtraction, see Fig. 3(b). Thus, we propose to use the 
transfer function 

 [ ])(1
2
1)(low zAzzH L−−=  (2) 

when the fundamental period T0 is larger than (or about the same 
as) the allpass filter order N, and the transfer function 
 

0 5 10 15 20
−60

−40

−20

0

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

 

Figure 2: Magnitude response of the conventional (dashed 
line) and the allpass-based (solid line) ICF. The thick ver-
tical lines indicate the harmonic frequencies to be can-
celled (f0 = 4186 Hz). 

 

Figure 3: Fractional-delay ICF structures that allow the 
use of an allpass filter A(z) of arbitrary order for signals 
with both (a) low and (b) high fundamental frequency. 
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when the fundamental period T0 is smaller than the allpass filter 
order N. The delay-line lengths L and K are determined as follows: 
 dNTL −−= 0 , when T0 ≥ N (4) 
 0TdNK −+= , when T0 < N (5) 

where – 1 < d < 1 is the fractional-delay parameter used in design-
ing the allpass filter. 

2.1. Properties of allpass fractional-delay inverse comb filters 

Let us consider the properties of the allpass-based ICF structure of 
Fig. 3. For simplicity, we will consider the case where K = L = 0, 
i.e., no additional delay is present in either branch, as in Fig. 1(b). 
We can express the transfer function (2) in the form 
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where the numerator polynomial can be written as 

 N
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and 
 Nkaab kNkk ,...,1,0, =−= − . (8) 

It is easy to verify that B(z) is an antisymmetric polynomial, i.e., bk 
= –bN–k. In fact, the ICF is a special case of the parallel connection 
of two allpass filters discussed by Saramäki in [18]. As shown in 
this seminal paper, under general assumptions (stable allpass func-
tions) the overall numerator polynomial of this structure is either 
symmetric or antisymmetric (mirror-image or anti-mirror-image 
polynomial, respectively). These polynomials are known to have 
their zeros exactly on the unit circle. Hence, our filter is known to 
have accurate zeros also in the fractional-delay ICF case. Note that 
the allpass filters are exactly allpass (unity magnitude at all fre-
quencies) even if the phase (or phase delay, or group delay) is 
only approximately as desired.  

The zeros of the conventional ICF (integer delay L = L0) are 
known to be uniformly distributed on the unit circle: 

  1,...,1,0,0)1(
2
1)( /2 −==⇔=−= − LnezzzH Ljn

n
L π  (9) 

In addition, there are L poles at z = 0. The frequency response of 
the ICF is obtained in the form 

 )()2/sin()( 0
2/ ωωω ω jLjj eHLjeeH ≡= −  (10) 

which will be used as a reference when comparing against another 
ICF structure. 

For the fractional-delay ICF (L = L0 + d, d real-valued) the ze-
ros are difficult to express in general, as they depend on the ap-
proximating allpass filter of (6). However, the following notation 
is useful: 
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where the latter term represents the error due to the allpass filter 
approximation. Note that in the z-transform formulation (11), the 
term z–L with a noninteger power is non-realizable. A more practi-
cal expression is the frequency-domain for 
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The latter term utilizes the exact unit magnitude property of the 
allpass functions, which enables the expression with the corre-
sponding phase function only. Hence, (12) illustrates the error 
term in the fractional-delay ICF frequency response caused by 
allpass phase approximation and the deviation from the ideal lin-
ear phase. As the phase approximation errors of the allpass filter 
tend to accumulate with increasing frequency, also the zeros of the 
corresponding ICF are more off the ideal places at higher frequen-
cies. 

2.2. Allpass fractional-delay filter design 

Three closed-form design methods are known for fractional-delay 
allpass filters: the Thiran allpass filter design [20], [19], [11], the 
truncated Thiran allpass filter [21], and the Pei-Wang method 
[22]. Such methods are needed to increase the allpass filter order 
to be large enough for good wideband approximation in audio 
applications. Both the standard and the truncated Thiran methods 
allow the filter order to be increased up to N = 1029 (when d = –
0.5) using 64-bit double floating-point computing. 

The Thiran design formula can be expressed as 
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where N is the filter order and d is the fractional delay parameter 
(–0.5 < d ≤ 0.5). At low frequencies, this filter has the phase delay 
of N + d samples. This design method was used to produce Fig. 2 
and Fig. 4(b) with parameter values N = 11 and d = –0.4649. 

