
Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

A MATLAB TOOLBOX FOR MUSICAL FEATURE EXTRACTION FROM AUDIO

Olivier Lartillot, Petri Toiviainen

University of Jyväskylä
Finland

lartillo@campus.jyu.fi

ABSTRACT

We present MIRtoolbox, an integrated set of functions written in
Matlab, dedicated to the extraction of musical features from audio
files. The design is based on a modular framework: the different
algorithms are decomposed into stages, formalized using a mini-
mal set of elementary mechanisms, and integrating different vari-
ants proposed by alternative approaches – including new strategies
we have developed –, that users can select and parametrize.

This paper offers an overview of the set of features, related,
among others, to timbre, tonality, rhythm or form, that can be ex-
tracted with MIRtoolbox. Four particular analyses are provided as
examples. The toolbox also includes functions for statistical anal-
ysis, segmentation and clustering. Particular attention has been
paid to the design of a syntax that offers both simplicity of use and
transparent adaptiveness to a multiplicity of possible input types.
Each feature extraction method can accept as argument an audio
file, or any preliminary result from intermediary stages of the chain
of operations. Also the same syntax can be used for analyses of
single audio files, batches of files, series of audio segments, multi-
channel signals, etc. For that purpose, the data and methods of the
toolbox are organised in an object-oriented architecture.

1. MOTIVATION AND APPROACH

MIRToolbox is a Matlab toolbox dedicated to the extraction of
musically-related features from audio recordings. It has been de-
signed in particular with the objective of enabling the computation
of a large range of features from databases of audio files, that can
be applied to statistical analyses.

Few softwares have been proposed in this area. The most im-
portant one, Marsyas [1], provides a general architecture for con-
necting audio, soundfiles, signal processing blocks and machine
learning (see section 5 for more details). One particularity of our
own approach relies in the use of the Matlab computing environ-
ment, which offers good visualisation capabilities and gives access
to a large variety of other toolboxes. In particular, the MIRToolbox
makes use of functions available in recommended public-domain
toolboxes such as the Auditory Toolbox [2], NetLab [3], or SOM-
toolbox [4]. Other toolboxes, such as the Statistics toolbox or the
Neural Network toolbox from MathWorks, can be directly used for
further analyses of the features extracted by MIRToolbox without
having to export the data from one software to another.

Such computational framework, because of its general objec-
tives, could be useful to the research community in Music Infor-
mation Retrieval (MIR), but also for educational purposes. For
that reason, particular attention has been paid concerning the ease
of use of the toolbox. In particular, complex analytic processes can
be designed using a very simple syntax, whose expressive power
comes from the use of an object-oriented paradigm.

The different musical features extracted from the audio files
are highly interdependent: in particular, as can be seen in figure 1,
some features are based on the same initial computations. In order
to improve the computational efficiency, it is important to avoid
redundant computations of these common components. Each of
these intermediary components, and the final musical features, are
therefore considered as building blocks that can been freely artic-
ulated one with each other. Besides, in keeping with the objec-
tive of optimal ease of use of the toolbox, each building block has
been conceived in a way that it can adapt to the type of input data.
For instance, the computation of the MFCCs can be based on the
waveform of the initial audio signal, or on the intermediary rep-
resentations such as spectrum, or mel-scale spectrum (see Fig. 1).
Similarly, autocorrelation is computed for different range of delays
depending on the type of input data (audio waveform, envelope,
spectrum). This decomposition of all the set of feature extraction
algorithms into a common set of building blocks has the advan-
tage of offering a synthetic overview of the different approaches
studied in this domain of research.

2. FEATURE EXTRACTION

2.1. Feature overview

Figure 1 shows an overview of the main features implemented in
the toolbox. All the different processes start from the audio signal
(on the left) and form a chain of operations proceeding to right.
The vertical disposition of the processes indicates an increasing
order of complexity of the operations, from simplest computation
(top) to more detailed auditory modelling (bottom).

