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Welcome to DAFx-07!

On behalf of all the members of the organizing committee, I am pleased to welcome you to the 2007 International Conference
on Digital Audio Effects (DAFx-07). The DAFx conference originally started as a part of a very successful European COST
G6 action, and is now standing – even running – on its own two feet as a self-funded event.

This is the tenth edition of this conference, each year being a new opportunity to maintain the high level of scientific
excellence together with an open and friendly atmosphere. Although the conference is mainly concerned with digital audio
effects, in fact it covers nearly all topics of digital audio and music processing.

As in the previous editions, the conference schedule has been designed to keep paper presentations in non-parallel ses-
sions, with extended time periods reserved for poster sessions in the afternoon. This year, forty-eight works have been selected
for presentation – thirty-seven papers and eleven posters. Many thanks go to the researchers who submitted their papers, to
the DAFx scientific committee, and to the reviewers for their hard work.

This year’s conference schedule will be complemented by two keynote talks given by leading specialists:

• Jean-Marc Jot, from Creative Labs / Creative Advanced Technology Center, California, USA;

• Xavier Serra, from Music Technology Group, Pompeu Fabra University, Barcelona, Spain.

I would like to thank the DAFx community for faithfully coming back each year to make this conference a major scien-
tific event. I hope that new delegates will enjoy the conference and join the community. Regarding the open and friendly
atmosphere, the social events are traditionally included in the registration. Thus, the concert and the banquet are always great
opportunities for people to meet, artists, scientists, students, and leading composers and researchers, all in the same place.

Believe me, the DAFx conference really has something special! Xavier Serra was the Conference Chair of the first DAFx
edition in Barcelona, where I gave my very first talk, as a PhD student. Then I grew up scientifically with DAFx, attending
other famous conferences but without forgetting to present a paper at each edition of DAFx. In the meantime, I became an
associate professor and got more and more involved in the DAFx community. DAFx has played a key role in my professional
life. Now, I feel it is my turn to give a part of my time to contribute to the organization of this great conference.

Finally, I would like to express my deepest gratitude to the local organizing committee at the University of Bordeaux 1.
Thanks go to the LaBRI (Laboratoire Bordelais de Recherche en Informatique – computer science laboratory) and to the
SCRIME (Studio de Création de de Recherche en Informatique et Musique Électroacoustique). Thanks must also go to all
the organizations that support the DAFx-07 conference.

Welcome to Bordeaux, enjoy its monuments and specialties, and of course enjoy DAFx-07!

Sylvain Marchand
DAFx-07 Conference Chair
Associate Professor,
LaBRI – University of Bordeaux 1
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DAFx Conferences

DAFx is an acronym for digital audio effects, and nowadays refers to the name of the International Conference on Digital
Audio Effects and to the related book “DAFX – Digital Audio Effects” edited by Udo Zölzer. It was initiated from a European
research project for cooperation and knowledge diffusion (EU-COST-G6 “Digital Audio Effects”, 1997–2001). Since then
DAFx has been running on its own feet as a self-funded event. Papers of the conferences are available online at:

DAFx 1998 Barcelona, Spain http://www.iua.upf.es/dafx98/
DAFx 1999 Trondheim, Norway http://www.notam02.no/dafx99/
DAFx 2000 Verona, Italy http://profs.sci.univr.it/~dafx/
DAFx 2001 Limerick, Ireland http://www.csis.ul.ie/dafx01/
DAFx 2002 Hamburg, Germany http://www2.hsu-hh.de/ant/dafx2002/dafx2002.html
DAFx 2003 London, United Kingdom http://www.elec.qmul.ac.uk/dafx03/
DAFx 2004 Naples, Italy http://dafx04.na.infn.it/
DAFx 2005 Madrid, Spain http://dafx05.ssr.upm.es/
DAFx 2006 Montreal, Quebec, Canada http://www.dafx.ca/
DAFx 2007 Bordeaux, France http://www.dafx.u-bordeaux.fr/
DAFx 2008 Helsinki, Finland
DAFx 2009 Como / Milan, Italy
DAFx general website http://www.dafx.de/
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TIME-SCALING OF AUDIO SIGNALS WITH MUTI-SCALE GABOR ANALYSIS

Olivier Derrien

ISITV - Université du Sud Toulon-Var
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olivier.derrien@univ-tln.fr

ABSTRACT

The phase vocoder is a standard frequency domain time-scaling
technique suitable for polyphonic audio, but it generates annoy-
ing artifacts called phasiness, or loss of presence, and transient
smearing, especially for high values of the time-scale parameter.
In this paper, a new time-scaling algorithm for polyphonic audio
signals is described. It uses a multi-scale Gabor analysis for low-
frequency content and a vocoder with phase-locking on transients
for the residual signal and for high-frequency content. Compared
to a phase-locking vocoder alone, our method significantly reduces
both phasiness and transient smearing, especially for high val-
ues of the time-scale parameter. For time-contraction (time-scale
parameters lower that one), the results seem to be more signal-
dependant.

1. INTRODUCTION

Time-scale modification of audio aims at changing the playback
rate of a recorded signal without altering its frequency content,
i.e. pitch and timbre. For instance, time-scaling is useful for elec-
tronic music composers who want to synchronize musical samples
in order to produce a coherent output signal. A time-scaling effect
consists either of a speeding up, called time-contraction, either of
a slowing-down, called time-stretching.

Time-scaling techniques can be roughly classified in two cat-
egories: time-domain and frequency-domain. Time domain algo-
rithms, typically synchronized overlap-add (SOLA) [1], are usu-
ally very efficient and can produce high-quality audio output, but
only when applied to quasi-periodic signals, speech for instance.
In the case of more complex audio content, like polyphonic music,
time-domain methods perform poorly. Frequency-domain meth-
ods, typically phase vocoder, can be applied to both quasi-periodic
and complex audio signals, still with major drawbacks: a higher
computational cost and annoying artifacts in the output signal.
These artifacts are usually known as transient smearing and phasi-
ness. Transient smearing consists of a loss of percussiveness, and
phasiness can be compared to an artificial reverberation effect, or
a loss of presence. In fact, these two aspects are related: smooth
attacks and a notable reverberation are often associated with a long
distance between the source and the listener.

The phase vocoder was introduced by Flanagan et al. [2] in
1966, but a considerable amount of studies have focused on im-
proving the vocoder audio quality. Laroche et al. [3] explained the
phasiness effect by a loss of phase consistency across the vocoder
channels, and developed a phase locking technique to restore par-
tially this coherence. This method can be considered as an im-
provement of the method by Puckette [4]. A constant frame-rate
version of the phase vocoder was proposed by Bonada [5]. Differ-
ent phase-locking techniques on transients location were published

by Duxbury et al. [6], and by Röbel [7]. Dorran et al. [8] also pro-
posed a method for maintaining phase coherence between vocoder
channels, but only for moderate time-scale factors. A real-time
software implementation was recently described by Karrer et al.
[9] and an hybrid approach mixing SOLA and phase vocoder was
proposed by Dorran et al. [10]. Despite significant improvements,
some artifacts remain.

Sinusoidal modeling is another class of frequency techniques
suitable for time-scaling of audio. More precisely, sinusoidal mod-
eling is commonly used in parametric audio/speech coding at low
bitrate, for instance in MPEG-4 HILN [11]. The output of the syn-
thesis module can be easily time-scaled, but the overall signal qual-
ity is poor (typically between 1/5 and 2/5 on the MOS scale [12]).
Surprisingly, sinusoidal modeling for high-quality time-scaling of
audio signals have received very few attention so far. In this pa-
per, we describe a new time-scaling technique based on a multi-
scale sinusoidal analysis. We also propose a hybrid time-scaling
algorithm combining this method to a phase-locking vocoder, and
show that both transient smearing and phasiness are significantly
reduced compared to the phase-locking vocoder alone.

The paper is organized as follows: section 2 provides an over-
view of the phase vocoder with phase-locking on transients. In
section 3, the focus is on our multi-scale sinusoidal analysis and
its application to time-scaling of audio signals. Section 4 describes
the hybrid algorithm and a comparison with the vocoder alone is
given. Section 5 concludes.

2. PHASE VOCODER TIME-SCALING

In this section, we describe the phase vocoder that we have im-
plemented as a reference method. Although it might not be con-
sidered as a top-level vocoder, the phase-locking technique sig-
nificantly improves the signal quality compared to a basic phase
vocoder.

2.1. Phase vocoder basics

In a Discrete Fourier Transform (DFT) implementation of the phase
vocoder, the audio signal x is analyzed with a N -point DFT and
a Ra hop-size. Thus, two successive analysis intervals overlap by
N − Ra samples. X are the DFT coefficients:

X(u, k) =

N−1X
n=0

wa[n] x[n + uRa − N/2] e−j2π kn
N (1)

wa is the analysis window, u ∈ N is the analysis interval index,
and k ∈ [0 · · ·N − 1] is a frequency index. Each value of index
k corresponds to a vocoder channel. uRa are the analysis time-
instants.
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Between the analysis and the synthesis stage, the signal is
modified in the DFT domain. These modifications will be ex-
plained further on. Y denote the modified coefficients. The syn-
thesis involves an iDFT:

yu[n] =
1

N

N−1X
k=0

Y (u, k) ej2π kn
N (2)

for n ∈ [0 · · ·N−1], yu[n] = 0 otherwise. The final output signal
y is obtained with an overlap-add operation:

y[n] =
X

u

yu[n − uRs + N/2] (3)

Rs is the synthesis hop-size, and uRs are the synthesis time-instants.
The time-scale factor is: α = Rs

Ra
.

In the absence of modification, i.e. α = 1, one simply define
Y (u, k) = X(u, k), and the output signal y is similar to x, de-
pending on the analysis window wa. For instance, a Hanning win-
dow ensures the perfect reconstruction. When α 6= 1, the ampli-
tude of the DFT coefficients is preserved: |Y (u, k)| = |X(u, k)|,
but the phases are modified according to the following method.

At the first analysis/synthesis instant, we initialize:

∠Y (0, k) = ∠X(0, k) (4)

Other initializations are possible, but this one suits any value of
the time-scale factor α [3]. If the signal in each channel were a
single pure sine of frequency 2π k

N
, the modified phase ∠Y (u, k)

could be computed for every u according to the phase propagation
formula from instant (u − 1)Rs to uRs:

∠Y (u, k) = ∠Y (u − 1, k) + Rs 2π
k

N
(5)

However, the signal is not a single pure sine, and the DFT coef-
ficients exhibit a phase increment. The analysis phase increment
can be measured:

Φa(u, k) = ∠X(u, k) −
„

∠X(u − 1, k) + Ra 2π
k

N

«
(6)

The synthesis phase increment is Φs(u, k) = α PD (Φa(u, k)),
where PD is the principal determination of an angle. Finally, the
complete phase propagation formula is:

∠Y (u, k) = ∠Y (u − 1, k) + Rs 2π
k

N
+ Φs(u, k) (7)

2.2. Phase locking at transient locations

Computing the synthesis phases according to the phase propa-
gation formula (7) ensures the horizontal phase coherence inside
each channel. But the vertical phase coherence between channels
is lost, which causes transient smearing and phasiness [3].

Obviously, both horizontal and vertical phase coherence can
not be achieved at any time and for every channel, but many re-
searches have focused on finding a good balance between the two.
Recent studies have shown that the vertical coherence is particu-
larly crucial at transient locations [5, 6, 7]. Thus, preserving the
horizontal phase coherence on stationary regions and forcing ver-
tical coherence at transients, for instance by resetting the synthesis
phases, also called phase-locking, seems to be a good solution, but
it requires a transient detection algorithm. However, resetting the

phases on high-energy stationary partials coming though a tran-
sient region must be avoided, because the signal energy suddenly
collapses in front of the transient. In solution proposed by Duxbury
et al [6], only the stationary regions are time-scaled, whilst the
phase is locked and the time-scale factor is forced to be one at
transients. Despite local variances in time-scaling factor, rhythm
is maintained globally. In the algorithm by Röbel [7], both the
transient detection and the transient processing algorithms operate
on the level of frequency channels: the transient detection pro-
cess classifies the channels in transient/non-transient content, and
the synthesis phase is reset only in non-transient channels. Fur-
thermore, the phase reset is performed only when the transient is
located close to the center of the analysis interval, so there is no
need to force the time-scale factor to be one.

2.3. Implementation details

The phase-locking vocoder that we implemented as a reference
technique is close to algorithm proposed by Röbel.

The choice of the DFT size N is a trade-off between frequency-
distortion on low-frequency partials and transient smearing: a high
value for N gives a good ability to reproduce low-frequency par-
tials but generates a considerable transient smearing effect. At
fs = 44100 Hz, 2048 samples (46.5 ms) seems to be a good
value. The choice of the analysis hop-size Ra is a trade-off be-
tween high-frequency buzzy artifacts due to the synthesis overlap-
add, and a coarse discretization step for the time-scaling factor
α: a high value for Ra produces a high quality synthesis, but as
Rs ∈ N∗, the possible time-scaling factors are α = k

Ra
, k ∈ N∗.

If we set Ra = 8 samples at fs = 44100 Hz, synthesis artifacts
are clearly perceptible for α = 1.5. Ra = 4 samples seems to be a
good value. Possible time-scaling factors are then 0.25, 0.5, 0.75,
1, 1.25, 1.5 etc.

