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ABSTRACT

This paper proposes a framework for separating several speech
sources in non-ideal, reverberant environments. A movable human
dummy head residing in a normal office room is used to model
the conditions humans experience when listening to complex au-
ditory scenes. Before the source separation takes place the human
dummy head explores the auditory scene and extracts character-
istics the same way as humans would do, when entering a new
auditory scene. These extracted features are used to support sev-
eral source separation algorithms that are carried out in parallel.
Each of these algorithms estimates a binary time-frequency mask
to separate the sources. A combination stage infers a final estimate
of the binary mask to demix the source of interest. The presented
results show good separation capabilities in auditory scenes con-
sisting of several speech sources.

1. INTRODUCTION

Humans are masters in analyzing their auditory environment and
in separating different sound sources. Consider the classical cock-
tail party example, where several people are talking simultane-
ously in the same room. Humans have no difficulty to attend to
a single person while ignoring all the other people, additional ar-
tificial sources and background noise. Today’s computational ap-
proaches for source separation – especially in reverberant envi-
ronments – are far from achieving this extraordinary ability of the
human brain.

When humans enter an auditory scene they first look around
and estimate several features of the environment around. When
source separation is required – i.e. when starting a conversation
with another person – this knowledge is used to enhance the sepa-
ration process. The presented source separation framework tries to
model this human behavior to enhance the following source sepa-
ration. To imitate the human listening situation, a robotic human
dummy head, called Bob, is used. Bob resides in a normal office
room of size 10 × 6 m and a reverberation time RT60 = 0.4 s
and is able to move in three degrees of freedom to explore the
auditory scene around him. A conventional 7.1. loudspeaker in-
stallation is utilized to construct an auditory scene consisting of
several spatially separated sources by assigning each source to a
specific loudspeaker. The auditory scene around is recorded via
microphones in Bob’s ears.

2. TIME-FREQUENCY MASKS

Rickard et al. [1] showed that speech signals are sparsely dis-
tributed in high-resolution time-frequency (TF) representations.
TF representations of different speech signals overlap only in few

Figure 1: Bob – The robotic head.

points and so are approximately orthogonal to each other. This ap-
proximate orthogonality in the TF-domain justifies the use of TF-
masks that emphasize regions of the TF-spectrum that are dom-
inated by a specific source and attenuate regions dominated by
other sources or noise. Masking effects in the human auditory sys-
tem motivate the use of binary TF-masks: Within a critical band-
width humans don’t recognize sounds that are masked by louder
sounds.

Several researchers in computational source separation sug-
gest an ideal binary mask as final goal of computational source
separation algorithms (i.e.[2], [1]). Brungart et al. [3] support this
goal by noting that the intelligibility of separated sounds increases
if more and more energy of the ideal binary mask is reconstructed.

Assume si(t, f) denotes the energy of the target signali in TF-
bin at time t and frequency f and nj(t, f) denotes the energy of
the j-th interfering signal in this TF-bin. The ideal binary mask
Ωi(t, f) for target sourcei and a threshold of 0 dB is defined as
follows:

Ωi(t, f) =

(
1 si(t, f)− nj(t, f) > 0 ∀j
0 else

(1)

2.1. Short-Time-Fourier-Transform

A commonly used TF-representation is the lossless and computa-
tionally efficient Short-Time-Fourier-Transform (STFT). The dis-
crete STFT analyzes the time-domain signal in linearly spaced fre-
quency channels up to the Shannon frequency. For a general dis-
crete signal x(n) and an arbitrary discrete analysis window func-
tion w(n) the STFT is defined ∀q ∈ {0, 1, ..., N − 1} as

X(k, q) =
1√
N

·
N−1X
n=0

w(n)x(n + k)e−i2π qn
N . (2)
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Figure 2: Frequency Response of STFT using a Hamming window.

Figure 2 shows the positive frequency response of the STFT
for a Hamming window of length 32 using a sampling frequency
of 3.2 kHz. The shape of the linearly spaced filter channels and
the overlap between two consecutive channels is specified by the
shape of the analyis window function.

Yilmaz et al. [1] showed that the approximate orthogonality of
different speech sources in the discrete STFT representation with
Hamming windows of 64 ms length is satisfied and the STFT spec-
trum is a suitable and easy representation for assigning complete
time-frequency regions to specific sources.