Each musical feature is related to one of the musical dimen-
sions traditionally defined in music theory. Boldface characters
highlight features related to pitch, to tonality (chromagram, key
strength and key Self-Organising Map, or SOM) and to dynam-
ics (Root Mean Square, or RMS, energy). Bold italics indicate
features related to rhythm, namely tempo, pulse clarity and fluc-
tuation. Simple italics highlight a large set of features that can be
associated to timbre. Among them, all the operators in grey ital-
ics can be in fact applied to many others different representations:
for instance, statistical moments such as centroid, kurtosis, etc.,
can be applied to either spectra, envelopes, but also to histograms
based on any given feature.

One of the simplest features, zero-crossing rate, is based on a
simple description of the audio waveform itself: it counts the num-
ber of sign changes of the waveform. Signal energy is computed
using root mean square, or RMS [5]. The envelope of the audio
signal offers timbral characteristics of isolated sonic event.

FFT-based spectrum can be computed along the frequency do-
main or along Mel-bands, with linear or decibel energy scale, and

DAFX-1

http://www.labri.fr
mailto:lartillo@campus.jyu.fi

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

Audio signal
waveform

Zero-crossing rate

RMS energy

Envelope Attack/Sustain/Release

Envelope Autocorrelation Tempo

Key strength Key SOM

Pitch

Spectrum

Pulse claritySpectral flux Spectrum

Filterbank

Centroid, Kurtosis, Spread, Skewness
Flatness, Roll-off, Entropy, Irregularity

MFCC

Fluctuation

Brightness, Roughness

Spectral flux

Mel-scale spectrum

Cepstrum

Chromagram

Autocorrelation

Figure 1: Overview of the musical features that can be extracted with MIRToolbox.

applying various windowing methods. The results can be multi-
plied with diverse resonance curves in order to highlight different
aspects such as metrical pulsation (when computing the FFT of
envelopes) or fluctuation [6].

Many features can be derived from the FFT:

• Basic statistics of the spectrum gives some timbral charac-
teristics (such as spectral centroid, roll-off [5], brightness,
flatness, etc.).

• The temporal derivative of spectrum gives the spectral flux.

• An estimation of roughness, or sensory dissonance, can be
assessed by adding the beating provoked by each couple of
energy peaks in the spectrum [7].

• A conversion of the spectrum in a Mel-scale can lead to the
computation of Mel-Frequency Cepstral Coefficients (MFCC)
(cf. example 2.2), and of fluctuation [6].

• Tonality can also be estimated (cf. example 2.3).

The computation of the autocorrelation can use diverses nor-
malization strategies, and integrates the improvement proposed by
Boersma [8] in order to compensate the side-effects due to the win-
dowing. Resonance curve are also available here. Autocorrelation
can be "generalized" through a compression of the spectral repre-
sentation [9].

The estimation of pitch is usually based on spectrum, autocor-
relation, or cepstrum, or a mixture of these strategies [10].

A distinct approach consists of designing a complete chain of
processes based on the modelling of auditory perception of sound
and music [2] (circled in Figure 1). This approach can be used in
particular for the computation of rhythmic pulsation (cf. example
2.4).

2.2. Example: Timbre analysis

One common way of describing timbre is based on MFCCs [11,
2]. Figure 2 shows the diagram of operations. First, the audio
sequence is loaded (1), decomposed into successive frames (2),
which are then converted into the spectral domain, using the mir-
spectrum function (3). The spectra are converted from the fre-
quency domain to the Mel-scale domain: the frequencies are rear-

ranged into 40 frequency bands called Mel-bands1. The envelope
of the Mel-scale spectrum is described with the MFCCs, which are
obtained by applying the Discrete Cosine Transform to the Mel-
scale spectrum. Usually only a restricted number of them (for in-
stance the 13 first ones) are selected (5).

a = miraudio(’audiofile.wav’) (1)
f = mirframe(a) (2)

s = mirspectrum(f) (3)
m = mirspectrum(s,’Mel’) (4)

c = mirmfcc(s,’Rank’,1:13) (5)

The computation can be carried in a window sliding through
the audio signal (this corresponded to the code line 1), resulting
in a series of MFCC vectors, one for each successive frame, that
can be represented column-wise in a matrix. Figure 2 shows an
example of such matrix. The MFCCs do not convey very intuitive
meaning per se, but are generally applied to distance computation
between frames, and therefore to segmentation tasks (cf. para-
grapn 2.5).