The transient detection algorithm is based on the energy evo-
lution in frequency subband, whilst Röbel proposes a more com-
plex criterion (center of gravity of the instantaneous energy in
each subband and each analysis interval). The signal, sampled at
fs = 44100 Hz, is analyzed with a 512-point DFT and a 75%
overlap, to preserve a good time-resolution. In each subband,
when the energy increases by more than 10 dB, the subband is
marked. In each analysis interval, if the number of marked sub-
bands exceeds half of the total number of subbands, we decide
that a transient is located at the center of the interval. In the
vocoder, the synthesis phases are reset only on marked subbands
at transient-marked locations. On figure 1, we plot the spectro-
gram of a glockenspiel signal (from the SQAM database [13]),
and phase-reset locations. One can observe that the high energy
partials are preserved.

3. MULTI-SCALE GABOR ANALYSIS

In this section, we present the multi-scale sinusoidal analysis that
we use in our time-scaling algorithm. First, we describe the re-
dundant time-frequency dictionary composed of Gabor waveforms
and the decomposition method which is basically a modified ver-
sion on the Matching Pursuit algorithm. Then, we explain how the
time-scaling operation is applied to each atom.
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Figure 1: Spectrogram of a glockenspiel signal (gray) and phase-
reset locations (black).

3.1. Time-frequency dictionary

The underlying signal model is a linear combination of time-frequen-
cy waveforms g plus a residual signal r:

x[n] =
X

i

aigλi [n] + r[n] (8)

aigλi [n] are called atoms. gλ[n] are complex Gabor waveforms
[14], defined by:

gλ[n] = γ(s) hg

“n − p

s

”
ej2πνn, λ = {s, p, ν} (9)

s is the time-scale factor, p the translation parameter and ν the
modulation frequency. hg(t) is the amplitude function and γ(s) is
a normalization factor, depending on s. The dictionary is the over-
complete set of all possible waveforms. In a classic Gabor dictio-
nary, hg(t) is a Gaussian function. For this application, we rather
use a Hanning window, which is a compactly-supported function:

hg(t) = (1 + cos(2πt)) . 1[0,1[(t) (10)

Parameters are discretized in the following way:

s = 2q, i ∈ {qmin · · · qmax} (11)
p = uRg, u ∈ N (12)

ν =
k

s
, k ∈ {1 · · · s − 1} (13)

Rg , the hop-size, is set to 2qmin−1 and does not depend on the
time-scale. This differs from the usual discretization in Gabor
dictionaries, where the hop-size depends on the time-scale factor
(usually p = u s

2
). In other words, the overlap factor increases with

the time-scale in our dictionary and equals 50% for s = 2qmin ,
whilst the overlap factor equals 50% for all time-scales in the usual
discretization. This choice was made in order to limit the phase ro-
tation between consecutive atoms, which is crucial in the context
of time-scaling.
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Figure 2: Example of components selection order with Matching
Pursuit in the frequency domain, with and without the adaptive
filter.

3.2. Decomposition algorithm

The decomposition algorithm determines a suitable set of index λi

under a matching constraint, usually related to the energy of the
residual signal r. The decomposition is performed on a frame-by-
frame basis. Thus, only a limited subset of waveforms is consid-
ered in each frame. The time-segmentation stage is very similar
to the one performed before a DFT: we use N -points intervals,
with a Ra hop-size, and an analysis window wa. We choose a
set of parameters that match the Gabor dictionary: N = 2qmax ,
Ra = Rg = 2qmin−1 and wa[n] = hg( n

N
). In the current frame,

only the waveforms that completely overlap the analysis window
are considered for the decomposition. When the same waveform
is selected in different overlapping frames, which is a usual case,
the final atom is computed by simply adding all the complex coef-
ficients ai associated to this waveform, bearing in mind the phase
offset due to the translation of the analysis interval.

Our algorithm is a modified version of the iterative Matching
Pursuit (MP) proposed by Mallat et al. [15]. The MP can be sum-
marized as follows: at the beginning, the residual signal is equal to
the signal itself. At each step, an atom is subtracted from the resid-
ual signal. This atom is co-linear to the waveform that maximizes
the modulus of the inner-product with the residual signal. The de-
composition is stopped when a matching criterion is smaller that
a pre-defined threshold. The difference between the standard MP
and our modified algorithm is that ours selects each atom from
a filtered version of the residual signal. The filter transfer func-
tion is log-linear and computed for each frame so that the baseline
of the filtered signal spectrum is approximately flat. Without this
filter, the standard MP algorithm picks the most energetic compo-
nent in the residual signal at each iteration. For instance, a high-
energy noise component in low-frequency will be selected before
a high-frequency partial with a lower energy. With the filter, the
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Figure 3: Spectrogram of a glockenspiel signal.

high-frequency partial is amplified and selected before the noise
component. Our method improves the selection of significant par-
tials, and leaves the noise components in the residual signal (see
example on figure 2).

In the standard MP, the matching criterion is the energy of the
residual signal. However, we found that combining this criterion
with the correlation between the selected atom and the residual
signal is more efficient. The exact description of our algorithm is
as following. We denote x̃ and r̃ respectively the filtered versions
of x and r, and M the matching criterion.

Initialization : set i = 0, r0 = x and r̃0 = x̃

while M(r̃i) > ε

Compute ∀λ the inner-product 〈r̃i, gλ〉
Select the best waveform index:

λi = Argmaxλ |〈r̃i, gλ〉|
Subtract the corresponding atom:

ai = 〈ri, gλi〉
ãi = 〈r̃i, gλi〉
ri+1 = ri − ai gλi

r̃i+1 = r̃i − ãi gλi

Increment the waveform index: i = i + 1

end

3.3. Atoms time-scaling

Assuming that the residual signal is not perceptually significant,
the time-scaling operation can be achieved by scaling the linear
combination of time-frequency waveforms, i.e. by scaling each
atom. The basic rule for scaling an atom is as follows: on sta-
tionary regions, the time-scale parameter s and the translation pa-
rameter p are scaled, whilst the modulation frequency ν remains

Figure 4: Spectrogram of a glockenspiel signal time-scaled by a
phase vocoder with phase-locking at transients, α = 1.5.

unchanged. When the center of an atom is located on a transient,
the atom is not scaled in order to preserve the time-envelope of the
transient.

Concerning amplitude and phase of the modified atoms, we
propose the following rule: for the current atom, if no previous
overlapping atom with the same frequency exists in the decompo-
sition, the amplitude and phase are kept unchanged. Otherwise, the
amplitude is kept unchanged and the phase propagation formula is
applied.

More precisely: first, in the decomposition formula (8), the
atoms are classified according to:

1. increasing translation parameter p

2. decreasing energy |ai|2
Then, for each atom aig(si,pi,νi), the modified atom a′ig(s′

i,p′
i,νi)

is computed as follows. Concerning the waveform parameters:

• if pi is located on a transient and if νi is in a transient-
marked subband, s′i = si and p′i = pi.

• else, s′i = αsi and p′i = αpi.

Concerning the complex coefficient, the amplitude is preserved:
|a′i| = |ai|, and for the phase:

• if a previous overlapping atom ajg(sj ,pj ,νj) with νj = νi

exists in the decomposition, the phase is set according to the
phase-propagation formula. The phase increment between
atoms j and i is:

Φji = ∠ai − (∠aj + (pi − pj)2πνi) (14)

and the modified phase is:

∠a′i = ∠a′j + α(pi − pj)2πνi + αPD (Φji) (15)

• else ∠a′i = ∠ai.

With this method, no explicit phase-locking is necessary on tran-
sient locations.
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Figure 5: Spectrogram of a glockenspiel signal time-scaled by Ga-
bor analysis, α = 1.5.

3.4. Implementation details and first results

According to Mallat [15], the complexity of the Matching Pursuit
is similar to the one of the FFT i.e. O (N log(N)), when imple-
mented in a efficient way. Practically, one can observe that the
MP implementation is significantly more complex that the FFT. In
our experiments, we chose to downsample the audio signal from
44100 Hz to 11025 Hz in order to limit the complexity.

The length of analysis intervals is set to N = 1024 samples
(93 ms), which is twice the length of the phase vocoder analysis
intervals. Thus, the theoretical frequency-resolution is twice bet-
ter. The hop-size is set to Rg = 64 samples. We get imax = 10
and imin = 7. The theoretical time-resolution is 11.5 ms. How-
ever, the practical time and frequency resolution strongly depend
on the decomposition algorithm.

We have tested both methods, phase vocoder and Gabor anal-
ysis, through informal listening test on real polyphonic music sig-
nals, for different time-scale factors. Concerning the phase vocoder,
the main conclusions are:

• The phase locking technique significantly reduces artifacts,

• But perceptible phasiness and transient smearing effects still
appear.

and for Gabor analysis:

• On downsampled signal, this method generates fewer arti-
facts than the phase-locking vocoder,

• But noise components are missing.

As a graphical illustration, we show spectrograms of a glock-
enspiel signal. Figure 3 corresponds to the original (unprocessed)
signal. On figure 4, the signal is time-scaled with the phase-locking
vocoder for α = 1.5. The audible transient smearing effect is
visually noticeable on this plot: attack regions are stretched and
look granular. Otherwise, the frequency content of the original
signal seems preserved. On figure 5, the signal is time-scaled with
the Gabor analysis method, with a signal-to-residual noise around
30 dB. This corresponds to an average number of 35 atoms per

Figure 6: Spectrogram of a glockenspiel signal time-scaled by the
hybrid method, α = 1.5.

frame of 1024 samples (about 20 atoms in stationary regions, and
about 150 to 200 atoms in transient regions). One can see that
the time-smearing effect is reduced, but only high energy compo-
nents are treated, and most of the noise components are left in the
residual signal.

4. HYBRID TIME-SCALING

In this section, we describe our complete time-scaling method,
based on both Gabor analysis and phase vocoder.

4.1. Hybrid method

The Gabor analysis method can hardly by used alone for time-
scaling a full-bandwidth audio signal, because it would require a
very high number of atoms per frame, possibly higher than the
number of samples, and the resulting complexity would be exces-
sive. We think that the most efficient approach consists of stopping
the Gabor analysis when no significant partial is left in the residual
signal. It can be achieved by downsampling the original signal and
perform the Gabor analysis with a medium matching criterion. The
atoms are scaled according to the algorithm decribed in the previ-
ous section. The residual signal, which contains noise components
in the low-frequency band and all the high-frequency content, is
scaled with a phase-locking vocoder. As there is no significant
partial left in the residual signal, one can choose a higher time-
resolution than when scaling the full signal. We set N = 1024
(23 ms) and Ra = 4 samples. The transient smearing effect is not
contained, and no buzzy artifact is perceptible.

4.2. Final results

On figure 6, we plot the spectrogram of the glockenspiel signal
scaled with our hybrid Gabor analysis/vocoder technique. One
can observe that, compared to the Gabor analysis alone, the tran-
sient smearing effect is not increased and remains lower than with
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vocoder alone, whilst noise components are preserved in the scaled
signal.

Informal listening tests, involving 4 listeners and 4 different
audio excerpts have shown that the signal quality is improved com-
pared to the phase-locking vocoder alone. Our method signifi-
cantly reduces both the transient smearing and phasiness effects:
the presence effect in the scaled signal is much better than with
the phase vocoder alone, especially for high values of the scaling
parameter (α > 1.5), for which the scaled signal often sounds ar-
tificial. However, when α < 1, the phase vocoder might perform
better, on some very specific audio signals.

Examples of audio signals processed with both methods for
various scaling parameters can be found on the DESAM project
website: http://www.tsi.enst.fr/~rbadeau/desam/spip.php?article16.

5. CONCLUSION

In this paper, a new high-quality time-scaling algorithm for poly-
phonic audio signals has been presented. It is based on a multi-
scale Gabor analysis for low-frequency content (between 0 and 5.5
kHz), and on a phase-locking vocoder for high-frequency content
(between 5.5 and 22 kHz) and for the residual part in the low-
frequency band. In the time stretching context, i.e. α > 1, our
method significantly reduces the two main artifacts generated by
a phase vocoder: phasiness and transient smearing. The improve-
ment is particularly interesting when the scaling parameter is high
(α > 2). However, for time-contraction, i.e. α < 1, the results
seem to be more signal-dependant.

Compared to the phase vocoder, the overall complexity of the
time-scaling process is significantly higher with our method. First
because the Gabor analysis is more complex than a FFT, second
because our method also requires a phase vocoder for the residual
signal. This makes out method unsuitable for real-time implemen-
tations for the moment.

This study proves that Gabor analysis is a valid alternative to
the phase vocoder for audio time-stretching, but must be consid-
ered as preliminary. In further studies, we will extend our method
to full-bandwidth signals. We will also try to define more com-
plex rules for time-stretching the atoms, with partials tracking for
instance. We also work on a more complex signal model which
would not require a phase vocoder for processing the residual sig-
nal.
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ABSTRACT

This paper presents a high-quality real-time pitch-shifting algo-
rithm with a time-varying factor for monophonic audio and mu-
sical signals. The pitch-shifting algorithm is based on the resam-
pling and time-scale modification method. A new time-scale mod-
ification method has been developed which is called the Normal-
ized Filtered Correlation Time-Scale Modification (NFC-TSM) method.
It uses a ring buffer for time-scaling. The best splicing point is
searched in the normalized low-pass filtered signal using the Av-
erage Magnitude Difference Function (AMDF). The new method
results in low-latency and high-quality pitch-shifting of musical
signals.