Besides an amplitude and phase estimate for each bin in the
spectrum, the STFT provides no further low-level information about
this bin that could be used to infer the dominating source. Because
of the limited time and frequency resolution the estimates are only
coarse and averaged over the complete analysis window. If a spe-
cific bin is dominated by one source, there may also be energy of
other sources in this bin which severely forge the amplitude and
phase estimates.

Almost all energy of speech signals is distributed in frequen-
cies up to 8 kHz. For analysing speech signals, a finer frequency
resolution in the low frequency range is favorable, whereas in higher
frequencies a coarse resolution is sufficient. Because the STFT
analyses linearly up to the Shannon frequency, the frequency reso-
lution in the low frequencies cannot be enhanced by increasing the
sampling rate.

A source separation algorithm should use all information about
a specific time-frequency region to increase the possibility of cor-
rect assignment. Using only an amplitude and a phase estimate for
the assignment decision of a complete STFT-bin is quite limited
and is not very reliable in reverberant mixtures. To enhance the
decision process more information about each STFT-bin must be
examined.

2.2. Cochleagram

Many source separation architectures try to imitate the frequency
analysis of the human auditory system. The frequency analysis of
the human cochlea can be approximated using a bank of gamma-
tone filters. The impulse response of a gammatone filter is defined
as the product of a gamma function and a tone [4]:

gfc(t) = tN−1e−2πb(fc) · cos(2πfct + φ) ∀t ≥ 0 (3)

where N denotes the order of the filter and fc denotes the
center frequency of the filter. The value b(f) determines the band-
width of the filter and is usually set to the equivalent rectangular
bandwidth (ERB) of human auditory filters. A bank of such gam-
matone filters gives a good fit to experimentally derived estimates
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Figure 3: Frequency Response of Gammatone Filterbank.

of the frequency analysis of the human cochlea and for such the
TF-representation of a gammatone filter bank is commonly called
cochleagram.

Figure 3 illustrates the frequency response of a bank of 16
gammatone filters in the frequency range from 100 - 1600 Hz.
Consecutive filters are spaced logarithmically on the frequency
scale. Filter channels in the low frequencies have fine frequency
resolution, but coarse time resolution. Conversely the high fre-
quency channels have coarse frequency resolution, but fine time
resolution. The coarse time-resolution in the low frequencies is
acceptable as signals consisting of low frequencies change slowly,
whereas high-frequency signals need finer time-resolution to illus-
trate the rapid changes.

The inversion of a given cochleagram to a time-domain signal
is non-trivial and lossy. There exist some approaches that yield
quite good invertion results (i.e. [4], [5]), but these are complex
to compute and only approximately orthogonal, which results in
non-perfect reconstruction.

3. OVERALL ARCHITECTURE

The STFT is easy and lossless to compute, but the filter channels
are positioned linear on the frequency scale which yields only a
coarse frequency resolution in the important low frequencies. Also
the amplitude and phase information are averaged over the com-
plete analysis window and so not really reliable in reverberant en-
vironments.

The cochleagram on the other hand analyses the signal with
logarithmically spaced filter channels and allows a finer frequency
resolution in the low frequencies, but the invertion of a given coch-
leagram to a time-domain signal is quite complex.

The source separation framework presented in this paper com-
bines the positive features of the STFT with the positive features
of the cochleagram while eliminating some of the negative fea-
tures. The overall goal of the source separation is to find the ideal
STFT-mask. The core source separation process however is based
on the analysis of the corresponding region in an additionally com-
puted cochleagram. This way the macroscopic STFT-transform is
used to define the demixing masks and to finally demix the orig-
inal sources. The core assignment of each STFT-bin to a specific
source is based on the corresponding region in the microscopic
cochleagram and is only supported by the information gained from
the STFT-spectrum.

This proceeding is analog to the approaches used in MPEG
audio coders. For example MPEG Audio Layer 3 uses a FFT of
1024 samples to analyse the input signal and to apply the psychoa-
coustic models. The critical subsampling however is realized using
only 32 subbands [6].
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Figure 4: Overall architecture for source separation framework.

Figure 4 illustrates the system architecture of the source sep-
aration framework. The incoming signals of the left and right ear
are STF-transformed and the respective cochleagram of each ear
signal is computed. The mask estimation process computes for
each source a binary STFT-mask based on the information gath-
ered from the detailed cochleagram and supported by coarse in-
formation of the STFT spectrum. Finally the STFT spectrum is
multiplied by each binary STFT mask and is transformed back to
the time-domain, yielding the demixed time-domain signals.