The whole process can be executed in one single line by call-
ing directly the mirmfcc function with the audio input as argument:

mirmfcc(f,’Rank’,1:13) (6)

2.3. Example: Tonality analysis

The spectrum is converted from the frequency domain to the pitch
domain by applying a log-frequency transformation. The distribu-
tion of the energy along the pitches is called the chromagram. The
chromagram is then wrapped, by fusing the pitches belonging to
same pitch classes. The wrapped chromagram shows therefore a
distribution of the energy with respect to the twelve possible pitch
classes [12].

Krumhansl and Schmuckler [13] proposed a method for es-
timating the tonality of a musical piece (or an extract thereof)

1The Mel-scale conversion is available as an option of the mirspectrum
function (4). Note how it is possible to recall a function using one of its
previous output as input (here, s), in order to perform some additional op-
tional operations.

DAFX-2

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

Spectrum MFCCsConversion Mel-scale
spectrum

Fr
eq

ue
nc

ie
s

M
el

-b
an

ds

DCT

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30

10

20

30

40

0 5 10 15 20 25 30

2

4

6

8

10

12

Fr
eq

u
en

ci
es

M
el

-b
an

d
s

C
o

ef
fic

ie
n

t
ra

n
k

Time (in s.) Time (in s.) Time (in s.)

Figure 2: Successive steps for the computation of MFCCs, illustrated with the analysis of an audio excerpt decomposed into frames.

Spectrum
Wrapped

chromagram
Conv Chromagram Key strength

Fr
eq

ue
nc

ie
s

Ch
ro

m
as

Pi
tc

h
cl

as
se

s

Wrap

Ch
ro

m
as Cross-

correlation

Key candidates

C major

C minor

C# major

D major ...

...C# minor C C# D D# E F F# G G# A A# B

Frequencies Chromas Pitch classes Key candidates

Figure 3: Successive steps for the calculation of chromagram and estimation of key strengths, illustrated with the analysis of an audio
excerpt, this time not decomposed into frames.

by computing the cross-correlation of its pitch class distribution
with the distribution associated to each possible tonality. These
distribution have been established though listening experiments
[14]. The most prevalent tonality is considered to be the tonality
candidate with highest correlation, or key strength. This method
was originally designed for the analysis of symbolic representa-
tions of music but has been extended to audio analysis through an
adaptation of the pitch class distribution to the chromagram rep-
resentation [12]. Figure 3 displays the successive steps of this ap-
proach. For instance the following command estimates the three
most probable key candidates for each frame.

mirkey(f,’Total’,3) (7)

A richer representation of the tonality estimation can be drawn
with the help of a self-organizing map (SOM), trained by the 24
tonal profiles [15]. The configuration of the trained SOM reveals
key relations that correspond to music theoretical notions. The es-
timation of the tonality of the musical piece under study is carried
by projecting its wrapped chromagram onto the SOM. Figure 4
shows the resulting activity pattern in the SOM.

2.4. Example: Rhythm analysis

One common way of estimating the rhythmic pulsation, described
in figure 6, is based on auditory modelling [5]. The audio signal is
first decomposed into auditory channels using a bank of filters. Di-
verse types of filterbanks are proposed and the number of channels
can be changed, such as 20 for instance (8). The envelope of each

Figure 4: Activity pattern of a self-organizing map representing
the tonal configuration of the first two seconds of Mozart Sonata
in A major, K 331. High activity is represented by bright nuances.

channel is extracted (9)2. As pulsation is generally related to in-
crease of energy only, the envelopes are differentiated, half-wave
rectified, before being finally summed together again (10). This
gives a precise description of the variation of energy produced by
each note event from the different auditory channels.

After this onset detection, the periodicity is estimated through
autocorrelation (12)3. However, if the tempo varies throughout the
piece, an autocorrelation of the whole sequence will not show clear
periodicities. In such cases it is better to compute the autocorrela-

2Note how the analysis of multi-channel signal (such as fb) follows
exactly the same kind of syntax than for mono-channel signal.

3For the sake of clarity, several options in the following functions have
been omitted.