1. INTRODUCTION

High-quality techniques for pitch-shifting of audio and musical
signals have received a lot of attention recently. In multi-track
audio recording and mixing, pitch-shifting is used to match the
pitches of two recorded digital audio clips [1]. Real-time pitch-
shifting algorithms can be used for performing deejays [2]. In mu-
sic industry, pitch-shifting is used in sampling synthesizers, sound
effects for Karaoke systems [3, 4], and other musical effects.

In general, pitch-shifting algorithms can be divided into two
categories; time-domain and frequency-domain techniques [5]. Time-
domain techniques are simple and fast, and work fine for periodic
and quasi-periodic signals. However, their quality is not good for
signals which contain a lot of non-harmonic components. On the
other hand, frequency-domain algorithms are more suitable for
complex signals, but the price of the high-quality is the computa-
tional complexity. Additionally, frequency-domain pitch-shifting
algorithms call for large delays and, thus, are not appropriate for
real-time applications. Frequency-domain algorithms are usually
based on the phase-vocoder [6, 7]. In the phase-vocoder technique,
first the signal is converted to its frequency-domain representation
using a short-time Fourier transform (STFT). After modification of
the frequency-domain parameters according to the pitch-shifting
factor, the signal is converted back to its time-domain waveform.

The standard time-domain pitch-shifting algorithms, commonly
used in commercial applications, are based on resampling and time-
scale modification [3, 8, 5]. In the standard time-domain pitch-
shifting technique, for pitch-shifting the signal by a factor of α,
the input signal is first resampled by a resampling factor equal to
1/α. Since resampling changes the length of the signal, a time-
scale modification method is used to preserve the time duration
of the original signal. The time duration of the resampled sig-
nal should be scaled by a factor equal to α. Figure 1 shows the

block diagram of a time-domain pitch-shifting technique using re-
sampling and time-scale modification. In this figure, fs,org and
fs,replay are the sampling frequency of the original audio and that
of the pitch-shifted signal, respectively.

x(n)

y(n)

Time-Scale Modification
(ratio = fs,replay/fs,org)

Resampling
(ratio = fs,org/fs,replay)

Figure 1: Block diagram of the pitch-shifting method based on the
resampling and time-scale modification.

In general, there are two methods to implement the time-scale
modification in the time domain. One of them is the ring buffer
technique, which has serious quality problems [9, 10]. The other
one is the overlap and add technique [5] which has many varia-
tions, developed to improve the quality of the output signal and
reduce the computational complexity [1, 4, 11]. In the overlap and
add method, the input signal is divided into overlapping segments
which are shifted with respect to each other according to the time-
scaling factor. Finally, they are added to each other to form the
output signal [5]. Since overlapping and adding segments at any
point breaks the continuity of the pitch and changes the spectral
characteristics of the signal, the two overlapping segments have to
be synchronized and cross-faded at the point of highest similar-
ity. Several developments to find the maximum similarity points
resulted in the different variations of the overlap and add method
[1, 4, 11]. Some of these techniques are the synchronized overlap
and add method (SOLA) [12, 13], the pitch synchronous overlap
and add method (PSOLA) [5, 12, 14, 15], the waveform similarity
overlap and add method (WSOLA) [16], and the global and local
search time-scale modification (GLS-TSM) [17]. Recently, a com-
parison of the time-domain time-scale modification techniques has
been presented in [18].

In this paper, a pitch-shifting method by a time-varying fac-
tor for monophonic musical tones is presented. The pitch-shifting
algorithm is a standard time-domain pitch-shifting algorithm. A
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new time-scale modification algorithm has been designed which is
called the Normalized Filtered Correlation Time-Scale Modifica-
tion (NFC-TSM). The proposed time-scale modification technique
enables the real-time pitch-shifting of the input signal. Moreover,
the pitch of the input signal can be scaled continuously. The pitch-
shifting factor can have large amounts with no serious defects in
the quality of the pitch-shifted signal. The number of clicks in the
pitch-shifted signal have been reduced comparing to the previous
methods. A patent application has been submitted regarding this
method.

In the following, first the general description of the pitch-shifting
algorithm is presented. Then, the resampling process by a time-
varying factor is explained. The NFC-TSM method is described
next. Setting the parameters of the algorithm is discussed. Finally,
the results are presented.

2. GENERAL DESCRIPTION OF THE ALGORITHM

The proposed pitch-shifting algorithm is based on the resampling
and time-scale modification method. In this technique, the audio or
musical signal is assumed to be periodic or semi-periodic. More-
over, there exists one pitch-shifting factor per input sample. Pitch-
shifting is carried out by resampling the signal according to the
pitch-shifting factor. Meanwhile, time-scale modification is per-
formed whenever needed to preserve the duration of the original
signal. In this work, to modify the time-scale of the signal, the
novel NFC-TSM algorithm is used. Note that in the presented
pitch-shifting algorithm, the resampling and time-scale modifica-
tion operations are incorporated and can not be separated as such.

The pitch-shifting algorithm is performed on the audio signal
that is stored in a ring buffer. A ring buffer, which is also called a
circular buffer, is a portion of memory of fixed size into which new
data is overwritten at its beginning when it is full. Two pointers to
the ring buffer are defined: the input pointer and the output pointer.
The input pointer is used to write into the ring buffer. That is, it is
incremented by one when one input sample is received and written
in the ring buffer. The output pointer is defined for resampling the
audio signal in the ring buffer.

The rates at which the input and output pointers move in the
ring buffer are different due to the resampling process. The rate of
the input pointer is fixed, and equal to the rate of the sampling rate
of the input signal, e.g. 44100 samples/sec. The rate at which the
output pointer moves depends on the pitch-shifting factor. Differ-
ent speeds of the input and output pointers result in their collision.
After collision, either of the pointers may pass the other one. This
causes discontinuity in the output signal which, in turn, results in
audible artefact in the pitch-shifted signal.

In order to avoid the collision between the two pointers, the
output pointer should jump backward and forward in the ring buffer
to remain behind the input pointer. The best location for the out-
put pointer to jump to, also referred to as the best splicing point, is
searched using the NFC-TSM technique. In this method, the best
splicing point is searched in the normalized low-pass filtered ver-
sion of the ring buffer using Average Magnitude Difference Func-
tion (AMDF) as the correlation function. After having found the
best splicing point, the two segments are joined to each other using
a linear cross-fading function.

Next, the resampling by a time-varying factor and the NFC-
TSM algorithm are explained in detail.

2.1. Resampling by a Time-Varying Factor

Resampling is the process of interpolating a signal at non-integer
multiples of the sampling period. Theoretically, it can be stated
as follows: first the original signal is reconstructed from a set of
samples. In the next step, it is resampled at the desired locations.
In practice, these two stages can be combined so that we need to
find the values of the signal at the desired locations. The process
of finding the signal values at arbitrary time instants from a set
of samples is called interpolation. There are a variety of interpo-
lators [19], such as truncated sinc [3, 8], linear interpolator [20],
Lagrange interpolator [21], and spline interpolator [22]. In this al-
gorithm, truncated sinc has been used to resample a signal, since it
performs well for signals with rich high-frequency content.

In order to resample the digital audio stored in the ring buffer,
for every input sample, the resampling factor is determined. The
resampling factor is equal to the reciprocal of the pitch-shifting
factor. This way the time instant at which the value of the signal
is to be interpolated is found. Then, the truncated-sinc function
is lined up with its peak at this time instant. The signal samples
on both sides of the interpolation point are multiplied by the cor-
responding sinc function values and summed up to produce the
pitch-shifted sample value.

The time instant at which the sinc function is lined up is pointed
to by the output pointer. The speed of the output pointer depends
on the resampling factor and, in turn, pitch-shifting factor. Figure
2 shows how the resampling process influences the speed of the
output pointer. In Figure 2 (a), the signal is pitch-shifted down and
the output pointer moves slower than the input pointer. In contrast,
Figure 2 (b) shows a case in which the signal is pitch-shifted up
and the speed of the output pointer is faster than the input pointer.

Output Pointer

(a)

(b)

Output Pointer

Input Pointer

Input Pointer

Figure 2: Effect of resampling process on the speed of the output
pointer, (a) signal is pitch-shifted down, the output pointer moves
slower than the input pointer, (b) signal is pitch-shifted up, the
output pointer moves faster than the input pointer.

An important issue regarding interpolation is that the distance
between the input pointer and the output pointer cannot be less
than half the length of the sinc interpolator. Otherwise, the discon-
tinuity in the sample set will result in interpolation errors.

2.2. Normalized Filtered Correlation Time-Scale Modification
(NFC-TSM)

The main idea of the time-scale modification method was taken
from the ring buffer method presented by Francis Lee in 1972 [10],
which is based on discarding and repeating some segments of the
audio signal to compress and expand the length of the signal, re-
spectively. The conventional ring buffer technique results in audi-
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ble artifacts, since the periodicity of the signal is broken and also
amplitude discontinuities occur at the splicing points.

As discussed, the resampling process makes the output pointer
move at a different speed from the input pointer. Different speeds
of the pointers moving around a fixed-length buffer cause them to
collide at some locations in the ring buffer occasionally. Collision
of the input and output pointers in the ring buffer results in discon-
tinuity in the time-scaled version of the resampled signal, which is
heard as a click. To avoid this problem, in the proposed algorithm,
the output pointer is handled in such a way that it never collides
with the input pointer. Moreover, to maintain the time evolution of
the signal, the output pointer should always keep the pace with the
input pointer. This way, changes in the amplitude and frequency
of the signal are followed sufficiently. Therefore, for every sample
in the input, the distance between the input and output pointers is
measured, d. If it is longer than, or equal to, a maximum allowed
distance dmax, the output pointer has to jump forward, behind the
input pointer. On the other hand, if this distance is shorter than,
or equal to, a minimum allowed distance dmin, it is possible that
soon the output pointer collides with the input pointer. Hence, it is
required that the output pointer jumps backward in the ring buffer
and continues resampling the signal from this point. This process
has been shown in Figure 3.

Figure 3 (a) shows the case in which the input signal is pitch-
shifted down and the distance between the pointers increases. There-
fore, the output pointer hops forward. Figure 3 (b) shows the oppo-
site case, when the signal is pitch-shifted up and the output pointer
should jump backward to avoid collision. It is important to remem-
ber that the hop size cannot be very long, since we are aiming at
following the changes in the signal.

Output Pointer Input Pointer

dmin

(b)

Input PointerOutput Pointer

dmax

(a)

Figure 3: Behavior of the output pointer with respect to its dis-
tance from the input pointer, d, (a) when d > dmax, the output
pointer jumps forward, (b) when d < dmin, the output pointer
jumps backward.

The hop of the output pointer to the new location will break
the periodicity of the signal. Therefore, it is required to search for
the best point for the output pointer to jump so that the periodicity
of the signal is maintained. This search is performed in another
ring buffer of the same size as the main ring buffer. However, this
second ring buffer contains the normalized low-pass filtered ver-
sion of the signal stored in the main ring buffer. The best splicing
point is, then, searched in the normalized low-pass filtered version
of the signal using AMDF. The AMDF of two frames of length L
in the signal x(n) is defined as

D(m) =

L−1X

k=0

|x(k + m)− x(k)|, (1)

where m is the time lag between two frames. The maximum sim-
ilarity point in the search region is the point at which AMDF is
minimum for the whole search region.

The reason why the normalized low-pass filtered signal has
been used in the search for the best splicing point is that we aim
at preserving the continuity of the signal in its lowest partials. By
normalization, the effect of the signal level alteration from one pe-
riod to the other period is eliminated in the search for the best
match point. The other advantage of normalization is that the
amplitude changes in one period of the signal are more distin-
guishable with respect to the original and low-pass filtered signal.
Hence, it is possible to choose a short correlation window for the
AMDF search and the best splicing point can be found more ac-
curately. Figures 4 (a)-(c) show the original signal, the low-pass
filtered signal, and the normalized low-pass filtered signals, re-
spectively.

50 100

Input Signal

(a)

50 100

Low−Pass Filtered Signal

(b)

50 100

Normalized Low−Pass Filtered Signal

Time (ms)

(c)

Figure 4: (a) Original signal, (b) low-pass filtered version of the
original signal, (c) normalized low-pass filtered version of the
original signal.

The choice of the correlation window and search area depends
on the direction towards which the output pointer hops. Figure 5
shows two cases in which the output pointer jumps backward and
forward, respectively. In Figure 5 (a), the output pointer jumps
backward in the ring buffer. Therefore, the correlation window
is chosen so that the output pointer points to the last sample in
the correlation window. In the case the output pointer is to jump
forward, the correlation window starts from the sample to which
the output pointer points. This is shown in Figure 5 (b). In the
figures, the best splicing points are also illustrated.

The process of finding the best splicing point is shown in Fig-
ure 6. Figure 6 (a) shows the correlation window and the search
area. In Figure 6 (b), the search area has been zoomed in. The
AMDF over the search area is demonstrated in Figure 6 (c). This
figure shows the case the output pointer jumps forward in the ring
buffer. As can be seen in the figures, the minimum AMDF results
in the maximum similarity and, thus, it is highly probable that the
periodicity of the signal is preserved.
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Input
Pointer

Input
Pointer

Output
Pointer

Output
Pointer

Best Splicing
Point

Best Splicing
Point

Correlation
Window

Correlation
Window

Search Area

Search Area

Time (ms)

(a)

(b)

Figure 5: Choice of the correlation window and search area in
the search for the best splicing point, (a) the output pointer jumps
backward, (b) the output pointer jumps forward.