The mask estimation stage tries to make use of all informa-
tion that could be established using standard or sophisticated sig-
nal processing methods. In a first step Bob, the movable human
dummy head, analyses the auditory scene and identifies the posi-
tion of the preferred speaker in the room. In further steps this in-
formation is used to enhance the source separation, that uses both
interaural and monaural cues to distinguish the TF-bins. Because
of reverberation many of the cues used to separate bins are dis-
torted and can only be used to some extent. To face the reflections
and reverberations several algorithms compute independent esti-
mates of the binary masks. In a final stage the estimated masks of
each algorithm are combined to find a best estimate.

4. AUDITORY SCENE EXPLORATION

When humans enter an auditory scene such as a cocktail party, they
automatically analyse the environment around them. Humans rec-
ognize the number of possible sound emanating sources, classify
them according to speech or artificial sounds and estimate or re-
call from memory several expected features of each source. When
a communication between the human and one of the sources be-
gins, much information is already known to human cognition and
is used to support and enhance the separation process.

The source separation architecture presented in this paper tries
to mimic these cognitive abilities of the human brain. So prior to
separating the speech sources, Bob analyses the auditory scene and
estimates several parameters that can be used to enhance or enable
later separation approaches. The following separation algorithms
expect as input the position of the source to be enhanced in the az-
imuth plane. Furthermore some of the separation schemes require
an estimate of the fundamental frequency of the desired speech
source.

4.1. Source Localization

In the following sections and the source separation algorithms pre-
sented later the source of interest is assumed to be the – in some
sense – strongest source in the auditory scene. The localization
of the desired source is realized using an adaptive estimate of the
interaural time differences between the two ears.

The interaural time difference (ITD) – the arrival time differ-
ence between the left and right ear signal – is used as localization
cue and is estimated based on the correlation between the two sig-
nals. Assume xL and xR denote the time domain signal of the left
and the right ear. The correlation function is defined as

RxLxR(l) =

teX
t=ts

xL(t + l) · xR(t). (4)

Each source in the auditory scene contributes a peak in the cor-
relation function. Further peaks can be introduced by reflections
and reverberations. Detecting the highest peak in RxLxR yields
a first estimate of the incidence direction of the strongest source,
so the movable human dummy head Bob turns to this estimated
position.

Because of the reverberation and interference Bob cannot rely
on the validity of the estimated position. Therefore a further cor-
relation at the new position is computed that should in the ideal
case have its highest peak at the position of zero degree. To ac-
count to the reverberant environment the position is regarded to
be confirmed if one of the highest peaks is located near zero de-
gree. If this peak deviates from zero with only some degrees, Bob
enhances the located position. This procedure is iterated until a
stable position is reached and the regarded peak of the correlation
function appears at approximately zero degree. Then Bob directly
faces the source of interest which is now centered around 0◦ rela-
tive to Bob’s facing direction.

Because the specific resonances of the human ear and head are
not used yet, Bob cannot distinguish between front and back only
from analysing the ear signals. Possible front-back confusions are
resolved by slightly moving the head to one side at the final posi-
tion and measuring the direction of change of the ITD between the
two ears. If it turns out that Bob has mistaken the direction, Bob
turns 180◦ around and faces the correct source.

For a detailed description of the design, implementation and
results of the source localization scheme consider the work of Ha-
schke [7].

4.2. Fundamental Frequency Estimation

Humans tend to emit frequencies that are an integer multiple of
their own fundamental frequency (F0). Especially voiced parts of
speech contain most of the energy in the harmonics of F0. Source
separation approaches can use the F0 to determine those frequen-
cies that are mainly used by a speaker.

The used fundamental frequency estimation relies on an algo-
rithm known as "Robust Algorithm for Pitch Tracking" (RAPT)
[8] and determines the F0 of spoken utterances as a function of
time. The time-domain signal is split in time-frames of length 5
ms and for each frame a F0-estimate is computed based on the
autocorrelation of the corresponding signal.

RAPT is originally designed to work in anechoic, single source
recordings and computes reliably an estimate of the F0-track and
the first harmonics. In reverberant multi source recordings – such
as the recordings of Bob’s ears – the estimation process severely
degrades and the result forms a mixture of each F0-track and addi-
tional noise.