DAFX-3

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

Audio
waveform

Filter
bank

Auto
correlation

Filter Peaks

Resonance
curve

Envelope
extraction

Diff HWR +

C
h

an
n

el
s

TempoPeriodo
gram

Onsets

TimeTime

D
el

ay
s

Figure 5: Successive steps for the estimation of tempo illustrated with the analysis of an audio excerpt. In the periodogram, high autocor-
relation values are represented by bright nuances.

tion for a frame decomposition (11)4. This yields a periodogram
that highlights the different periodicities, as shown in figure 6. In
order to focus on the periodicities that are more perceptible, the
periodogram is filtered using a resonance curve [16] (12), after
which the best tempos are estimated through peak picking (13),
and the results are converted into beat per minutes (14). Due to the
difficulty of choosing among the possible multiples of the tempo,
several candidates (three for instance) may be selected for each
frame, and a histogram of all the candidates for all the frames,
called periodicity histogram, can be drawn (15).

fb = mirfilterbank(a,20) (8)
e = mirenvelope(fb,’Diff’,’Halfwave’) (9)

s = mirsum(e) (10)
fr = mirframe(s,3,.1) (11)

ac = mirautocor(fr,’Resonance’) (12)
p = mirpeaks(ac,’Total’,1,’NoEnd’) (13)

t = mirtempo(p) (14)
h = mirhisto(t) (15)

The whole process can be executed in one single line by call-
ing directly the mirtempo function with the audio input as argu-
ment:

mirtempo(a,’Frame’) (16)

In this case, the different options available throughout the process
can directly be specified as argument of the tempo function. For
instance, a computation of a frame-based tempo estimation, with a
selection of the 3 best tempo candidates in each frame, a range of
admissible tempi between 60 and 120 beats per minute, an estima-
tion strategy based on a mixture of spectrum and autocorrelation
applied on the spectral flux will be executed with the syntax:

mirtempo(a,’Frame’,’Total’,3,

’Min’,60,’Max’,120,’Spectrum’,

’Autocor’,’SpectralFlux’) (17)

4The mirframe function can accept both audio signal and envelope as
argument. Here, the frame size is 3 seconds and the hop factor .1.

2.5. Segmentation

More elaborate tools have also been implemented that can carry
out higher-level analyses and transformations. In particular, audio
files can be automatically segmented into a series of homogeneous
sections, through the estimation of temporal discontinuities along
diverse alternative features such as timbre in particular [17]. First
the audio signal is decomposed into frames (18) and one chosen
feature, such as MFCC (19), is computed along these frames. The
feature-based distances between all possible frame pairs are stored
in a similarity matrix (20). Convolution along the main diago-
nal of the similarity matrix using a Gaussian checkerboard kernel
yields a novelty curve that indicates the temporal locations of sig-
nificant textural changes (21). Peak detection applied to the nov-
elty curve returns the temporal position of feature discontinuities
(22) that can be used for the actual segmentation of the audio se-
quence (23)5.

fr = mirframe(a) (18)
fe = mirmfcc(fr) (19)

sm = mirsimatrix(fe) (20)
nv = mirnovelty(sm) (21)
ps = mirpeaks(nv) (22)

sg = mirsegment(a,ps) (23)
(24)

The whole segmentation process can be executed in one sin-
gle line by calling directly the mirsegment function with the audio
input as argument:

mirsegment(a,’Novelty’) (25)

By default, the novelty curve is based on MFCC, but other features
can be selected as well using an additional option:

mirsegment(a,’Novelty’,’Spectrum’) (26)

A second similarity matrix can be computed, in order to show
the distance – according to the same feature than the one used for

5The first argument of the mirsegment function is the audio file that
needs to be segmented. It is possible for instance to compute the novelty
curve using a downsampled version of a (18) and to perform the actual
segmentation using the original audio file.

DAFX-4

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

Audio
waveform

Frames MFCC Convol.

Gaussian
checkerboard kernel

- Novelty Peaks SegmentSimilarity
matrix

Key
strength

- Similarity
matrix

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Successive steps for the segmentation of an audio sequence based on timbral novelty. In the similarity matrix, high similarity
values are represented by bright nuances.

the segmentation – between all possible segment pairs (28).6

fesg = mirmfcc(sg) (27)
smsg = mirsimatrix(fesg) (28)

2.6. Data analysis

The toolbox includes diverse tools for data analysis, such as a peak
extractor, and functions that compute histograms, entropy, zero-
crossing rates, irregularity or various statistical moments (centroid,
spread, skewness, kurtosis, flatness) on data of various types, such
as spectrum, envelope or histogram.