3. PARAMETER SETTING

For different input signals, the parameters of the algorithm are
changed according to the period length of the lowest frequency
in the frequency range of the input signal. In the following subsec-
tions, it is explained how to choose these parameters.

3.1. Maximum and Minimum Distances Between Pointers

The maximum and minimum allowed distances between the in-
put and output pointers are essential parameters of the algorithm,
which depend on the period length of the input signal. Empirically,
the maximum allowed distance is chosen to be twice the longest
period length of the input signal. When the distance between the
output and input pointers reaches this amount, the output pointer
will jump forward in the ring buffer for one period to keep the pace
with the input pointer.

On the other hand, the minimum allowed distance depends on
the length of the interpolator filter, the length of the cross fading
region and the maximum pitch-shifting factor for upward pitch-
shifting. The minimum allowed distance cannot be less than half
the length of the interpolation filter. The length of the cross-fading
region should be also considered. If the interpolation filter length
is equal to N and the maximum pitch-shifting factor is αmax, the
minimum allowed distance between input and output pointers is
obtained by

dmin = (αmax − 1)LCrossFade +
N

2
, (2)

where LCrossFade is the length of the cross-fading region. When
the distance between the pointers reaches to dmin, the output pointer

Correlation
Window Search Area

Output Pointer
Input

PointerBest Splicing Point

Minimum AMDF

Time (samples)

(c)

(b)

(a)

0

0

Figure 6: Search for the best splicing point, (a) part of the ring
buffer in which the correlation window and search area are placed,
(b) the search area in which the best splicing point is looked for, (c)
the AMDF over the search area for the shown correlation window.

jumps backward on the ring buffer for one period.

3.2. Lengths of Correlation Window and Search Area

The length of the correlation window LCorrWin, and the length
of the search area LSearchArea depend on the period length of the
lowest frequency in the frequency range of the input signal T .

LCorrWin = CT, (3)

LSearchArea = (1− C)T, (4)

where C is chosen to be 3/8 in this algorithm, although a choice of
1/4 of one period length of the signal for the length of the correla-
tion window contains enough information to find its right location
in the period.

The search area contains all the points in the ring buffer on
which the first point of the correlation window is placed and its
AMDF is computed in every iteration. Therefore, if the length of
the search area is selected to be (T − LCorrWin), the correlation
window moves over one period of the signal. This is sufficient to
find the best match point.

Another important parameter is the starting point of the search
area. The choice of the search start point depends on the direction
that the output pointer jumps in the ring buffer. However, it should
be close enough to the input pointer, in order to follow changes in
the signal. It is usually selected to be as far as one period length of
the lowest frequency of the frequency range apart from the input
pointer.

3.3. Other Parameters

There are a few other parameters that should be set in the algo-
rithm. The first one is the size of the ring buffer. The ring buffer
should have space for about four periods of the signal. Therefore,
it can be chosen according to the longest period in the frequency
range of the input signal.
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The other parameter is the cut-off frequency of the low-pass
filter, which is not very critical. However, it has to be greater than
the highest fundamental frequency in the frequency range of the
input signal. For example, if the fundamental frequency of the
input signal ranges between 300 to 900 Hz, the cut-off frequency
of the low-pass filter should be greater than 900 Hz.

The normalization is performed by multiplying the low-pass
filtered signal by the reciprocal of its temporal envelope. There-
fore, an envelope-following filter is used in the algorithm for which
the parameters are determined empirically. However, in order to
obtain a very smooth estimate of the signal amplitude, a large time
constant for the envelope follower should be chosen.

4. TESTING AND RESULTS

The proposed algorithm has been tested using piano sound sam-
ples. Figure 7 shows the spectrograms of the original signal and
pitch-shifted signals for three different techniques in finding the
best splicing point. The signals are of duration 1.0 second and the
pitch-shifting factor is equal to +15% for all the pitch-shifted sig-
nals. Figure 7 (a) shows the spectrogram of the original signal, the
piano tone B11. In Figure 7 (b), the best splicing point is searched
in the original signal using the cross-correlation function, i.e., the
standard SOLA method. Figure 7 (c) shows the case in which the
best splicing point is searched in the normalized low-pass filtered
version of the original signal using the cross-correlation function.
In Figure 7 (d), the best splicing point is looked for in the nor-
malized low-pass filtered signal with the AMDF. A linear-phase
FIR filter of order 50 with a cut-off frequency of 70 Hz is used
for low-pass filtering in both cases. Comparing the spectrogram
of the original signal and those of the pitch-shifted signals reveals
that the pitch-shifting process brings about discontinuities in the
signal which appear as dark vertical lines in the figures (a few ex-
amples are circled in Fig. 7). These dark lines are the splicing
points whose occurrence may be heard as clicks depending on the
signal content at these points.

Figures 7 (b) and (c) show that when the signal is low-pass fil-
tered and normalized before the splicing point search, the number
of discontinuities and their intensities are reduced. These changes
and improvements in the discontinuities are also audible in the
sound samples. In the last case (Figure 7 (d)), where the NFC-
TSM method has been used in the pitch-shifting process, no clicks
are heard according to our informal listening tests [23]. This is
because the continuity of the signal is preserved for low-frequency
content of the signal. Moreover, small changes in the spectrogram
have occurred, but many of the vertical lines are still visible. On
the whole, searching the best splicing point in the normalized low-
pass filtered signal leads to a smaller number of discontinuities
than when searching in the original signal. The audibility of clicks
and masking effects in the auditory system are beyond the scope
of this paper, and are left for future work. In addition, the AMDF
performed well in an objective evaluation of the quality of each
synchronization procedure presented in [18].

Using this algorithm, real-time pitch-shifting of the input au-
dio is possible. In addition, the pitch-shifting factor can be a time-
varying function. For pitch-shifting down, there is no limitation on
the amount of pitch-shifting factor. For pitch-shifting up, however,
the restriction on the pitch-shifting factor is applied in the algo-

1The sound sample has been taken from the McGill University Master
Samples Collection.
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Figure 7: Spectrograms of (a) the original signal (piano tone
B1, fundamental frequency = 63 Hz) and pitch-shifted signals by
+15% using different methods based on (b) search in the origi-
nal signal using cross-correlation function, (c) search in the nor-
malized low-pass filtered (NLF) version of the original signal us-
ing cross-correlation function, (d) search in the normalized low-
pass filtered (NLF) version of the original signal using AMDF. The
ovals in the figures indicate occurrence of audible artifacts.

rithm by the period length of the signal and the permitted delay.
When pitch-shifting up, it is required to have at least one period
of the signal in the ring buffer before the output pointer can jump
backward on the ring buffer to repeat a sound segment due to the
time-scale modification. This implies a delay in the system. For
example, if the fundamental frequency of an input signal is equal
to 63 Hz, for an allowed delay of 5 ms, the pitch-shifting up factor
can have a maximum amount of +30%. It should be noted that this
restriction holds only at the onset of the tone, when pitch-shifting
up. After having received one period of the input audio, this lim-
itation is eliminated and, then, pitch-shifting factor can have any
value.

In the proposed algorithm, the AMDF calculation is compu-
tationally the heaviest part. However, the computation of AMDF
is required only when the best splicing point should be found. If
the maximum period length of the input signal is T samples, the
number of abs, subtraction and addition operations required to find
the best splicing point is equal to C(1−C)T 2. C is the coefficient
to define the lengths of the correlation window and search region
(C = 0.375). Moreover, (1 − C)T comparisons should be per-
formed to find the minimum AMDF. For example, when the min-
imum fundamental frequency in the frequency range of the input
signal is 73 Hz, the lengths of the correlation window and search
area are selected to be 230 and 380 samples, respectively, with the
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sampling frequency of 44.1 kHz. Therefore, every time the best
splicing point is searched in the ring buffer 87400 abs, subtrac-
tion, and addition operations and 380 comparisons are needed.

Since the search is performed in the normalized low-pass fil-
tered version of the input signal, the smoothness of the normalized
filtered signal can be exploited to reduce the sample rate and thus
the computational load. According to the period length of the input
signal, the correlation window and the search region can be down-
sampled when computing AMDF. The longer the period length,
the greater the down-sampling factor is. For instance, in the above
example a down-sampling factor of 7 can be used without any re-
duction in the quality of the output signal. This way the number of
abs, subtraction, and addition operations can be reduced to 1815
and the number of comparisons to 55. Another method to make
the implementation of the algorithm possible, regarding the heavy
computational complexity of the AMDF, is to divide the computa-
tional load between a number of sound samples before the output
pointer jumps in the ring buffer.

This algorithm has been implemented on a Motorola (Freescale)
DSP56303 for a monophonic sound and it runs in real-time.

5. CONCLUSIONS

A real-time high-quality pitch-shifting algorithm was presented.
The pitch-shifting algorithm is based on the resampling and time-
scale modification method. A new method for time-scale modifi-
cation of musical signals was developed which is called the NFC-
TSM technique. In this technique, repeating and discarding signal
segments are performed in such a way that the pitch-shifted signal
has the highest similarity with the original signal in the case of the
changes in the signal attributes. The best point to splice the signal
segments is searched in the normalized low-pass filtered signal us-
ing the AMDF. In this algorithm, the pitch-shifting factor can have
large values without any degradation in the quality of the signal.
Sound samples are available at [23].
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ABSTRACT

We present a method for simulating reverberation in real-time us-
ing arbitrary object shapes. This method is an extension of digital
plate reverberation where a dry signal is filtered through a physical
model of an object vibrating in response to audio input. Using the
modal synthesis method, we can simulate the vibration of many
different shapes and materials in real time. Sound samples are
available at the follwing website:
http://cynthia.code404.com/dafx-audio/.

1. INTRODUCTION

Historically, plate reverberation was used as a synthetic means to
simulate large room acoustics. It was one of the first types of ar-
tificial reverberation used in recording [1]. Despite the unnatural
sound produced as compared to large room reverberation, plates
were used extensively due to their relative low cost and small size.
Recently, researchers have looked for a means of digitally simu-
lating plate reverberation to recreate this unique analog recording
style [2].

Analog plate reverberation works by mounting a steel plate
with tension supplied by springs at the corners where the plate is
attached to a stable frame. A signal from a transducer is applied to
the plate, causing it to vibrate. This vibration is then sensed else-
where on the plate with contact microphones. A nearby absorbing
pad can also be used to control the near-field radiation.

Before the prevalence of physical modeling, plate reverbera-
tion was simulated by recording impulse responses of plates made
from different materials and different geometries. By convolution
of the input with the impulse response of choice, the resulting au-
dio could sound as though it was recorded through an actual plate.
Although this method is very efficient, it is limited by the number
of, and variations in, the recordings available.

Bilbao et al. [2] demonstrated a model for plate reverbera-
tion using a linear Kirchoff plate formulation. By using a phys-
ical model instead of convolution with impulse responses, they
could modify the geometry of the plate and input/output param-
eters. To simulate plate vibration, the model was discretized in
space and time using finite differences. One drawback of this
method, however, was the large performance requirements pre-
venting their model from running in real-time on an average digital
workstation.

Using the modal synthesis method, we can compute a plate
reverberation model in real-time and still allow for modifications
of the plate and input/output parameters. To achieve this perfor-
mance, we use the same finite element model as described in [3]

and apply forces using the discrete convolution integral method as
described in [4] and [5]. We implement this reverberation as an
effect plug-in that takes an audio stream as the input and produces
the sound of the object vibration as the output.

The main contributions of this paper are to extend the use of
the modal synthesis and the discrete convolution integral for the
rapid simulation of the motion of objects in response to arbitrary
loading profiles. We give examples of using this technique for the
deformation of linear shell models of simple and complex shapes
in a real-time synthesis environment.

2. METHODS

To briefly review the steps in obtaining a resonator bank from a
arbitrary geometry we begin by discretizing the Mindlin/Reissner
thin plate equations as found in [6] and [7]. This plate model
differs from Kirchoff plate theory by adding the effects of shear
deformation across the plate thickness. This additional motion
allows for modeling thin and thick plates. We also extend the
plate model to include membrane forces essentially creating a shell
model from planar elements as described in [8]. The planar shell
elements can be made of quadrilateral or triangular patches.

This element allows for five degrees-of-freedom at each vertex
as demonstrated in Figure 1. In-plane displacement is captured by
the degrees-of-freedom, u and v. For out-of-plane motion, bend-
ing is represented by adding the rotational degrees-of-freedom,
θx = dw

dx
and θy = dw

dy
, about the x and y axes, as well as an out-

of-plane displacement, w. This formulation leads to the following
element stiffness representation that accounts for membrane Km,
shear Ks and bending stiffness Kb (Equation 1).

ke =

Z
Ωe

BT
b DbBbdΩ + (1)Z

Ωe

BT
s DsBsdΩ +Z

Ωe

BT
mDmBmdΩ

where D represents the constitutive matrices for each stress condi-
tion, N represents the interpolating functions and B represents the
operator applied on these functions. The exact entries in N and B
depend on the number of nodes per element and the order of the
interpolating polynomials used.

Similarly, the element mass matrix is represented as:

me =

Z
Ωe

NT NdΩ (2)
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Figure 1: Normal, shear and bending forces and moments.

A more detailed discussion of the exact entries in these matri-
ces is given in [6] and [7].