Assuming the source of interest is directly in front of Bob and
the interfering sources are distributed at other positions, the pre-
ferred signal can be enhanced by applying simple beamforming:
The right and the left ear signal are summed and divided by two.
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Figure 5: Original F0-track and reconstructed F0-track for a mix-
ture of two speech sources.

This way the resulting signal emphasizes the preferred source and
further smears the interfering sources.

The enhanced signal is used as input to the RAPT to get an es-
timate of the F0-track of the preferred source. For each time-frame
the F0-estimate produced by RAPT is considered valid, if corre-
sponding estimates are found in several higher harmonics. The
final F0-track is constructed by linear interpolation of the valid
F0s.

Figure 5 shows the result of the F0-track reconstruction for
an auditory scene consisting of two speech sources at positions
0◦ (Bob has already geared towards the source) and an interfering
source at position 45◦ to the right.

5. SEPARATION ALGORITHMS

Existing source separation approaches can be broadly classified
into two categories:

• Separation algorithms based on Interaural Cues use in-
teraural time and level differences to separate the sources.
In ideal anechoic mixtures the direction of each TF-bin can
be estimated and the bin is easily assigned to the correct
source. Unfortunately echoic recordings blur and distort
these interaural cues, so separation capabilities decrease.

• Separation algorithms based on Monaural Cues use only
characteristics that are specific to a single signal and do
not rely on the differences between the left and right ear.
These algorithms mostly use the fundamental frequency of
the speaker as a main feature to separate the sources.

The following algorithms assume that Bob has already an-
alyzed the auditory scene and has turned towards the preferred
source. Furthermore he has estimated the F0-track of the source
of interest as described before. Imitating the human behavior, Bob
automatically aligns his head to the source of interest. The goal of
the following source separation algorithms is to enhance a specific
source of interest, not to separate all sources.

5.1. Separation based on Interaural Time Differences

Interaural Time Differences between the left and right ear sig-
nal are used to examine the position of the respective source of
each STFT-bin. Because the STFT phase value is not necessar-
ily reliable as discussed previously, the ITD is estimated using the
cochleagram. Let XLstft and XRstft denote the STFT-representation
of the left and right ear signal and XLco and XRco the correspond-
ing cochleagram representations. For each STFT-bin the corre-
sponding left and right TF-windows WLco and WRco are cut out of

the cochleagram. The ITD estimates of WLco and WRco are com-
puted using a running cross-correlation across the time-dimension
of the time-frequency regions: ∀l ∈ {−maxLag, maxLag}

RWLco WRco
(l) =

teX
t=ts

feX
f=fs

WLco(t + l, f) ·WRco(t, f) (5)

The highest peak of RWLco WRco
yields the best estimates of

the ITD for this bin. Because of reverberation and reflections there
could be further peaks in the correlation function that could refer
to the correct ITD and therefore should be considered. According
to Faller and Merimaa [9], the height of the peak in the correlation
function is a measure of reliability: The higher the peak, the more
reliable the ITD estimation.

Knowing that the preferred source is at azimuth zero degree,
the ITD computations offer the following three algorithms to esti-
mate the ideal binary masks:

Algorithm 1 Assign to the source of interest all TF-bins where
the estimated ITD of the highest peak of the correlation
function yields an angle of incidence that deviates not more
than δ◦ from 0◦ and the height of the peak is greater than
h.

Algorithm 2 Assign to the source of interest all TF-bins where
the estimated ITD of an existent second highest peak of the
correlation function yields an angle of incidence that devi-
ates not more than δ◦ from 0◦ and the height of the peak is
greater than h.

Algorithm 3 Assign to the source of interest all TF-bins where
the estimated phase of the STFT bin yields an angle of in-
cidence that deviates not more than δ◦ from 0◦.

Each algorithm regards only these STFT-bins that contain more
energy than a specific threshold. To compare the results of each
algorithm, the estimated masks are compared with an ideal mask,
which is estimated from recordings of the single sources under
reverberant conditions. Because reverberation differs slightly be-
tween recordings with only one source and recordings with several
sources, this ideal mask is only an approximation of the real ideal
mask. Using this estimated ideal mask as ground-truth there are
three evaluation criteria for each algorithm:

1. The percentage of recovered energy of the ideal mask. The
higher this percentage, the more energy of the original sig-
nal is recovered and the speech intelligibility of the desired
source increases.