The mirpeaks functions can accept any data returned by any
other function of the MIRtoolbox and can adapt to the different
kind of data of any number of dimensions. In the graphical rep-
resentation of the results, the peaks are automatically located on
the corresponding curves (for 1D data) or bit-map images (for 2D
data).

The mirpeaks functions offers alternative possible heuris-
tics. It is possible to define a global threshold that peaks must
exceed for them to be selected. We have designed a new strategy
of peak selection, based on a notion of contrast, discarding peaks
that are not sufficiently contrastive (based on a certain threshold)
with the neighbouring peaks. This adaptive filtering strategy hence
adapts to the local particularities of the curves. Its articulation
with other more conventional thresholding strategies leads to an
efficient peak picking module that can be applied throughout the
MIRtoolbox.

Supervised classification of musical samples can also be per-
formed, using techniques such as K-Nearest Neighbours or Gaus-
sian Mixture Model. One possible application is the classification
of audio recordings into musical genres.

3. DESIGN OF THE TOOLBOX

3.1. Data encapsulation

All the data returned by the functions in the toolbox are encapsu-
lated into types objects. The default display method associated to
all these objects is a graphical display of the corresponding curves.

6Note how the computation of a feature along the successive segments
of an audio sequence (27) follows exactly the same kind of syntax that for
the computation of a feature along successive frames (19).

In this way, when the display of the values of a given analysis is re-
quested, what is printed is not a listing of long vectors or matrices,
but rather a correctly formatted graphical representation.

The actual data matrices associated to those data can be ob-
tained by calling a method called mirgetdata, which constructs
the simplest possible data structure associated to the data (cf. para-
graph 4.1).

3.2. Frame analysis

Frame-based analyses (i.e., based on the use of a sliding window)
can be specified using two alternative methods. The first method is
based on the use of the mirframe function, which decomposes
an audio signal into successive frames. Optional arguments can
specify the frame size (in seconds, by default), and the hop factor
(between 0 and 1, by default). For instance, in the following code
(line 29), the frames have a size of 50 milliseconds and are half
overlapped. The results of that function could then be directly sent
as input of any other function of the toolbox (30):

f = mirframe(a,.05,.5) (29)
mirtempo(f) (30)

Yet this first method does not work correctly for instance when
dealing with tempo estimation as described in section 2.4. Follow-
ing this first method, as shown in figure 7, the frame decomposition
is the first step performed in the chain of processes. As a result,
the input of the filterbank decomposition is a series of short frames,
which induces two main difficulties. Firstly, in order to avoid the
presence of undesirable transitory state at the beginning of each
filtered frame, the initial state of each filter would need to be tuned
depending on the state of the filter at one particular instant of the
previous frame (depending of the overlapping factor). Secondly,
the demultiplication of the redundancies of the frame decomposi-
tion (if the frames are overlapped) throughout the multiple chan-
nels of the filterbank would require the use of consequent memory
space. The technical difficulties and waste of memory induced by
this first method can be immediately overcome if the frame de-
composition is performed after the filterbank decomposition and
recomposition, as shown in figure 8.

This second method, more successful in this context, cannot be
managed using the previous syntax, as the input of the mirtempo
function should not be frame-decomposed yet. The other alterna-
tive syntax consists in proposing the frame decomposition option

DAFX-5

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

Audio
Filter
bank

Frame
decomp.

Auto
cor

Filter Peaks

Resonance
curve

Envelope
extraction

Diff HWR + TempoPeriodo
gram

Onsets

Figure 7: First possible location of the frame decomposition step (in bold) within the chain of processes defining the tempo estimation
method.

Audio
Filter
bank

Frame
decomp.