We sum the element matrices, ke and me together to form an
overall algebraic representation of the system. The result is the
canonical representation for the second order partial differential
equation of motion:

Mü + Du̇ + Ku = F (t) (3)

where M is the matrix representing the distribution of mass in the
system, D is a measure of damping, K is the stiffness matrix and
F (t) is the force applied to the object over time. This equation
expresses the balance of forces generated by the acceleration, ve-
locity and displacement of the object. In this form, the system
of equations for each degree-of-freedom (DOF) are coupled and
thus the solution involves manipulation of these large system ma-
trices. Alternatively, modal analysis seeks to decouple this system
into single DOF oscillators. For a detailed description of the modal
synthesis method as well as a comparison with other physical mod-
eling techniques see [3] and references therein.

Without damping, the procedure for uncoupling these equa-
tions is straightforward using the general eigenvalue decomposi-
tion Kx = λMx. However, with damping, decoupling these
equations requires some assumptions to be made [9].

In many finite element representations, there is no straight-
forward method of generating the damping matrix D. “A ma-
jor reason for this is that, in contrast with inertia and stiffness
forces, the physics behind the damping forces is in general not
clear. As a consequence, modelling of damping from the first prin-
ciples is difficult, if not impossible, for real-life engineering struc-
tures. The common approach is to use the proportional damping
model, where it is assumed that the damping matrix is proportional
to mass and stiffness matrices [10].” This proportionality is repre-
sented as:

D = α1M + α2K (4)

where α1and α2 are real scalars. This damping model is also
known as Rayleigh damping or classical damping. Modes of clas-
sically damped systems preserve the simplicity of the real normal
modes as in the undamped case.

The main limitation of the proportional damping approxima-
tion comes from the fact that the variation of damping factors with
respect to vibration frequency cannot be modelled accurately by

using this approach [10]. Research into the error introduced by as-
suming proportional damping is ongoing and current results seem
to suggest that there may never be one static assumption that ac-
curately diagonalizes a coupled damped system [11]. For now we
use the proportional damping model for its simplicity.

Substituting back into Equation 3, we have:

M(ü + α1u̇) + K(α2u̇ + u) = F (t) (5)

We assume a particular solution of the form:

u = Zv (6)

where Z is the matrix of eigenvectors that diagonalizes the system.
Substituting back into Equation 3 and pre-multiplying by ZT we
have:

ZT MZ(v̈ + α1v̇) + ZT KZ(α2v̇ + v) = ZT F (t) (7)

This equation simplifies to:

v̈ + (α1 + α2ω
2)v̇ + ω2v = ZT F (t) (8)

Equation 8 represents the uncoupled bank of resonators oscillating
at the natural frequencies determined by the eigenvalues of the sys-
tem. By solving each equation for u we can represent the response
at any location on the object at any time. Therefore, to solve for
the motion at the pickup locations we weight the contributions of
the various modes on the spatial positions of interest.

To apply the input to the system we know that in general, any
force-response history can be represented as a succession of in-
finitesimal impulses. We also know that the response of the system
to such a force profile can be built up from the response to each in-
finitesimal impulse individually [12]. Therefore we can represent
a discrete time excitation as a combination of unit step functions:

f(n) =

∞X
k=0

f(k)δ(n− k) (9)

where f(n) is the applied force and δ is the Dirac Delta function.
The response to this discrete-time excitation is then:

x(n) =

∞X
k=0

f(k)g(n− k) =

nX
k=0

f(k)g(n− k) (10)

where g(n) represents the discrete-time impulse response of a lin-
ear time invariant system to the unit impulse δ(n). Equation 10
essentially approximates the response x(n) in the form of a con-
volution sum, the discrete counterpart of the convolution integral.
The convolution or Duhamel’s integral is a means of finding so-
lutions to linear, nonhomogeneous, second order, ordinary differ-
ential equations with constant coefficients. The nonhomogeneous
part of the equations comes from the forcing function and depend-
ing on the complexity of this term, the integral may or may not
have a closed-form solution [13]. The convolution integral then, is
a means of finding the solution to the original system by summing
the individual impulse responses.

Instead of evaluating the non-recursive convolution sum as in
Equation 10, DiFilippo and Pai [4] use a different technique to
solve for the response to non-harmonic excitation. They use a re-
cursive method for approximating the response at the current time
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step by scaling the value at the previous time step and adding that
to the response to the new impulse. Thus, for each resonator:

xn(0) = anf(0) (11)

xn(k) = e
i Ωn

Fs xn(k − 1) + anf(k) (12)

where Ωn is the natural frequency and Fs is the sampling fre-
quency and:

Ωn = ωn + idn (13)

dn =
ωn

2π
π tan(φ) (14)

where φ is an internal damping factor. Thus the overall sound
generated at time t is:

s(t) = Re
“X

xn(k)
”

(15)

In this way, the incoming audio signal represents an arbitrary dis-
cretized force profile applied to the resonators interpolating the
input position.

2.1. Software Implementation

The rendering algorithm works by first performing the modal de-
composition and then filtering the incoming audio through the res-
onator bank produced. The time to compute the modal decomposi-
tion depends on the number of modes required and the number of
elements in the finite element model. We achieve real-time perfor-
mance by first computing the decomposition, which can take sev-
eral seconds. We then evaluate Equation 15 for each audio sample.
s(t) is computed in a parallel (or vectorized) fashion as each mode
is linearly independent.

The user interface for the plug-in loads an object geometry
and displays the surface for specifying the input and pickup loca-
tions. The left portion of the user-interface allows for modifica-
tion of the material parameters, object scale and plate thickness.
These parameters are adjusted before modal decomposition. The
right portion of the user interface has controls for the audio render-
ing parameters such as the frequency scaling and resonator decay.
These parameters do not require reanalysis, instead they are ap-
plied to the bank of resonators as audio is rendered. There is also
control for the number of resonators used for simulation. Using
more resonators creates a fuller tone but requires more computa-
tion.

3. RESULTS

The following examples were computed using one processor of a
dual 2.5GHz Power PC G5. The plug-ins were hosted using Apple
Inc.’s AULab application and audio input was streamed using the
built-in AUFilePlayer component. In each example, the points in
green represent the input position and the points in red represent
the pickup locations.

For the first example, we load a simple plate model as shown in
Figure 2 (top). The model has 100 elements, and the time to com-
pute the decomposition into 485 modes was 0.65 seconds. Figure 3
(top) shows the waveform and Figure 4 (top) shows the spectro-
gram of the incoming signal applied to the plate. Figure 3 (middle)
shows the resulting waveform and Figure 4 (middle) shows the fre-
quency profile generated for the left channel. Immediately, one can
see the effect of reverberation on the resulting audio. Where there

were once discrete peaks, the audio now blends together. More-
over, the frequency spectrum is low-pass filtered through the num-
ber of modes used in the synthesis algorithm.

We can use also this method on novel shapes and explore the
effect on the resulting audio. Figure 2 (bottom) shows a more
complex shell surface with arbitrary input and output locations.
This model had 500 elements and took 24.5 seconds to compute
all 1548 modes. Using the same input profile as Figure 3 (top), we
can compare the resulting waveform and frequency spectra when
rendering through this new geometry (Figure 3 (bottom), Figure 4
(bottom)).

Notice that in Figure 4, the output through the resonator bank
has less of the high frequency components than the original sig-
nal. This is to be expected as the resonant frequencies of the set
of resonators and user-selected damping values will not exactly
match the original signal. In some sense, the original signal acts to
imprint its frequency spectrum on the resonator bank roughly but
need not exactly match.

For both of these examples, simulating object vibration us-
ing 20 modes consumed around 1.4% CPU; 100 modes consumed
roughly 3%; 1000 modes consumed 22%; and 3000 modes used
84% for two channels of stereo processing. These results sug-
gest that for up to 1000 modes, the method performs well. For
the 3000 or so resonators needed for non-metalic, perceptually re-
alistic sounding reverberation [14], the real-time CPU demand is
considerable when using only one processor.

4. DISCUSSION

In this investigation we have demonstrated a method for simulating
reverberation using the modal synthesis method. By using a phys-
ical model of a vibrating object, we are free to use any arbitrary
geometry and material.

For plates with very thin cross-sections, it is likely that large
applied forces will cause large plate deformation. When this hap-
pens, linear models can no longer be used. As a result, techniques
such as linear modal superposition must be abandoned for nonlin-
ear modal analysis or nonlinear models and numerical integration.
Other researchers are actively investigating the importance of these
nonlinearities in plate reverberation models [15].
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Figure 2: Top: A traditional plate reverb geometry. Bottom: A complex reverb surface.
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Figure 3: Top: Incoming audio signal applied to the plate. Middle:
Simple plate vibration. Bottom: Complex surface vibration.

Figure 4: Top: Frequency profile of the force profile. Middle:
Simple plate vibration. Bottom: Complex surface vibration.
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ABSTRACT 

This article describes an adaptive synthesis technique based on 
frequency (phase) modulation of arbitrary input signals. The back-
ground and motivation for the development of the technique, as 
well as related work, are discussed. A detailed description of delay 
line-based phase modulation of sinusoidal and complex signals is 
provided. The basic design of an implementation of the technique 
is presented and commented. A series of examples using four 
different instrumental sources are discussed. The results show a 
wide range of possible effects through the use of the technique, 
from addition of higher components, to changes in the odd-even 
harmonic balance and the introduction of controlled inharmonic-
ity. 

1. INTRODUCTION 

Adaptive digital audio effects[1] form an important subset of mu-
sical signal processing techniques. A key aspect of their usefulness 
in music composition and performance is that they provide a 
means to retain significant gestural information contained in the 
original signal. One of the major criticisms of electronic and com-
puter music is the relative lack of gestural control over the sonic 
result. With the use of adaptive techniques, it is possible to re-
inject much of the liveliness perceived in musical signals of in-
strumental origin. 

Frequency modulation (FM) synthesis[2] is classic synthesis 
method which has been very useful as an economic means to gen-
erate time-varying complex spectra. However, one of its limitation 
s, as is the case with many of the classic techniques, has always 
been the difficulty in producing more natural-sounding spectral 
evolutions, due to the lack of fine gestural control over the sound. 
The usual methods of controlling FM synthesizers, such as key-
boards, modulation-wheels, sliders and breath controllers never 
provided more than a basic means of dynamically modifying the 
synthesized signal. The limitation might be related to the lack of 
resolution of these gestural controllers, but it is also related to the 
paradigm of control employed.  

The traditional approach has been to treat  synthesis and con-
trol parameters separately, which ultimately will lead to a split 
between gesture and sound result. An alternative is provided by  
approaching the problem from the adaptive point of view, 
whereby the synthesis parameters are derived from the input sig-
nal itself. In addition, in our proposed method, the input signal  
itself is used in the synthesis process. By extracting significant 
information from the input signal and applying it as a way of con-
trolling the modulation of the same signal, we have arrived at a 
gesture-aware form of FM synthesis, Adaptive-FM (AdFM). 

1.1.  Related work 

The technique described here lies in the area defined by 
Poepel and Dannenberg[3] as 'audio-signal-driven' sound synthe-
sis. These authors have proposed a number of correlate tech-
niques, including a FM synthesis method using instrumental input 
as modulation sources and a variation on the technique proposed 
here, which they named 'self-modulation'.  

Their FM synthesis approach differs from AdFM in that it is a 
case is of single-carrier complex modulation, whereas here we 
propose a technique similar to multi-carrier FM. As hinted above, 
the method of self-modulation uses a similar basic signal process-
ing principle. However, it differs substantially from our approach 
in very significant points (which will generally result in the lack of 
fine control over the process). These differences will be discussed 
below. 

More traditionally, some classic signal processing algorithm 
designs also lie in the same general area. Different methods of 
waveshaping[4][5] of arbitrary input signals, as well as single-side 
band[6] and ring modulation are very much related to the present 
work. However,  none of these provide as fine control over the 
resulting synthetic output as ADFM.  

2. THE TECHNIQUE OF ADFM 

The synthesis method provided here is based on two elements: the 
employment of a variable delay line as a means of phase modula-
tion of a signal and the use of an arbitrary input, to which parame-
ter estimation will be applied. 

2.1. Delay line-based phase modulation 

A well-known side-effect of variable delays is the phase modula-
tion of the delay line input. This is the basis for all classic vari-
able-delay effects such as flanging, chorus, pitch shifting and 
vibrato. It is thus possible to model simple (sinusoidal) audio-rate 
phase modulation using a delay-line with a suitable modulating 
function (Fig.1). 
 

 
Figure 1. Delay-line phase modulation 
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We now consider the case where the input to the delay line is 

a sinusoidal signal of frequency  fc : 
 

)2sin()( tftx cπ=                          (1) 
 

The instantaneous frequency IF(t) of the phase-modulated sig-
nal is given by the following relationship [7]: 
 

cc ffd
t
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∂
∂
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)()(                    (2) 

 
where d(t) is the modulating signal and dmax is the maximum delay 
in seconds. Using a scaled raised cosine as a modulating function 
 

5.0)2cos(5.0)( += tftd mπ                 (3)  
 
we have (by substituting d(t) in Eq.2) 
 

ccmm ffdtfftIF += max)2sin()( ππ               (4) 
 
which characterises sinusoidal frequency (phase) modulation. In 
such arrangement, the sinusoidal term in Eq(4) is known as the 
frequency deviation, whose maximum absolute value DEVmax is: 
 

cmc
m
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T
dDEV ππ
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Δ
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with  Δd = dmax – dmin.. 