2. The percentage of false estimated bins denotes the relative
number of bins that are wrongly assigned to the preferred
source. According to the ideal masks, these bins should be
assigned to one of the other sources of the auditory scene,
as the absolute value of energy contribution to this bin of
another source is larger than the energy contribution of the
desired source. The lower this value, the less artifacts from
other speech sources are contained in the estimated mask.

3. The percentage of correct estimated bins clarifies how much
of the estimated bins are correctly assigned to the source of
interest. The gap between this value and the percentage of
false estimated bins indicates the number of those TF-bins
that happen to have high energy in the recorded mixture,
but none of the ideal masks of the single sources exhibit
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Figure 6: Percentage of recovered energy of ideal mask, false esti-
mated bins and correct estimated bins for the separation algorithm
based on ITD and highest peak (Algorithm 1).

high energy in this TF-region. So these bins are likely to
occur from reverberations and cannot be assigned to a spe-
cific source.

Figure 6 shows the results of algorithm 1 for different δ and
h for an auditory scene consisting of two speech sources. Speech
source one is located directly before the head at 0◦ as Bob has al-
ready geared to the source and the second source is located at 45◦

to the right. One can clearly see that the percentage of recovered
energy increases if the deviation from zero increases. The ITDs of
most of the correct TF-bins deviate considerably from the real po-
sition at 0◦. In contrast to the percentage of reconstructed energy
and the number of false estimated TF-bins, the percentage of cor-
rect estimated bins increases according to the peak height. TF-bins
with high energy – which mostly result in high correlation peaks
– are more likely to yield a correct ITD estimation as opposed to
low energy bins. To achieve a good tradeoff a δ between 8 and 12
degree and high peak height h is favorable.

The same results for algorithm 2 are illustrated in figure 7. The
percentage of reconstructed energy is much lower than in the case
of algorithm 1. This low percentage is due to the fact that a sec-
ond peak in the correlation function in most cases only exists for
TF-bins at high frequencies where the correlation analysis window
becomes bigger than the period of this bin. Those high frequency
bins naturally include lower energy than low frequency bins, so the
overall recovery is quite low.

Figure 8 plots the results for algorithm 3. The number of
false estimated bins is approximately constant and the percentage
of correct estimated bins decreases very slowly. As also seen in
algorithm 1, the phase values of the bins deviate quite a lot from
the ideal position due to reflections and interference from the other
sources.

5.2. Separation based on Fundamental Frequency

If two persons speaking have a considerable different F0, their har-
monics do not overlap in many frequencies. If the F0 of the pre-
ferred speaker is known in advance, this information can be used to
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Figure 7: Percentage of recovered energy of ideal mask, false esti-
mated bins and correct estimated bins for the separation algorithm
based on ITD and second highest peak (Algorithm 2).

assign the TF-bins. Each bin with a frequency value near a multi-
ple of the fundamental frequency is more probable to belong to the
preferred source, than it is to belong to one of the other sources. If
additionally the F0s of the other speakers are known, the distances
of the harmonics of the preferred speaker to the nearest harmonics
of the other speaker can be computed and used to find the frequen-
cies at which only the preferred speaker is present. The following
F0-based algorithms are examined in the source separation archi-
tecture:

Algorithm 4 Assign to the source of interest all TF-bins where
the frequency of the current STFT-bin deviates by no more
than ∆f Hz from the nearest harmonic of the preferred
source’s mean F0. If the F0 of the interfering sources is
known, also the distance from the nearest interfering har-
monic is used to segregate the TF-bins.

Algorithm 5 Assign to the source of interest all TF-bins where
the frequency of the current STFT-bin deviates by no more
than ∆f Hz from the nearest harmonic of the preferred
source’s mean F0 and the energy in the cochleagram at the
corresponding TF-unit is larger than a threshold E.

Algorithm 6 Assign to the source of interest all TF-bins where
the frequency of the current STFT-bin deviates by no more
than ∆f Hz from the nearest harmonic of the preferred
source’s current F0 estimate. If the F0 of the interfering
sources is known, also the distance from the nearest inter-
fering harmonic is used to segregate the TF-bins.

Algorithm 7 Assign to the source of interest all TF-bins where
the frequency of the current STFT-bin deviates by no more
than ∆f Hz from the nearest harmonic of the preferred
source’s current F0 estimate and the energy in the cochlea-
gram at the corresponding TF-unit is larger than a threshold
E.