The truncated Thiran design is obtained by modifying (13): 
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where M is the prototype filter order (M > N) [21]. By using a 
value for M that is much larger than N in (14), it is possible to 
extend the bandwidth of good approximation. This comes at the 
expense of losing quality at low frequencies: the approximation 
error is larger than in the original allpass filter. This design tech-
nique allows a useful tradeoff between approximation accuracy 
and bandwidth, as discussed in [21] and [3]. 

Figure 4 compares the standard and truncated Thiran allpass 
filters. The design parameters are N = 80 and d = –0.5 for both 
filters, and the prototype filter order for the truncated Thiran filter 
is M = 9N = 720. The magnitude response, which is exactly flat in 
both cases, the phase delay (i.e., the negative phase function di-
vided by angular frequency), and the frequency-response error 
(i.e., difference between frequency responses of the allpass filter 
and the ideal fractional delay element e–jωD) are displayed. It is 
seen that the difference between the fractional-delay approxima-
tion of the two filters is microscopic below about 17 kHz, see Fig. 

4(b), but the relaxed accuracy allows for the truncated Thiran filter 
to perform significantly better above 17 kHz, see Fig. 4(c). 

A comparison of two ICFs based on allpass filters is shown in 
Fig. 5. The same design parameters were used as in Fig. 4, and the 
delay-line lengths were chosen to be L = K = 0. The impulse re-
sponses of the two ICFs are very similar, but not identical (see 
Fig. 5(a)). The magnitude responses in Fig. 5(b) are also nearly 
identical except at frequencies close to the Nyquist limit. In Fig. 
5(c) it is seen that below 17 kHz the ICF using the truncated all-
pass filter is worse than the ICF using the standard Thiran filter, 
but both are sufficiently good, because the attenuation is more 
than 140 dB. Above 17 kHz the performance of the Thiran ICF 
collapses, but with the truncated version of the allpass filter the 
ICF offers an attenuation of 140 dB up to 20 kHz. 
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Figure 4: (a) Magnitude response, (b) phase delay (in 
samples), and (c) frequency-response error of the Thiran 
allpass filter (dashed line) and the truncated Thiran all-
pass filter (solid line). The parameter values are N = 80, 
M = 720, and d = –0.5. 
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Figure 5: (a) Impulse responses, (b) magnitude responses, 
and (c) harmonic attenuation of ICFs with the Thiran (‘.’, 
dashed line in (b)) and truncated Thiran allpass filters 
(‘+’, solid line in (b)). 
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3. EXTRACTING HARMONIC COMPONENTS 

Instead of canceling all the harmonic components, single harmon-
ics can be extracted. This is achieved by cascading with an ICF a 
second-order all-pole filter that cancels a zero at a given harmonic 
frequency. This section describes the design of such a filter, which 
we call the harmonic extraction filter (HEF). 

3.1. Harmonic extraction filter 

It is not recommended to place a pole exactly on the unit circle in 
the z plane, because the resulting second-order filter is marginally 
stable and the hidden pole may cause numerical problems. A bet-
ter approach is to move the zeros of the ICF slightly inside the unit 
circle by defining the radius of all zeros of the transfer function to 
be r = 1 – ε, where ε is a very small non-negative constant. Con-
sequently, the pole of the second-order filter can also have the 
same radius, so that the stability of the recursive filter can be as-
sured. 

To place all the zeros at radius r, the coefficient of an ICF 
with a delay-line of length L must have a filter coefficient r L [23]. 
Consequently, a scaling coefficient 

 )1(10
Lrg +=  (15) 

must be used to ensure the maximum gain of the filter to be unity 
(i.e., 0 dB). Then, the minimum gain of the filter, which occurs at 
the bottom of the notches at harmonic frequencies, is g0(1 – rL), 
which we call Α. We can now solve for the required g0, and con-
sequently the required r, when the gain A is set to a given value. 
From 

 )1()1()1(0
LLL rrrgA +−=−=  (16) 

it follows that 

 )1()1( AAr L +−= . (17) 

Since the radius of all zeros is r, the pole radius must also be se-
lected to be r. Based on (17) the radius can be determined to be 

 L AAr )1()1( +−= . (18) 