Auto
cor

Filter Peaks

Resonance
curve

Envelope
extraction

Diff HWR + TempoPeriodo
gram

Onsets

Figure 8: Second – and more suitable – possible location of the frame decomposition step (in bold), once the onset detection curve has
been computed.

as a possible argument (’Frame’) of the mirtempo function
(31). This corresponds to what was presented in section 2.4 (code
lines 16 and 17).

mirtempo(a,’Frame’,.05,.5) (31)

The frame decomposition option is available as a possible ar-
gument to most of the functions of the toolbox. Each function
can then specify the exact position of the frame decomposition
within its chain of operations. Besides, if not specified, the de-
fault parameters of the frame decomposition – i.e., frame size and
hop factor – can be adapted to each specific function. Hence,
from a user’s point of view, the execution and chaining of the
different operators of the MIRtoolbox follow the same syntax, be
there frame decomposition or not, apart from the additional use
of either the command mirframe or the option ’Frame’ for
frame decomposition. Of course, from a developer’s point of view,
this requires that each feature extraction algorithm should adapt to
frame-decomposed input. More precisely, as will be explained in
section 4.1, input can be either a single vector or a matrix, where
columns represent the successive frames. Conveniently enough, in
the Matlab environment, the generalization of vector-based algo-
rithms to matrix-based versions is generally effortless.

3.3. Adaptive syntax

As explained previously, the diverse functions of the toolbox can
accept alternative input:

• The name of a particular audio file (either in wav or au for-
mat) can be directly specified as input:

mirspectrum(’myfile’) (32)

• The audio file can be first loaded using the miraudio
function, which can perform diverse operations such as re-
sampling, automated trimming of the silence at the begin-
ning and/or at the end of the sequence, extraction of a given
subsequence, centering, normalization with respect to RMS
energy, etc.

a = mirtempo(’myfile’,’Sampling’,11025,

’Trim’,’Extract’,2,3,

’Center’,’Normal’) (33)
mirspectrum(a) (34)

• Batch analyses of audio files can be carried out by sim-
ply replacing the name of the audio file by the keyword
’Folder’.

mirspectrum(’Folder’) (35)

• Any vector v computed in Matlab can be converted into a
waveform using, once again, the miraudio function, by
specifying a specific sampling rate.

a = miraudio{v,44100) (36)
mirspectrum(a) (37)

• Any feature extraction can be based on the result of a pre-
vious computation. For instance, the autocorrelation of a
spectrum curve can be computed as follows:

s = mirspectrum(a) (38)
as = mirautocor(s) (39)

• Product of curves [10] can be performed easily:

mirautocor(a)*mirautocor(s) (40)

In this particular example, the waveform autocorrelation
mirautocor(a) is automatically converted to frequency
domain in order to be combined with the spectrum autocor-
relation mirautocor(s).

DAFX-6

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

4. IMPLEMENTATION DETAILS

4.1. Data representation

All data returned by the toolbox is represented using the same gen-
eral framework:

• The one-dimensional analysis of a given frame or of a whole
signal is stored in a column vector, which corresponds to the
first dimension in Matlab convention.

• The multiple columns corresponding to successive frame
analyses are arranged row-wise (along the second dimen-
sion in Matlab convention), forming a matrix. Respectively,
any two-dimensional data (such as a self-organizing map) is
stored in a same matrix using the first two Matlab dimen-
sions.

• The multiple matrices corresponding to multiple channels,
when applicable (9), are arranged along the third dimension
in Matlab convention, forming a 3D-matrix.

• The fourth Matlab dimension is sometimes used for more
complex data. For instance, the keystrength function re-
turns two sets of data – one for major keys, one for minor
keys - that are arranged following the fourth dimension.

• These matrices (one to four-dimensional) are computed for
each successive segments of a segmented audio file, when
applicable (27), and stored in a Matlab cell array.

• The multiple cell arrays corresponding to the analyses of
the multiple audio files of a batch of audio files are stored
in another cell array.

Figure 9 shows the overall structure.
This complex data structure, although enabling to grasp all

the potentiality offered by the toolbox, is rarely used in its plain
capacity. Therefore, a particular mechanism has been designed
in order to automatically simplify the structure, when calling the
mirgetdata function that return the numerical data associated to
a given feature analysis.

4.2. Object-oriented architecture

The organization of the data and functions of the mirtoolbox is
founded on an object-oriented architecture. The superclass from
which all the data and methods are based is called mirdata. It
contains all the information commonly used by all data.A hierar-
chy of classes is contructed from the mirdata hyperclass. The mi-
raudio and mirenvelope classes inherit from the mirtemporal class,
which contains particular data and methods adapted to waveforms
of diverse sampling rates. For instance, the mirplay method plays
back the audio signal. When applied to an envelope, mirplay actu-
ally produces a white noise featuring the same envelope.