Now, turning to FM theory, we characterise the index of 
modulation I  as the ratio of the maximum deviation and the 
modulation frequency: 
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So, the Δd that should apply as the amplitude of our sinusoidal 

modulating signal can now be put in terms of the index of modula-
tion 
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and the modulating signal is now: 

 

[ ]5.0)2cos(5.0)( += tf
f
Itd m

c

π
π

                   (8) 

 
The resulting spectra according to FM theory is dependent on 

the values of both I  and the fc:fm ratio:  
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where ωc=2πfc,ωm=2πfm,Jk(I) are Bessel functions of the 1st 
kind of order k and 
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Interestingly enough, in the delay-line formulation of FM/PM, 

the index of modulation for a given variable delay width is propor-
tional to the carrier signal frequency. This situation does not arise 
in classic FM. Also, when considering the width of variable delay 
for a given value of I, we see that it gets smaller as the frequency 
rises. In a digital system, for I=1, this will be less than 1 sample at 
the Nyquist frequency. 

2.2. Using an arbitrary input signal 

In Eq.9, we see the ordinary spectrum of simple FM. However, for 
our present purposes, we will assume the input to be a complex 
arbitrary signal made up of N+1 sinusoidal partials of amplitudes 
an , radian frequencies ωn  and phase offsets φn ,originating, for 
instance, from instrumental sources: 
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The resulting phase-modulated output is equivalent what is 

normally called multi-carrier FM synthesis, since the carrier signal 
is now complex. This output can be described as 
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where ωm is the modulation frequency and In is the index of modu-
lation for each partial. According to Eq.9, this would be equivalent 
to the following signal: 
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The different indexes of modulation for each component of 

the carrier signal can be estimated by the following relationship: 
 

o
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Again, we see here that the effect of the relationship between 

the index of modulation and the carrier frequency is that higher 
partials will be modulated more intensely than lower ones. De-
pending on the bandwidth and richness of the input signal, it is 
quite easy to generate very complex spectra, which might be ob-
jectionable in some cases.  

This is indeed the case in the related technique of self-
modulation, where both the modulating signal and the carrier are 
complex. However, since here we have full control of the index of 
modulation and we have a sinusoidal modulator, it is possible to 
realise more subtle and controlled FM.  
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Another key aspect of the proposed method is that the  fc:fm 
ratio parameter can be also be taken advantage of  by estimating 
the fundamental frequency of the input signal (assumed to be 
monophonic). In this case, a variety of different spectral combina-
tions can be produced, from inharmonic to harmonic and quasi-
harmonic. 

2.3. Input signal  parameter estimation 

In order to allow for a full control of  fc:fm ratio and modulation 
index, it is necessary to estimate the fundamental frequency of the 
carrier signal. That will allow the modulator signal frequency and 
amplitude to be set according to eq.8. This can be achieved with 
the use of a pitch tracker, which is a standard component of any 
modern musical signal processing system. For the current imple-
mentation, a spectral analysis pitch tracking method was devised, 
based on an algorithm by M Puckette et al [8][9],  which provides 
fine accuracy of  fundamental frequency estimation. In addition to 
tracking the pitch, it is also useful to obtain the amplitude of the 
input signal, which can be used in certain applications to scale the 
index of modulation.  This is also provided by our parameter esti-
mation method. 

2.4. Bandwidth and aliasing issues 

Although the spectrum of FM is band-limited, it is capable of 
producing very high frequencies, according to eqs.9 and 13. With 
digital signals this can lead to aliasing problems, if the bandwidth 
of the signal exceeds the Nyquist frequency. The fact that the 
index of modulation increases with frequency, for a given Δd, as 
seen in eq.14, is obviously problematic. However, in practice, 
since the kind of input signals we will be employing  generally 
exhibit a spectral envelope that decays with frequency, objection-
able aliasing problems might be greatly minimised, given that an, 
in eq.13, for higher values of n will be close to 0. Of course, if our 
input contains a lot of energy in the higher end of the spectrum, 
such as for instance an impulse train, then aliasing will surely 
occur. 

The simplest solution for such problematic signals is to im-
pose a decaying spectral envelope by the use of a filter. This will 
have the obvious side-effect of modifying the timbre of the input 
signal. Another, more computationally costly, solution is to over-
sample the input signal. This would either remove the aliased 
signals or place them at an inaudible range.  

3. IMPLEMENTATION 

The basic design of AdFM is shown on fig.2. There are three basic 
components: i) pitch tracker ii) modulating source (a table-lookup 
oscillator) and iii) variable delay line with interpolated readout. 
All of these components are found on modern musical signal 
processing systems, so the technique is highly portable. The im-
plementation discussed here uses the Python[10] language (for 
control) and Csound 5[11] (as the synthesis engine). It is impor-
tant to note that this design can be used either for realtime or ‘off-
line’ applications. In addition, plugins can be easily developed 
from it using csLadspa [12] . 

The equivalent Csound 5 code for the design on fig.2 is shown 
below, with comments: 

 
/* AdFM opcode   

  asig AdFM  ain,krat,kndx,ifn 
  
  ain – input signal 
  krat – fc:fm ratio 
  kndx – index of modulation 
  
    ifn – mod signal function table 
*/ 
opcode AdFM,a,akkiii 
 setksmps 1 
 ipi = 3.1415926 
 ioff = 2/44100 /* 2-sample offset*/ 
 as,krt,knx,ilo,ihi,ifn xin 
 /* pitch tracking */ 
 kcps,kamp ptrack as,512 
 /* modulator */ 
 adt oscili knx/(ipi*kcps),kcps/krt,ifn 
 adp   delayr 1 
 /* delay line */ 
 adel  deltap3  adt + ioff 

    delayw  as 
       xout adel  
endop 

 
Figure 2. The Basic AdFM design 

This implementation uses a spectral analysis pitch tracking 
opcode written by the authors, a linear interpolation oscillator to 
generate the modulation signal and a cubic interpolation variable 
delay line. Due to the use of cubic interpolation, the minimum 
delay  is set to 2 samples to avoid errors in the circular buffer 
readout.  

A number of variations can be made to the basic design. For 
instance, the amplitude of the signal, which is produced together 
with pitch tracking, can be used to scale the index of modulation. 
This will generate so called brass-like tones[13], where the bright-
ness of the synthetic output will be linked to the amplitude evolu-
tion of the input sound. Alternatively, it can be used to determine 
the  fc:fm ratio.  

Depending on the characteristics of the input signal, it might 
be useful to include a lowpass filter before the signal is sent to the 
AdFM processor. The cutoff frequency of the lowpass filter can 
also be controlled by the estimated input amplitude. As discussed 
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earlier, this will reduce aliasing as well as overall brightness, 
which sometimes is a downside of FM synthesis.  

The basic design and its variations have been combined in a 
computer instrument written in Python, using the Csound 5 API, 
with a GTK-based graphic user interface (using PyGTK). All the 
synthesis parameters are exposed by the GUI, so the user can ad-
just the technique to suit his/her needs.  

4. EXAMPLES AND DISCUSSION 

Four different types of carrier signal were chosen as a way of 
examining the qualities of the AdFM synthetic signal. A flute 
input with its spectral energy concentrated in the lower harmonics 
was a prime candidate for experimentation. The clarinet was cho-
sen for its basic quality of having more prominent odd harmonics. 
Finally, the piano and voice were used as a means of exploring the 
possibilities of synthesising different types of harmonic and in-
harmonic spectra by the use of various fc:fm ratios. 

4.1. Flute input 

The original flute spectrum (steady-state), effectively with I=0, is 
shown on fig.3. As clearly seen in that figure, it features quite 
prominent lower harmonics. By applying an index of modulation 
of 0.3, on a 1:1 fc:fm arrangement, we can start enriching the spec-
trum with higher harmonics (Fig.4). At these low values of I, there 
is already a considerable addition of components between 5 and 
10 KHz. The overall spectral envelope still preserves its original, 
decaying, shape. 

 
Figure 3. Steady-state spectrum of a flute playing C4  

 
With higher values of I, we can see a dramatic change in the tim-
bral characteristics of the original flute sound. Fig.4 shows the 
resulting spectrum, now with I=1.5. Here, we can see that compo-
nents are now spread to the entire frequency range. The original 
decaying spectral envelope is distorted into a much more gradual 
shape and the difference between the loudest and the softest har-
monic is only of about 20 dB. The resulting sound has been de-
scribed as ‘string-like’ and the transition between the flute and 
AdFM spectra is capable of providing interesting possibilities for 
musical expression. Also, it is important to note that important 
gestural characteristics of the original sound, such as pitch fluctua-
tions/vibrato and articulation are preserved in the synthetic output. 

 
Figure 4. AdFM spectrum using a flute C4 signal as car-

rier with fc:fm=1 and I=0.3 

 

 
Figure 5. AdFM spectrum using same input as fig.3, but 
now with I=1.5 

As I gets higher, the spectrum gets even brighter, but the problems 
with aliasing start to become significant. To prevent this and also 
to allow for a different spectral envelope, an optional lowpass 
filtering of the input signal is suggested. In that case, the filter is 
inserted in the signal path at the delay-line input.  A butterworth 
low-pass filter with a cutoff frequency between 1000 and 5000 Hz 
has proven useful. It is possible to couple the cutoff frequency 
with I, so that for higher values of that parameter, more filtering is 
applied. 

 
Figure 6. Detail of steady-state spectrum of clarinet C3. The 
higher relative strength of lower-order odd harmonics against 
even ones is clearly seen. 
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4.2. Clarinet input  

Our second experiment used a clarinet signal as a carrier wave for 
AdFM. The clarinet exhibits a steady-state spectrum where the 
lower-order even harmonics are significantly less energetic than 
its odd neighbours (fig.6). Due to this fact, the multi-carrier-like 
characteristic of AdFM helps generate quite a change in the spec-
tra of that instrument.  

As the index of modulation increases, the balance between 
odd an even harmonics changes substantially. With I=1.5, it is 
possible to see that there is now very little difference between the 
strengths of odd and even components (fig.7). In addition, higher-
order harmonics become more present, and the spectral envelope 
levels out. This is due to the well-know spread of energy that is 
characteristic of FM synthesis. 

 
Figure 7. Detail of AdFM spectrum using a clarinet C3 
signal as carrier with fc:fm=1 and I=1.5. Odd and even 

harmonics have now comparable strengths. 

4.3. Piano input 

In the previous examples, we have kept the ratio between the 
modulating frequency and carrier fundamental at 1. However, as 
we know from FM theory, a range of different spectra are possible 
if we use different ratios. It is possible to create a range of effects 
that range from changing the fundamental of the sound to trans-
forming a harmonic spectrum into a inharmonic one. We pro-
ceeded to take a piano C2 signal as our carrier and then tuned our 
modulator to 1.41 times that frequency. The original piano spec-
trum is shown on fig.8, where we can clearly see its harmonics. 

The resulting AdFM spectrum, with I=0.15 is shown on fig.8. 
This particular ratio creates a great number of components, whose 
relationship will imply a very  low fundamental, thus generating 
what is perceived as an inharmonic spectrum. With the 1:1 ratio, 
the sums and differences between fc and fm created components 
whose frequencies were mostly coincident. Here, a variety of dis-
crete components will be generated, creating the denser spectrum 
seen in fig.9.. The AdFM sound resulting from this arrangement 
has been described as ‘bell-like’. Transitions between piano and 
bell sounds can be effected by changing I from 0 to the desired 
value. The application of a lowpass filter at the delay-line input 
will also allow for some variety and control over the brightness of 
the result. 

4.4. Voice input 

A vocal input was used as the fourth different source examined in 
this work, demonstrating a pitch shift effect. Setting the fc : fm  
ratio to 2, we are able to obtain a sound that is now ½ the pitch of 
the original. This is due to the introduction of a component at ½ 
the fundamental frequency corresponding to fc – fm  in eq.14.  
 

 
Figure 8. Spectrogram of a piano C2 tone, showing its 

first harmonics in the 0-1.2Khz range 

 
Figure 9. Spectrogram of an AdFM sound using a piano 

C2 signal as carrier, with fc:fm=1:1.41 and I=0.5, show-
ing the 0 -1.2Khz range. The resulting inharmonic spec-
trum, with a large number of components, is clearly seen 

in comparison with fig. 7 
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With the index of modulation at low values (around 0.15), it is 
possible to preserve some of the spectral shape of the original 
sound, a crucial step in keeping the intelligibility of the vocal 
phonemes. Although there is some addition of high frequency 
components and a flattening of spectral peaks, the AdFM is still 
perfectly intelligible. 
 

 
Figure 10. Comparison of spectral snapshots of a vocal and an 

AdFM vocal sounds, with I=0.1 and fc:fm=2 
 

Fig.10 shows a comparison between a vowel steady-state 
spectrum and its AdFM-processed counterpart. The sub-harmonic 
peak can be seen at the left of the picture below the original fun-
damental (a peak at 0Hz is also present, due to the fc  - 2fm compo-
nent). The recording of the phrase “this is AdFM Synthesis” is 
shown as a spectrogram on fig.11., both as the original signal 
(right) and the AdFM output (left), using the same parameters as 
above. Again, the octave change is clearly seen, as well as the 
increase in the number of significant components in the signal. 