The HEF transfer function can be written as 
 HHEF(z) = g1R(z)[1 – rLA(z)] (19) 
where the scaling coefficient g1 that sets the maximum gain at the 
bottom of the notches (without the resonator) to be unity is 

 [ ])1(11
Lrrg −=  (20) 

and the transfer function of the resonant filter is 
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with coefficients b0 = (1 – r2)sin(2πfres/fs), which scales the maxi-
mum gain of the resonant filter to be unity (see, e.g., [11]), a1 = –
2rcos(2πfres/fs), a2 = r2, and fres is the resonance frequency that 
determines which harmonic component is retained. The filter that 
has the transfer function (19) with the given scaling coefficients 
has a maximum gain of 0 dB at the peak of the passband. 

When the delay-line length is an integer, the allpass filter A(z) 
is reduced to a delay line. The zeros of this integer-delay HEF are 
inside the unit circle, on a smaller circle with radius r: 
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The transfer function can be given in the form 
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which enables the frequency-domain expression 
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This illustrates the constant (frequency-independent) term due to 
the zeros being placed inside the unit circle. Since all the zeros are 
inside the unit circle, the overall magnitude never reaches zero 
exactly. 

Finally, we obtain the expressions 
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where both the constant and allpass phase dependent errors in the 
fractional-delay HEF response are visible. 

3.2. Design of parameter values 

For good attenuation, it is required that A is sufficiently small and 
that the resonant filter R(z) accurately cancels one of the zeros of 
the ICF. For example, when it is required that the inverse comb 
filter attenuates the harmonic frequencies by 100 dB, the value of 
Α must be set to 10–5, since 20log10(10–5) = –100 dB. 

In practice, the high-order allpass filter does not provide a per-
fect phase approximation. Thus, it may be necessary to set A to a 
smaller value, such as 10–6. However, when the filter structure for 
selecting a single harmonic is used, the resonant filter provides 
additional attenuation at frequencies away from the resonance, 
which further improves the attenuation at the notches. 

It was reported in [3] that for some musical instrument tones 
with strong low-indexed harmonics, the filtering of the signal with 
the transfer function HHEF(z) is insufficient. Listening to the fil-
tered signal reveals that the fundamental frequency is still per-
ceived although one of the high-frequency partials is strongly 
emphasized. Filtering the signal twice with transfer function (19) 
adequately attenuates the rest of the harmonics in this case. 

There is a minor mismatch in the cancellation of the mth trans-
fer function zero with the pole of the resonant filter with the reso-
nance frequency fres = mf0, because the frequency of the mth zero 
is offset by the inaccuracy of the phase approximation of the all-
pass filter. In practice, this mismatch produces a kink around the 
main lobe of the bandpass filter, and the gain at the resonance 
frequency becomes larger than 0 dB. A correction to the pole fre-
quency is required to reduce this error. 

One way to correct the resonance frequency of the all-pole fil-
ter is to search for the minimum of the ICF’s magnitude response 
around the mth notch. For example, computing the magnitude 
response at 10,000 points between 0.999990mf0 and 1.000010mf0, 
and selecting fres as the frequency, where the minimum occurs, 
reduces the mismatch sufficiently. To reduce the number of mag-
nitude response evaluations, the local minimum can be estimated 
by using interpolation. After a local minimum on a coarse grid of 
spectral points has been found, two straight lines can be fit 
through it and its neighboring points. It may be assumed that the 
slopes of the notch are symmetrical, so that the frequency of the 
actual minimum can be found where the two lines cross. This 
method gives accurate enough results at low computational costs, 
and considerably improves the performance of the algorithm. 
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Figure 6: Attenuation of harmonic partials using the sin-
gle-harmonic canceling filter when the resonance fre-
quency is the nominal mf0 (‘x’), and the corrected one 
(‘.’). Notice that the largest difference between these data 
occurs at the frequency of the harmonic #285 at 19.7 kHz. 

Fig. 6 gives an example of the attenuation obtained without 
and with the proposed correction of the resonance frequency when 
the fundamental frequency is 69.2957 Hz, the harmonic #285 at 
19749.2 Hz is selected, the allpass filter orders used are N = 80 
and M = 720, and attenuation is A = 10–5. In this case, the pole 
radius is r = 1 – 31.4 × 10–9 = 0.999999969. The difference be-
tween the nominal (mf0) and the corrected resonance frequency is 
13.5 × 10–3 Hz, but the attenuation of the partial is 1.4 dB without 
and 0.0051 dB with the correction. This difference is enough to 
make the correction worth the effort, since it makes the analysis 
filter an accurate tool for signal analysis. 