A large number of features actually returns a single scalar
value per analysed frame. They are all members of the mirscalar
class, which features all the necessary methods for their process-
ing, such as their graphical display in particular. The non-scalar
features, on the contrary, are organized into a set of different spe-
cialised classes (mirautocor, mirspectrum, mirhisto, mirmfcc, etc.).

4.3. Memory optimization

The flexibility of the syntax requires a complex data representation
that can handle alternative configurations (frame and/or channels

decompositions, segmentation, batch analysis). This data structure
could in theory become very extensive in terms of memory usage,
especially if entire folders of audio files are loaded into the mem-
ory in one go. We have designed new methods allowing a better
management of memory without deterioration of the syntactical
simplicity and power. Audio files are loaded one after the other in
the memory, and if necessary, long audio files are also divided into
a series of successive blocks of frames that are loaded one after the
other. We plan to further optimise the computational efficiency of
the toolbox by proposing the possibility of distributing the compu-
tational loads among a network of computers, with the help of the
Distributed Computing Toolbox and Engine proposed by Matlab.

4.4. Software Development Kit

The different feature extraction algorithms will be progressively
refined and new features will be added in future versions of MIR-
toolbox. Users are encouraged to write their own functions, us-
ing the building blocks offered by the current version. A set of
meta-functions have been designed that enable the writing of ad-
ditional algorithms using very simple function templates. As the
meta-functions take care of all the complex management of the
data structure and methods, the development of new algorithms
can concentrate simply on the purely mathematical and DSP con-
siderations. This may result in a computational environment where
large-scale MIR systems could be developed, articulated one with
each other, and compared.

5. MIRTOOLBOX COMPARISON TO MARSYAS

Marsyas is a framework written in C++ and Java for prototyp-
ing and experimentation with computer audition applications [1].
It provides a general architecture for connecting audio, sound-
files, signal processing blocks and machine learning. The architec-
ture is based on dataflow programming, where computation is ex-
pressed as a network of processing nodes/components connected
by a number of communication channels/arcs. Users can build
their own dataflow network using a scripting language at run-time.
Marsyas provides a framework for building applications rather than
a set of applications [1] 7 Marsyas executables operate either on
individual soundfiles or collections which are simple text files that
contain lists of soundfiles. In general collection files should con-
tain soundfiles with the same sampling rate as Marsyas doesn’t
perform automatic sampling conversion (except between 44100Hz
and 22050Hz). The results of feature extraction processes are
stored in Marsyas as text files that can be used later in the Weka
machine learning environment. In parallel, Marsyas integrates some
basic machine learning components.

Also MIRtoolbox offers the possibility of articulating process
one after the other in order to construct complex computation, us-
ing a simple and adaptive syntax. Contrary to Marsyas though,
MIRtoolbox does not offer real-time capabilities. On the other
hand, its object-based architecture (paragraph 4.2) enables a sig-
nificant simplification of the syntax. MIRtoolbox can also analyse
folders of audio files, and can deal with folder of varying sampling
rates without having to perform any conversion. The data com-
puted by the MIRtoolbox can be further processed directly in the

7The main features currently proposed are spectral moments, flux, and
rolloff, pitch and harmonicity estimation, MFCC and LPC, zero-crossing
and RMS.

DAFX-7

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

Figure 9: Structure of the data representation used for each feature results.

Matlab environment with the help of other toolboxes, or can be
exported into text files.

6. AVAILABILITY OF THE MIRTOOLBOX

Following our first Matlab toolbox, called MIDItoolbox [18], ded-
icated to the analysis of symbolic representations of music, the
MIRtoolbox is offered for free to the research community. It can
be downloaded from the following URL:

http://www.cc.jyu.fi/~lartillo/mirtoolbox

7. ACKNOWLEDGMENTS

This work has been supported by the European Commission (NEST
project “Tuning the Brain for Music", code 028570). The develop-
ment of the toolbox has benefitted from productive collaborations
with the other partners of the project, in particular Tuomas Eerola,
Jose Fornari, Marco Fabiani, and students of our department.