Figure 9 displays the results of algorithm 4. The percentage
of recovered energy grows as the maximal distance of the nearest
harmonic of the preferred speaker grows as more and more bins
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Figure 8: Percentage of recovered energy of ideal mask, false esti-
mated bins and correct estimated bins for the separation algorithm
based on the STFT phase (Algorithm 3).

are considered. Knowing the mean F0 of the interfering source
has only minor effects that could be neglected. The rate of the
correct estimated bins is constantly very low. The bad results of
this algorithm arise from the fact that during a spoken word, the
F0 of a human is not constant and varies about several Hz. So
if the source separation relies only on the mean F0, higher order
harmonics are computed incorrectly and the source separation ca-
pabilities decrease. If the complete track of the fundamental fre-
quency is known, the separation algorithms discussed above can
be enhanced.

If the absolute energy value of the regarded harmonic in the
corresponding cochleagram window is used, the number of false
bins and the percentage of correct bins can be slightly enhanced.
Figure 10 illustrates the evaluation of algorithm 5. The higher the
energy in the corresponding frequency, the higher the probability
that the considered bin belongs to the preferred source. These re-
sults contribute to the reverberant environment: TF-bins with high
energy and corresponding F0-characteristics are likely to originate
from the main incidence direction and not from a disturbing reflec-
tion.

Figure 11 and 12 show the same results for algorithms 6 and
7, but using a complete F0 track instead of a mean value. The rate
of the false estimated bins is about 10% lower than in the mean
F0 case. Also the percentage of correct estimated bins is higher
compared to using only an average F0. Assuming that the directly
incident TF-bins have high energy, a minimum energy threshold
can enhance the percentage of correct estimated bins by up to 30%.
Optimal values can be achieved by using quite large maximum
distances of 20 to 30 Hz.

6. COMBINING OF ALGORITHMS

Each of the introduced algorithms yields a reconstructed preferred
speech source with a low to intermediate intelligibility. To en-
hance the separation capabilities, the algorithms work together to
combine their information regarding each TF-bin. In a first stage
each discussed algorithm separately estimates a STFT-demixing
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Figure 9: Performance of the separation algorithm based on
known mean F0 and the distance from the harmonic to the mean
frequency of the current STFT bin (Algorithm 4). Shown are sev-
eral curves for different frequency distances of the nearest inter-
fering harmonic of the interfering speaker.
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Figure 10: Performance of separation algorithm based on known
mean F0 and the distance from the harmonic to the mean frequency
of the current STFT bin (Algorithm 5). Shown are several curves
for different cochleagram energy levels E.
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Figure 11: Performance of the separation algorithm based on
known complete F0-track and the distance from the harmonic to
the mean frequency of the current STFT bin (Algorithm 6). Shown
are several curves for different frequency distances of the nearest
interfering harmonic of the interfering speaker.
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Figure 12: Performance of separation algorithm based on known
complete F0 track and the distance from the harmonic to the mean
frequency of the current STFT bin (Algorithm 7). Shown are sev-
eral curves for different cochleagram energy levels E.

Algorithm Order Recovered En-
ergy of ideal
mask [%]

Energy of esti-
mated mask be-
longing to Inter-
ferer [%]

2 ∩ 6 ∪ 4 ∪ 3 79.89 7.99
6∩ 5∪ 7 ∪ 3 ∪ 2 83.90 9.39
1 ∪ 6 ∪ 7 ∪ 5 89.09 10.98
4∪ 1∪ 7 ∪ 2 ∪ 6 89.82 10.95

Table 1: A selection of the best evaluation results of the sequential
and parallel combining of algorithms 1-7 regarding the percentage
of reconstructed energy for an auditory scene consisting of two
sources.

mask for the source of interest. A second central combining stage
combines the single masks resulting in a final estimate of the ideal
binary mask which is then used to demix the preferred source from
the mixture.

A first separation approach combines the estimated masks in a
sequential way similar to a chain of responsibility. The first algo-
rithm in the chain assigns all bins according to its specification and
passes the remainder of the bins to the second algorithm which in
turn assigns those bins that match its specifications and passes the
rest to the next algorithm and so on. This sequential combining
of the algorithms is equivalent to computing the logical ’or’ of the
estimated single masks.

To further enhance the final estimated mask, a second approach
additionally uses parallel combining to enhance the estimated masks.
If several of the algorithms have assigned a specific bin to the pre-
ferred source, then this bin is more probable to belong to the source
of interest than bins that are only assigned by a single mask. This
parallel combining is realized using the logical ’and’ of the single
estimated masks.