For comparison, we designed a linear-phase FIR bandpass fil-
ter that imitates the obtained magnitude response. The filter was 
designed by using the Chebyshev window with a sidelobe level of 
–100 dB. To extract the harmonic #285 and to obtain an attenua-
tion of more than 100 dB for all other harmonics, the smallest 
filter order is 4657. The proposed allpass-filter based ICF of order 
80 is computationally much less expensive. Its number of filter 
coefficient is 1.7% of that of the FIR filter. 

3.3. Separation of odd and even partials 

While it is possible to cancel the harmonic components one by one 
by applying the above HEF structure multiple times, alternatively 
even and odd harmonics may be separated using a single filtering 
operation, as suggested in [3]. The odd and even harmonics can be 
separated by first canceling the even harmonics using the frac-
tional-delay inverse comb filter and then subtracting the resulting 
signal from the original. 

The structure of Fig. 3 can be used, but the delay to be ap-
proximated is half of that used in canceling all harmonics, i.e., 
fs/2f0 samples. With this delay, the notches are located at the mul-
tiples of the second harmonic, and the filter now cancels the even 
harmonics and preserves the odd harmonics. The signal containing 
even harmonics is then obtained by subtracting the estimated odd 
harmonics from the original signal, as shown in Fig. 7: 
 ).()()( oddorigeven nsnsns −=  (27) 

 

Figure 7: Structure for separating the even and odd har-
monics of a musical signal using one allpass filter. 

4. CASE STUDIES 

This section presents how the proposed filtering algorithms per-
form with synthetic signals and recorded instrument tones. In 
addition, the proposed filter is compared against two techniques: a 
fractional-delay FIR filter using the well known Lagrange interpo-
lation [11] and sinusoidal modeling [5], [6], [7]. The sampling 
frequency is 44.1 kHz in all the test cases. 

4.1. Harmonic extraction from a synthetic test signal 

The following example illustrates how the algorithm works with a 
synthetic test signal. The signal is determined to be the sum of 
sinusoids: 

 ∑
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where Asc(n) is an envelope function, K is the number of harmon-
ics present in the signal, f0 is the fundamental frequency of the 
signal, and φk is the phase of the kth harmonic. In this case, the 
parameters were chosen as follows: K = 84, f0 = 261.626 Hz (C4), 
which corresponds to the cycle length of 168.562 samples. The 
initial phases φk are uniformly distributed random numbers in the 
range [0, 2π]. In order to examine the temporal smearing resulting 
from the harmonic component extraction, the envelope of the 
signal is chosen to be rectangular, containing sharp transitions.  

As an example, two components, the fundamental frequency 
component and the 76th overtone, have been extracted from the 
signal (28). This is done with the HEF structure (19). The order of 
the truncated Thiran filter was chosen to be N = 80 and the order 
of the prototype filter was set to M = 9N. The attenuation coeffi-
cient A was determined to be equal to 10–6. A comparison against 
a Lagrange FIR filter and sinusoidal modeling technique was car-
ried out. The order of the Lagrange FIR filter NL was set to 80 so 
that the amount of coefficients is the same as that of the proposed 
filter. In sinusoidal modeling, the following parameters were used. 
The short-time FFT was computed using a Blackman window of 
length 4fs/f0, and the FFT size was 2048. The hop size was set to 
be one-fourth of the window length. 

The results are presented in Figs. 8 and 9. Figs. 8(a) and (b) 
present the spectrum of the original signal (28), and Figs. 8(c) and 
(d) present the spectrum of the partials #1 and #76 that are ex-
tracted with the proposed method. Figs. 8(e) and (f) present the 
corresponding result obtained with the Lagrange FIR filter, and 
Figs. 8(g) and (h) represent the result obtained with sinusoidal 
modeling. All spectra were calculated from a 0.5 s excerpt taken 
between 0.1 s and 0.6 s of the signals. The Hamming window was 
used, and the spectra were computed using the discrete-time Fou-
rier transform at 851 equally spaced points so that every 10th point 
matched one harmonic. This choice of parameters yields a clear 
visual representation of the sharp spectral peaks. 
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Figure 8: Results of comparison in the frequency domain. 
(a), (b) Synthetic test signal and harmonic components #1 
and #76 obtained with (c), (d) with the proposed method, 
(e), (f) with Lagrange FIR filter, and (g), (h), with sinusoi-
dal modeling. 
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Figure 9: The effects of temporal smearing. (a) and (b), an 
excerpt of the original synthetic test signal, (c) and (d) ex-
cerpts of the 1st and 76th harmonic obtained with the pro-
posed allpass filter, (e) and (f) with the Lagrange FIR fil-
ter, and (g) and (h), with sinusoidal modeling. 