8. REFERENCES

[1] G. Tzanetakis and P. Cook, “Marsyas: A framework for au-
dio analysis,” Organized Sound, vol. 4, no. 3, 2000.

[2] M. Slaney, “Auditory toolbox version 2,” Tech. Rep., Interval
Research Corporation, 1998-010, 1998.

[3] I. Nabney, Springer Advances In Pattern Recognition Series,
chapter NETLAB: Algorithms for pattern recognition, 2002.

[4] J. Vesanto, “Proceedings of the matlab dsp conference,” in
Self-Organizing Map in Matlab: the SOM Toolbox, 1999, pp.
35–40.

[5] G. Tzanetakis and P. Cook, “Multifeature audio segmen-
tation for browsing and annotation,” in Proceedings of the
1999 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, 1999.

[6] A. Rauber E. Pampalk and D. Merkl, “Content-based organi-
zation and visualization of music archives,” in Proceedings
of the 10th ACM International Conference on Multimedia,
2002, pp. 570–579.

[7] E. Terhardt, “On the perception of periodic sound fluctua-
tions (roughness),” Acustica, vol. 30, no. 4, pp. 201–213,
1974.

[8] P. Boersma, “Accurate short-term analysis of the fundamen-
tal frequency and the harmonics-to-noise ratio of a sampled
sound,” IFA Proceedings, vol. 17, pp. 97–110, 1993.

[9] T. Tolonen and M. Karjalainen, “A computationally efficient
multipitch analysis model,” IEEE Transactions on Speech
and Audio Processing, vol. 8, no. 6, pp. 708–716, 2000.

[10] G. Peeters, “Music pitch representation by periodicity mea-
sures based on combined temporal and spectral representa-
tions,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, 2006.

[11] L. Rabiner and B. H. Juangl, Fundamentals of Speech Recog-
nition, Prentice-Hall, 1993.

[12] E. Gomez, “Tonal description of polyphonic audio for music
content processing,” INFORMS Journal on Computing, vol.
18, no. 3, pp. 294–304, 2006.

[13] C. Krumhansl, Cognitive Foundations of Musical Pitch, Ox-
ford University Press, 1990.

[14] C. Krumhansl and E. J. Kessler, “Tracing the dynamic
changes in perceived tonal organization in a spatial repre-
sentation of musical keys,” Psychological Review, vol. 89,
pp. 334–368, 1982.

[15] P. Toiviainen and C. Krumhansl, “Measuring and modeling
real-time responses to music: The dynamics of tonality in-
duction,” Perception, vol. 32, no. 6, pp. 741–766, 2003.

[16] P. Toiviainen and J.S. Snyder, “Tapping to bach: Resonance-
based modeling of pulse,” Music Perception, vol. 21, no. 1,
pp. 43–80, 2003.

[17] J. Foote and M. Cooper, “Media segmentation using self-
similarity decomposition,” in Proceedings of SPIE Stor-
age and Retrieval for Multimedia Databases, 2003, number
5021, pp. 167–175.

[18] T. Eerola and P. Toiviainen, “MIR in Matlab: The Midi Tool-
box,” in Proceedings of 5th International Conference on Mu-
sic Information Retrieval, 2004, pp. 22–27.

[19] P. N. Juslin, “Emotional communication in music perfor-
mance: A functionalist perspective and some data,” Music
Perception, vol. 14, pp. 383–418, 1997.

[20] K. R. Scherer and J. S. Oshinsky, “Cue utilization in emotion
attribution from auditory stimuli,” Motivation and Emotion,
vol. 1, no. 4, pp. 331–346, 1977.

DAFX-8

	1 Motivation and approach
	2 Feature extraction
	2.1 Feature overview
	2.2 Example: Timbre analysis
	2.3 Example: Tonality analysis
	2.4 Example: Rhythm analysis
	2.5 Segmentation
	2.6 Data analysis

	3 Design of the toolbox
	3.1 Data encapsulation
	3.2 Frame analysis
	3.3 Adaptive syntax

	4 Implementation details
	4.1 Data representation
	4.2 Object-oriented architecture
	4.3 Memory optimization
	4.4 Software Development Kit

	5 MIRtoolbox comparison to Marsyas
	6 Availability of the MIRtoolbox
	7 Acknowledgments
	8 References