Some results of the evaluation of the combining are summa-
rized in table 1 and 2. The values are obtained by averaging over
several recorded mixtures consisting of a female and male speaker
positioned at 0◦ and 45◦ to the right. The English speech record-
ings are taken from the CMU speech database [10] and played
back at the corresponding directions in a normal office room of
size 10 × 6 m and RT60 = 0.4 s. The maximum allowed devia-
tion in degree from zero for algorithm 1 and 2 is set to 8◦ with a
minimum correlation peak height of 0.001. The deviation of the
STFT phase values used in algorithm 3 is bounded by 11◦. Algo-
rithms 5 and 7 use only TF-bins with energy higher than 0.01.

The resulting estimated masks are evaluated by noting mainly
two values: The percentage of recovered energy of the preferred
source declares how much of the total energy of the ideal mask of
the preferred source is reconstructed. A value of 100% states that
the estimated mask fully contains the ideal mask. The percentage
of interference energy indicates how much energy of the estimated
mask belongs to the interfering sources and noise and so is falsely
assigned to the estimated mask.

The best estimated mask in terms of percentage of recovered
energy is – amongst other combinations not shown for purposes of
clarity – calculated using the sequential combination of algorithms
4,1,7,2 and 6. The estimated mask recovers 89.82% of the energy
of the preferred source. On the other hand 10.95% of the energy
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Algorithm Order Recovered En-
ergy of ideal
mask [%]

Energy of esti-
mated mask be-
longing to Inter-
ferer [%]

3 ∪ 2 ∩ 1 ∪ 6 24.48 0.24
2 ∩ 3 ∪ 6 ∩ 7 ∪ 5 39.36 1.48
2 ∩ 3 ∪ 6 ∩ 5 ∪ 1 39.83 1.63
3 ∪ 4 ∩ 6 40.23 2.79

Table 2: A selection of the best evaluation results of the sequential
and parallel combining of algorithms 1-7 regarding the percent-
age of interfering energy for an auditory scene consisting of two
sources.

Figure 13: The ideal mask for the source of interest and the best
estimated mask regarding percentage of recovered energy. The re-
covered energy is 89.82% and 10.95% of the total energy belongs
to the interferers.

of the estimated mask belongs to the interfering source, yielding
a value of 89.05% correct estimated energy. Listening tests result
in a very good intelligibility of the source of interest, but the inter-
fering source can be recognized as additional, but very quiet and
unintelligible voice in the background.

Table 2 shows a selection of the best estimated masks regard-
ing a minimum energy of interfering sources. Using for example
the combination of algorithms 3∪2∩1∪6 yields estimated masks
that recover 24.48% of the total energy of the preferred source
while only 0.24% of the total energy of the estimated mask belong
to the other source. The intelligibility of the separated speech is
quite good and no interfering sources are audible. But compared
to the demixed sources of table 1 the reconstructed speech is not
so rich and authentic.

The strategy used for combining the masks estimated by the
algorithms is dependent on the purpose of the separation infras-
tructure. If the source of interest is to be enhanced for better in-
telligibility by humans, sequential strategies should be applied. If
however the framework is used as input to an automatic speech
recognizer – which in most cases is very sensitive to interfering
speech sources – hybrid schemes combining the parallel and se-
quential strategies are adequate. Other purposes could choose a
combination which balances the percentage of recovered and in-
terfering energy to gain an intermediate quality.

7. CONCLUSIONS AND FUTURE WORK

The binaural source separation architecture presented in this paper
works well in non-ideal reverberant environments. Prior informa-
tion regarding the auditory scene are useful to enhance the separa-
tion process. Parallel processing paths ensure that the assignment
process is optimized regarding the available information at the de-
cision process. By this means the introduced framework achieves
quite good separation of speech sources.

Future work especially includes further exploration of the au-
ditory scene. If the source separation algorithms know more char-
acteristics such as the positions of the interfering sources and the
respective fundamental frequencies in case of speech sources, the
separation could be further enhanced. Additionally in mixed audi-
tory scenes consisting of speech and artificial sources a classifica-
tion and characterization of each source could assist the separation
process.

On the other hand the combining of the masks is currently
very rudimentary. Applying higher order inference to the esti-
mated masks will probably further increase the source separation
capabilities. Fuzzy logic systems for example can model human
reasoning strategies very well and could be applied to infer the
dedicated source of each STFT-bin based on all available informa-
tion.
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