As can be seen in Figs. 8(c) and (e), the proposed filter and 
Lagrange filter are able to extract the first harmonic efficiently, 
and the other harmonics are properly attenuated. In the case of the 
76th harmonic component, some of the uppermost harmonics are 
not properly attenuated because of the error in the phase delay 
near the Nyquist limit (see Fig. 4) and its effect on the attenuation 
of the inverse comb filter. The Lagrange FIR filter in Figs. 8(e) 
and (f), the error near the Nyquist limit is greater, and moreover, 
the lowpass nature of the magnitude response has to be taken into 
account in the analysis in order to maintain the level of the origi-
nal signal at high frequencies. The sinusoidal modeling technique 

depicted in Figs. 8(g) and (h), suffers from sidelobes of the win-
dow function, and the attenuation of the neighboring harmonics is 
not as efficient as with the other methods. 

The effects of temporal smearing are illustrated in Fig. 9. The 
signals are zoomed to the window 0.98 – 1.06 s. Figs. 9(a) and (b) 
show the original signal and Figs. 9(c) and (d) present the cases 
where the first harmonic and the 76th harmonic have been ex-
tracted with the proposed method, respectively. The performance 
of the Lagrange FIR filter is depicted in Figs. 9(e) and (f). It can 
be seen in Fig. 9(e) that in the case of the first harmonic the effect 
of temporal smearing is about same as with the proposed method. 
However, the smearing is greater in higher frequencies, which is 
visible in Fig. 9(f), since the lowpass nature of the filter compli-
cates the usage of the resonator. In this case, the magnitudes of the 
resonator and the Lagrange filter do not compensate each other, 
which leads to improper attenuation. The temporal smearing in 
sinusoidal modeling technique depicted in Figs. 9(g) and (h) is 
slightly greater than that of the other methods.  

4.2. Even-to-odd ratio calculation 

In the case of the clarinet, the relation of even and odd harmonics 
and its effect to the timbre has been studied by Barthet et al. [27]. 
They have derived new descriptors for the clarinet timbre by 
constructing a simple but efficient parametric model for the 
clarinet to control certain parameters: the dimensionless mouth 
pressure γ and the embouchure parameter ζ, in addition to the 
fundamental frequency of the bore fb and the reed resonance 
frequency fr. The γ parameter defines the ratio between the 
pressure inside the player’s mouth and the static beating reed 
pressure. The ζ parameter, in turn, takes the lip position and the 
section between the mouthpiece opening and the resonator into 
account. By varying these parameters Barthet et al. derived a 
relation between the parameters and the timbre characteristics.  

We have examined the synthetic sounds generated by Barthet 
et al. [27] with the proposed algorithm in the case where the 
parameter γ varies between 0.40 and 0.50. As the relation of the 
odd and even harmonics has an effect on the spectum and timbre 
of the sound, the odd and even harmonics were separated with the 
structure presented in Fig. 7. The original signal and the 
separation results are shown in Fig. 10 for γ = 0.40. The other 
parameters, ζ, fb,and fr, are equal to 0.33, 170 Hz and 2500 Hz, 
respectively. The magnitude response is calculated with a 512-
point FFT from an excerpt taken from 0.5 – 1.0 s. A Hamming 
window is used in the computation.  

As Fig. 10 shows, the magnitude of the odd harmonics is 
greater than that of the even harmonics, which is typical for the 
clarinet sound. The odd-to-even ratio is determined by first calcu-
lating the envelopes of both signals. This is done by averaging the 
full-wave rectified signal over a window of 500 samples. The ratio 
between the magnitude of the odd and even harmonics is obtained 
by dividing the envelopes. The result seems to depend on the pa-
rameter γ. This relation is illustrated in Fig. 11 for four different 
values of γ (0.40, 0.42, 0.47, and 0.50). 