 

 
Figure 11. Detail of spectrogram of a recording of the phrase 

“this is AdFM synthesis”, with AdFM vocal on the left and the 
original vocal sound on the right 

5. CONCLUSION 

We have presented here an alternative approach to the classic 
technique of FM synthesis, based on an adaptive design. This 
method belongs to a general class of processes that have been 
called audio signal driven sound synthesis. Since the FM synthesis 
theory is well known, it was possible to adapt it to provide a good 
understanding of the output signal. With the present technique it is 
possible to have a fine control over the synthetic result, which also 
preserve a substantial amount of the gestural information in the 
original signal. Four different types of carrier signal were used in 

this work to demonstrate the wide range of spectra that the tech-
nique is capable of. We are confident this is a simple yet effective 
way of creating hybrid natural-synthetic sounds for musical appli-
cations. 
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ABSTRACT

This paper presents a pitch modification scheme, based on the
recursive least-squares (RLS) adaptive algorithm, for speech and
singing voice signals. The RLS filter is used to determine thelinear
prediction (LP) model on a sample-by-sample framework, as op-
posed to the LP-coding (LPC) method, which operates on a block
basis. Therefore, an RLS-based approach is able to preservethe
natural subtle variations on the vocal tract model, avoiding dis-
continuities in the synthesized signal and the inherent frame-delay
associated to classic methods. The LP residual is modified inthe
synthesis stage in order to generate the output signal. Listening
tests verify the overall quality of the synthesized signal using the
RLS approach, indicating that this technique is suitable for real-
time applications.

1. INTRODUCTION

Voice analysis and synthesis have been vastly studied in recent
years, and many applications and methods have been developed
in these areas. Pitch modification, the subject of the present pa-
per, is closely related to voice synthesis, since both systems must
consider particular aspects of the voice production system. Appli-
cations of voice pitch modification include, for instance, prosody
changing, automatic tuning of singing voice and solo to unison
transformation. Since it leads to an efficient parameterization of
the speech signal, an analysis-and-synthesis scheme for pitch shift-
ing algorithms may also be useful in other applications as con-
catenative synthesis of voice [1], voice morphing [2, 3, 4],voice
transposition [5], or voice enhancement for speakers with vocal
disorders [6].

Human speech production is often modeled as a source-filter
system [7]. For voiced sounds the source signal may be modeled
as a pseudo-periodic pulse train, resulting from the vibration of
vocal folds. In such cases, the excitation determines the pitch f0

(perceived fundamental frequency) as well as other characteristics
such as breathness or falsetto emission [8, 9]. Unvoiced sounds are
generated without vocal folds vibration. In these cases, the source
models the turbulent behavior of the air flow as a noise signal. The
filter is responsible for the distinction between phonemes and for
the speaker’s timbre, though the glottal excitation may influence
the timbre too. In frequency domain, voiced speech segmentsare
represented by a train of impulses spaced byfo with their ampli-
tudes multiplied by the filter’s spectral envelope.

Pitch shifting was initially implemented by speed changes in
musical recordings. Although this kind of approach was success-
ful for some instruments, it was not possible to change the pitch

without changing the duration of the signal. For speech signals,
this technique worked very poorly, since it shifted the entire orig-
inal spectrum, resulting in a very unnatural human voice. Suc-
cessful experiences with pitch modification in speech result from
parametric coding techniques [10, 11], that use the source-filter
model discussed above, and from FFT based methods, like the
Phase Vocoder, that is subject tophasinessdistortion [12]. A fam-
ily of non-parametric techniques include thepitch synchronous
overlap-and-add(PSOLA) and its variations [13]. The PSOLA
method segments the signal at pitch periods, then overlaps-and-
adds them back to synthesize the output signal with the desired
pitch characteristics. Extensions of this technique include combi-
nations with the linear prediction and FFT approaches (LP- and
FD-PSOLA) [13, 14].

This paper deals with the pitch shifting problem by using a se-
quential approach to LP-PSOLA. Instead of classical block tech-
niques [11], it uses the recursive least-squares (RLS) adaptive fil-
ter to estimate the LP model in a sample-by-sample manner. This
leads to a more natural sounding synthesized signal with smoother
variations of the LP model than classical block techniques.Param-
eterization of PSOLA techniques adds flexibility towards further
improvements and different applications.

The paper is organized as follows: the overall pitch-modifying
system is presented in Section 2, which comprises a description of
the RLS-based LP modeling and the excitation synthesis using LP-
PSOLA; experimental results illustrating the system performance
are included in Section 3; conclusions and future developments are
pointed out in Section 4.

2. PROPOSED SYSTEM

2.1. LP modeling with RLS algorithm

In the LP model, depicted in Figure 1, thea FIR-filter coefficients
are used to estimate the voice signal spectral envelope, andthe pre-
diction residuale[n] is used to recover the original source signal.

In the proposed scheme, the RLS adaptive algorithm is em-
ployed to determine thea coefficients that minimize the objective
function

ξRLS [n] =
nX

i=0

λ
n−i

e
2[i] =

nX

i=0

λ
n−i (s[i]− bs[i])2 , (1)

where0≪ λ < 1 is the so-called forgetting factor and

bs[n] =

PX

p=1

aps[n− p] = aT s[n− 1], (2)
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Figure 1: Block diagram of the LP scheme.

where

s[n− 1] =
ˆ

s[n−1] s[n−2] . . . s[n−P ]
˜T

, (3)

a =
ˆ

a1 a2 . . . aP

˜T
. (4)

The result is a coefficient vector given by

a[n] = R−1[n− 1] p[n] (5)

where

R[n− 1] =
nX

i=0

λ
n−is[i− 1]s[i− 1], (6)

p[n] =

nX

i=0

λ
n−is[i− 1]s[i]. (7)

The values ofR−1[n − 1] and p[n] in Equation (5) can be
calculated in a recursive way, to avoid extra computationalburden,
as given by

p[n] = s[n− 1]s[n] + λp[n− 1], (8)

R−1[n− 1] =
1

λ

»
R−1[n− 2]−

Ψ[n]ΨT [n]

λ + ΨT [n]s[n− 1]

–
, (9)

where
Ψ[n] = R−1[n− 2]s[n− 1]. (10)

For further details on the RLS implementation the reader mayrefer
to [15].

Using the RLS coefficients obtained in the analysis cycle, the
LP model can be employed in the synthesis cycle with a new exci-
tation signale′[n] to get the modified signals′[n] with the desired
pitch characteristics, such that

s
′[n] = e

′[n]− aT [n]s′[n− 1], (11)

as represented in Figure 2. The signale′[n] is obtained frome[n]
using PSOLA algorithm as detailed in Section 2.2.

One may notice that the RLS-LP model is determined for each
time samplen, leading to smooth transitions between consecutive
models. The resulting model quality depends on the choices of
the number of LP coefficientsP and the forgetting factorλ. It

s n[ ] e n[ ]RLS
predictor

e’ n[ ] 1

1 - a z - ... - a z1 P

-1 -P

s’ n[ ]

LPC model

Figure 2: Analysis and synthesis modes using the RLS-LP model.

is possible to show that the RLS sequential solution is a special
case of the classical LP block solutions, withλ controlling the
equivalent length of an exponential analysis window [16]. Proper
values ofP andλ may vary for distinct sampling rates.

2.2. Source implementation

There are several approaches to generate the excitation signale′[n].
The most straightforward is to use an impulse train plus noise for
voiced segments, but it often leads to artificial speech results. Sev-
eral works employ a glottal pulse model [8, 9, 17, 18] to emulate
the vocal effort, the parameterization of which constitutes a cum-
bersome task. One sample of glottal pulse frome[n] can also be
used as a pulse model to generatee′[n] [16].

In this work, the LP errore[n] is used to generate the modified
excitation signale′[n], as illustrated in Figure 2. The desired pitch
is introduced ine′[n] by means of a PSOLA technique applied to
the residual signale[n]. This procedure constitutes the so-called
LP-PSOLA technique [13]. To do that, one applies a peak tracking
algorithm to determine the instants of glottal closure, which corre-
spond to changes in the statistical properties of the signal. Figure 3
illustrates the result of a pitch marking procedure on a speech sig-
nal s[n]. In this figure,pm[n] indicates the pitch marks and the

t

t

s n[ ]

p n[ ]

t

p nm[ ]

Figure 3: Pitch markspm[n] and associated pitch detectionp[n]
of a speech signals[n].

intervalsp[n] are the corresponding pitch periods. The procedure
can be implemented using wavelets [19], by observing variations
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of statistical properties [20], or simply by direct observation of the
amplitude envelope.

Once reliable pitch markspm[n] and pitch periodsp[n] of the
original signal are determined, the desired pitch contour can be
modified as desired. For that purpose, new pitch marksp′m[n] are
determined corresponding to a new pitch periodp′[n], such that

p
′[n] = β[n]p[n], (12)

whereβ[n] is the pitch-period modification factor, which can be
made variable for natural prosody modification, automatic pitch
correction, vibrato synthesis, and so on. The new pitch marks
p′m[n] are determined by forcing an interval ofp′[n] samples be-
tween two consecutive marks, such that a pitch mark will be placed
at positionn+p′[n] if n has a pitch mark (i.e. p′m [n + p′[n]] = 1
if p′m[n] = 1, where pitch mark positions are indicated by 1).

The next step is to link each new pitch markp′m[n] with its
corresponding closest peak on the original signalpm[n]. This is
done straightforwardly by comparing the time index ofpm[n] and
p′m[n], as illustrated in Figure 4.

Original Peak positions

New Peak positions

t

t

p nm[ ]

p’ nm[ ]

(a)

Original Peak positions

New Peak positions

t

t

p nm[ ]

p’ nm[ ]

(b)

Figure 4: Pitch mark association for the synthesized sourcesignal
with: (a) Increased pitch; (b) Decreased pitch.

In the final step of the new source generation, each peak in the
original signal is then segmented, by two half-hanning windows,
starting at the preceding pitch mark and ending at the next one.
The resulting source segments are put together by an overlap-and-
add procedure according to the new pitch periodp′[n] obtained
previously, as given in Figure 5.

3. EXPERIMENTAL RESULTS

This section describes some practical experiments performed with
the proposed pitch-modification system.
Example 1: A portion of a song recorded by a female Brazilian
singer was modified usingβ[n] = 2 andβ[n] = 0.5. Figure 6
shows a small portion of the original and modified signals, whereas
Figures 7 shows their corresponding spectrograms.

The proper pitch modification can be inferred from Figure 6 by
noticing how the modified peaks become more separated or closer
whenβ[n] = 2 andβ[n] = 0.5, respectively. A similar conclusion

t

t

p nm[ ]

p’ nm[ ]

(a)

t

t

p nm[ ]

p’ nm[ ]

(b)

Figure 5: Composition of the new source signal with: (a) Increased
pitch; (b) Decreased pitch. In each case, the dashed lines corre-
spond to the segmentation windows centered at each originalpitch
mark.

can be drawn observing the fringes in the modified spectrograms
in Figure 7.
Example 2: Once again the pitch characteristic of a song was
modified withβ[n] = 2 andβ[n] = 0.5. This time, however,
the recorded voice of a male singer was employed. The time- and
frequency-domain representations of the resulting signals are de-
picted in Figures 8 and 9, respectively.

Once again, from these figures, it is easy to identify the desired
pitch modification, while the original spectral envelope iskept es-
sentially unchanged in all cases.
Example 3: Figure 10 compares the results of the proposed method
and PSOLA for a one-octave decreasing of pitch,i.e. β[n] = 2,
on the same signal employed in Example 1. This figure illustrates
a major drawback of the PSOLA algorithm, which is the signif-
icant energy decrease in between consecutive peak marks when
β[n] > 1. Although larger analysis windows could be employed
in such cases, they could lead to spurious peaks on the synthesized
signal, since adjacent peaks would not be sufficiently reduced by
the analysis windows. These spurious peaks might lead to rough-
ness on the modified signal.

It is worth noting that, instead of directly overlapping por-
tions of the output signal as in PSOLA, the LP-PSOLA intrinsi-
cally keeps the responses to each excitation pulse individualized,
as in the voice production model itself. This feature, coupled with
the smoothly tracked RLS-LP model, allows one to expect thatthe
proposed system can produce a more natural synthesized voice.

4. CONCLUSIONS

A complete system for pitch modification of voice signals waspre-
sented in this paper. Spectral envelope modeling is performed by
an adaptive RLS filter, leading to a sample-by-sample estimation
of the LP model. This results in smooth transitions in the estimated
model, thus yielding a more natural synthesized signal.

The source signal with the desired pitch characteristics isob-
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Figure 6: Extracts of signals in Example 1: (a) Original signal; (b)
Modified signal withβ[n] = 2; (c) Modified signal withβ[n] =
0.5.

tained by applying a PSOLA algorithm on the RLS residual error.
The advantage of this method is to preserve the individuality of
each glottal pulse. Furthermore, in case of insufficient LP-model
order, part of the spectral envelope information is carriedby the
RLS residual error, thus reducing the envelope modeling error in
the synthesized signal. Additionally, the proposed systemis able
to sustain signal information in between pitch marks even for large
pitch-modification factorsβ[n].
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Figure 7: Spectrograms of signals in Example 1 showing that the
original spectral envelope is preserved in all cases: (a) Original
spectrogram; (b) Modified spectrogram withβ[n] = 2; (c) Modi-
fied spectrogram withβ[n] = 0.5.

Informal subjective tests have shown good results for pitch
scale modification in the range0.5 ≤ β[n] ≤ 2, which, in musi-
cal terms, means from an octave downwards to an octave upwards.
This system is currently being tested against standard pitch modi-
fication methods.