Fig. 11 shows that the difference between the player’s mouth 
pressure and the static beating reed pressure affects the odd-to-
even ratio. That is, with larger pressure differences, the proportion 
of the odd harmonics in the tone is greater than in the case when 
the pressure difference is smaller (smaller γ value). Also the static 
state is reached faster with a larger pressure difference. 
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Figure 10: (a) and (b) The synthetic clarinet tone in time 
and frequency domains, respectively, (c) and (d) the sepa-
rated odd harmonics in time and frequency domains, re-
spectively, and (e) and (f) even harmonics in the time and 
frequency domains ,respectively. 

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

Time (s)

E
ve

n−
to

−
O

dd
 H

ar
m

on
ic

s 
E

nv
el

op
e 

R
at

io

Gamma = 0.40
Gamma = 0.42
Gamma = 0.47
Gamma = 0.50

 

Figure 11: The ratio of even and odd harmonics with four 
different γ values. 

4.3. Residual signal extraction 

In order to investigate how the proposed algorithm works with 
recorded tones, a double bass tone was analyzed with the proposed 
method. In Figs. 12(a) and (b), the tone is presented in the time 
and frequency domains, respectively. The fundamental frequency 
of the tone was measured to be f0 = 58.2670 Hz. 

It is now desired to remove all the harmonics instead of pre-
serving one. A modified form of the transfer functions (2) or (3) 
can be used, depending on the fundamental frequency, 

 [ ])(1)( 1HEF zArgzH L−= , (29) 

where the coefficients g1 and rL are determined in the same man-
ner as described in Sec. 3.1. A(z) written is as in (1). The order of 
the truncated Thiran filter is N = 80 and the order of the prototype 
filter is M = 9N. The attenuation coefficient A is set to 10–6. The 
filtered residual signal is presented in Figs. 12(c) and (d) in time- 
and frequency domains, respectively. When comparing Figs. 12(b) 
and (d), it is seen that the harmonic components are attenuated 
efficiently. Moreover, the noise between the harmonics is pre-
served.  
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Figure 12: Time- and frequency-domain presentations of 
(a), (b) the double bass tone and (c), (d) the extracted re-
sidual signal. 

5. CONCLUSIONS AND FUTURE WORK 

Digital filtering techniques were proposed to obtain useful decom-
positions of harmonic musical signals. The basic approach taken 
here is to subtract a delayed copy of the signal from itself to can-
cel the harmonic components. A high-order digital allpass filter 
implements an accurate approximation of the required time delay. 
A harmonic extraction filter is obtained by cascading a second-
order all-pole filter with the inverse comb filter. Division of a 
musical signal into two signals, one containing the even and the 
other the odd harmonics, and the extraction of the background 
noise or residual were also suggested as promising operations that 
are easy to realize using the proposed filter structures. 

Case studies were presented to show how the techniques per-
form in the feature analysis for musical tones. Single harmonic 
components were extracted from a synthetic test tone. The 
neighboring harmonics were attenuated more than 100 dB. The 
harmonic even-to-odd ratio was determined for synthetic clarinet 
tones. Finally, the residual noise component was extracted from a 
bowed string tone by suppressing all the harmonics. 

Future research includes developing a useful method to ac-
count for varying fundamental frequency of the signal, such as 
vibrato. In practice, this problem calls for a time-varying delay 
line to be used in the inverse comb filter. There are known meth-
ods for modulation of the delay-line length for example in effects 
processing, such as flanging and chorus algorithms. Which inter-
polation technique should be used and for how fast and wide de-
lay-length modulation can this method be accurate? A further 
application of the time-varying inverse comb filter would be the 
separation of harmonic audio signals, such as musical tones or 
voiced speech, as discussed by de Cheveigné [28]. 

Another interesting special case is the analysis of inharmonic 
tones, such as piano tones or other instrument sounds with regular 
inharmonicity caused by dispersion. A filter-based analysis tool 
for such tones requires an allpass filter that approximates the dis-
persion in cascade with the delay line. This is a known method in 
digital waveguide synthesis of string sounds, see, e.g., [29], [30]. 
A more accurate approximation of dispersion characteristics is 
needed for the analysis tool than for sound synthesis. 
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