The parameterization inherent to the described method sug-
gests the system can be extended to fit voicemorphingapplica-
tions,e.g. male-female conversion, voice transposition, and non-
human voice synthesis for voice editing in cartoons.
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Figure 8: Extracts of signals in Example 2: (a) Original signal; (b)
Modified signal withβ[n] = 2; (c) Modified signal withβ[n] =
0.5.
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Figure 9: Spectrograms of signals in Example 1 showing that the
original spectral envelope is preserved in all cases: (a) Original
spectrogram; (b) Modified spectrogram withβ[n] = 2; (c) Modi-
fied spectrogram withβ[n] = 0.5.
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Figure 10: Extracts of signals in Example 3: (a) Original signal;
(b) Signal modified by PSOLA; (c) Signal modified by the pro-
posed method.
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ABSTRACT 

This article discusses harmonic sinusoid modeling. Unlike standard 
sinusoid analyzers, the harmonic sinusoid analyzer keeps close 
watch on partial harmony from an early stage of modeling, there-
fore guarantees the harmonic relationship among the sinusoids. The 
key element in harmonic sinusoid modeling is the harmonic sinu-
soid particle, which can be found by grouping short-time sinusoids. 
Instead of tracking short-time sinusoids, the harmonic tracker oper-
ates on harmonic particles directly. To express harmonic partial 
frequencies in a compact and robust form, we have developed an 
inequality-based representation with adjustable tolerance on fre-
quency errors and inharmonicity, which is used in both the group-
ing and tracking stages. Frequency and amplitude continuity crite-
ria are considered for tracking purpose. Numerical simulations are 
performed on simple synthesized signals.    

1. INTRODUCTION 

The standard sinusoid model [1,2] expresses an audio signal as the 
combination of slow-varying sinusoids plus a noise. Although the 
sinusoids clearly model the partials of pitched sounds, it has not 
been made explicit. Due to the lack of emphasis on the relation-
ship among partials, the standard sinusoid tracking methods cannot 
guarantee harmonic consistence. Accordingly, the results do not 
provide a solid base for extracting pitched events. On the other 
hand, matching pursuit based methods have been proposed to ex-
tract harmonic structure from music [3, 4]. However, these methods 
lack the freedom of representing time-varying frequency within a 
single object, and tend to represent a harmonic event with time-
varying pitch as multiple events. To overcome these difficulties, we 
apply the harmonic constraint, which is more flexible than match-
ing pursuits, in an early stage of sinusoid analysis, preferably be-
fore the tracking of partials. This upgrades sinusoid modeling to 
harmonic sinusoid modeling. The frameworks of sinusoid and har-
monic sinusoid analyzers are compared in Figure 1. The key ele-
ment of the sinusoid model, the short-time sinusoid atom, becomes 
harmonic particle. The two main parts of the sinusoid analyzer, i.e. 
the sinusoid detector and the partial tracker, are replaced by har-
monic particle detector and harmonic sinusoid tracker, respectively. 
Compared to standard sinusoid models, the harmonic model pro-
vides a higher-level description of pitched events, which enables an 
extensive range of analysis and synthesis operations.  

A harmonic sinusoid is described by sinusoidal parameters 
{ , , | 0≤l<L, 1≤m≤M}, where L is the number of frames, 

M is the number of partials, ( , ) is the instantaneous 
frequency (amplitude, phase angle) of the mth partial at the lth frame. 
By fixing m we get a description of the mth partial; by fixing l we 
get a description of the harmonic particle at the lth frame. 

m
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m
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lϕ
m

lf
m
la m
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This article is arranged as follows. Section 2 discusses the 
grouping of sinusoid atoms into harmonic particles. Section 3 dis-
cusses the harmonic sinusoid tracker. Section 4 presents some nu-
merical results of the algorithms, followed by a brief conclusion in 
section 5. 
 

 
Figure 1:Comparing standard and harmonic sinusoid analyzers 

2. HARMONIC GROUPING WITH INEQUALITIES 

We assume that the short-time sinusoid atoms have already been 
detected at frame l. This is accomplished by spectral peak picking 
[1] and sinusoid parameter estimation [2,5]. The harmonic group-
ing module collects sinusoid atoms, whose frequencies can be re-
garded as harmonic, from this pre-detected set. Perfect harmony is 
characterized by all partial frequencies being multiples of a funda-
mental frequency. Let  be the frequency of the mth partial, then 
perfect harmony implies . However, this does not pro-
vide a practical way to spot harmonic particles from the pre-
detected peaks, mainly for two reasons: 1) the frequency estimates 
carry errors, and 2) perfect harmony is not always guaranteed. 

mf
1mff m =

2.1. Inharmonicity 

The 2nd problem, known as inharmonicity, is best known for free-
vibrating strings. [6] gives an example of explicitly expressing the 
partial frequencies as a function of fundamental frequency f1 and a 
stiffness coefficient B: 
  (1) 2/1211 )]1(1[),( −+⋅= mBmfBff m
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B is a constant for a given string. Strictly speaking (1) only ap-
proximately describes the inharmonicity due to string stiffness [7], 
and may still carry an error. However, it is reasonable to assume 
that this error is so small that it can be “absorbed” into the fre-
quency estimation error.  

2.2. Frequency estimation error 

The frequency estimate of a partial can be very accurate when its 
pitch is stable and the partial is spared of noise and disturbance. In 
real-world recordings, however, the pitch may have smooth or 
repetitive variations fast enough to affect frequency estimates, and 
noise and concurrent sinusoids do disturb sinusoid analyzers. The 
frequency estimate error depends on the estimator type and the 
signal behaviour, the latter being highly unpredictable. The estima-
tion of the error bound is out of the scope of this paper. However, 
we always assume that we can find an error bound  for . Let 

the frequency estimate be , then  

m∆ mf
mf̂

  (2) mmm ff ∆<− |ˆ|

The error bound  does not have to be tight. In most cases it is 
reasonable to set  at 1 spectral bin for low partials, and a few 
more for high partials if the pitch variation is fast. 

m∆
m∆

Combining (1) and (2) we get 

  (3a) mmmm fmBmff ∆+<−+⋅<∆− ˆ)]1(1[ˆ 2/121

Equation (3) relates the frequency estimates to the two parameters 
of the partial frequency model (1), i.e. f1 and B. If the frequency 
estimate satisfies (3a) for some f1 and B, we allow it to be the mth 
partial for this f1-B pair. 

2.3. Harmonic partial frequencies 

Now we address the following problem: given frequency estimates 
of M partials, , , …, , where m1

th, m2
th, …, mM

th are 
the partial indices, can they be grouped as harmonic partials? The 
answer is straightforward: if there exists f1 and B so that (3a) holds 
for all the frequency estimates, then they can be regarded as har-
monic partials. In other words, let the solution set of  

1ˆ mf 2ˆ mf Mmf̂
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be R, then the given frequencies can be regarded as harmonic par-
tials if and only if R≠Φ. However, (3b) is a non-linear inequality 
system, which makes R hard to represent in the f1-B plane. We 
linearize (3b) using the substitutions 

 ,  (4) 21 )( fF = 21)( fBFBG ==

then (3b) becomes 
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solution of (5) is R in the F-G plane. We impose additional con-
straints on the allowable ranges for f1 (e.g. 0~0.5) and B (e,g 
0~0.001). These constraints are linear in the F-G plane. R, if not 
empty, is always a convex polygon. We represent R using a list of 
its N vertices in the (F-G) plane, i.e. {N; (Fn, Gn), n=0, 1, …, N-1}. 
To solve for R we initialize it by presetting the f1 and B ranges (so 
R is a close polygon from the beginning), and apply the constraints 
one after another. Each constraint chops off the part of R outside a 
pair of parallel lines specified by . The more partial 
frequencies are used, the smaller becomes R. 

12 −= mk

±=+ mm gGkF

R represents a range for f1 and B so that those points, and only 
those points in R, can be the f1-B pairs to associate the given fre-
quencies with. We directly have 

 nnnn
FfF maxmin 1 << , 

n

n

n
n

n

n F
GB

F
G maxmin <<  (6) 

That is, the span of R on the F axis determines the precision of f1, 
and the angular sweep of R, with respect to (0,0), determines the 
precision of B. The smaller R is, the more precise are f1 and B. The 
mth partial frequency is located by 
 ,  (7a) )()( RffRf mmm

+− <<

where  

)(min)( nnn

m kGFmRf +=− , )(max)( nnn

m kGFmRf +=+ .  (7b) 

(7a) provides an estimation of  with a better precision than ∆m. 

However, most of the time we need (7a) for judging whether  
is compatible with R. If R is derived without using the mth partial, 
then  can be regarded as an additional harmonic partial, as long 
as 

mf
mf̂

mf̂

 .  (7c) 11 )(ˆ)( mmmmm RffRf ∆+<<∆− +−

2.4. Grouping partials by harmony 

The partial grouping based on the inequality representation R is 
simple in principle. To find a harmonic particle, one 

1) initialize R, find the first partial; 
2) use the found partial to update R; 
3) use R to compute the range to look for the next partial; 
4) find the next partial; 
5) if there are still partials to find, go back to 2. 

Notice that here the “first partial” refers to the first available 
partial: it does not have to be the fundamental partial, but may be 
any partial whose partial index is known. Figure 2 shows how R is 
updated for a perfect harmonic particle with neither frequency 
estimation error nor spurious peaks. We choose f1=0.1 and 
∆m=0.01, 0≤B≤0.05. R obtained by using the lowest 1, 2, 3, 4 par-
tials are shown in (a), (b), (c), (d) respectively. 

In more practical cases there are three complications. First, we 
do not have a range to look for the first partial; second, correct 
partials may not appear as a spectral peak, and therefore cannot be 
located; third, multiple partials may be found in step 4. We discuss 
them in reverse order. 
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Figure 2: Updating R using found partials 

2.4.1. Competing peaks 

If more than one atom lies in the searching range for the mth partial, 
they become competing peaks. A peak that competes with the true 
partial may be either a spurious peak, or a partial of a concurrent 
event. We can derive a candidate harmonic particle from every 
peak, and choose one from these candidate particles that is optimal 
in some sense. To do this we need a criterion, i.e. a scoring func-
tion, to compare two harmonic particles. The strength-harmony 
criterion is based on two assumptions: 

(1) most spurious peaks are weak; 
(2) correctly captured partials tend to have less departure from 

the model frequencies. 
From assumption (1) we derive the strength criterion. If the 
strength of particle p1 is higher than that of particle p2, then p1 is 
given a higher score on the strength side. The score can be the total 
amplitude calculated by summing up partial amplitudes, or the total 
partial SPL calculated by summing up the logarithms of partial 
amplitudes, or some other more perceptual measures. We always 
assume it can be written in an additive form, i.e. 

( ) )ˆ(}ˆ{ ,2,1
m

m
am

m
a asas ∑== L , , .  (8a) 0)ˆ( ≥m

a as 0)ˆ( >′ m
a as

Assumption (2) favours partials with more predictable frequencies. 
As said in 2.2, the error bounds ∆m used for harmonic grouping are 
not tight. Using large error bounds provides good robustness 
against frequency estimation errors. However, it is a main reason 
that we have competing peaks. To make up for this, we introduce 
the harmony criterion based on the departure of frequency esti-
mates from the model. The departure of the mth partial frequency 
estimate from model R is  mf̂

  .  (9) 
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where  and  are defined by (7b). We also assume 
that the harmony score sf can be written in an additive form: 
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The dependency of  on  allows us to design a harmony 

score that is consistent with   in some sense. Let ∆m be a 
maximal allowable frequency departure. We choose to assign a 
100% penalty to  if ≥∆m, and no penalty if 

=0, i.e. 
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Between =0 and ≥∆m we assign a partial pen-
alty, like the linear function in (11). The final score for evaluating a 
harmonic particle is 
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The number of candidates grows whenever we have competing 
peaks. However, at any stage we can combine two candidates p1 
and p2, if 1) s1>s2 and 2) R1⊇R2. In particular, if the two peaks with 
frequency estimates  and are competing for the mth partial, 

> , then we can immedi-

ately discard candidate 2 if a) > and , or 

b) < and . Finally the candidate har-
monic particle with the highest score is selected. 
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2.4.2. Unfound partials 

In addition to the spurious partial problem, a true partial may fail to 
appear as a spectral peak if 1) it is too weak, or 2) it is masked by 
noise. A partial being unfound is not a problem by itself, as its 
absence does not affect R or the searching of other partials. The 
real problem is that we do not know whether a partial appears as a 
spectral peak or not. Even when a partial does not produce a peak, 
it is possible for spurious peaks to appear where the partial is ex-
pected. If this were the case and the spurious peak were used to 
update R, the searching range of further partials would be biased. A 
safe way to deal with the unfound partial problem is to always 
reserve a candidate for “unfound partial”, even when one or more 
atom have been located. In fact this is necessary only when the size 
of R is relatively large and the located atom has large frequency 
departure, in which case it substantially reduces the size of R. Un-
found partials do not contribute to  or .  )ˆ( 1

m
a as ),ˆ( 1 Rfs mm

f

2.4.3. Unknown range for the first partial 

The frequency range to look for a partial is calculated from R. 
Once the first partial has been located, R can be updated with its 
frequency estimates so that the search range for any further partial 
is reduced to no more than a few bins. This, however, does not 
apply to the first partial. In many cases a small frequency range of 
the first partial can be provided externality (s.a. by a pitch detector, 
a score, or a user), or by a harmonic particle in an adjacent frame 
during the tracking stage (see section 3). However, if there is no 

(a) (b) 

(c) (d) 
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such information available, we can run an exhaustive search 
through the pre-detected atoms. That is, we start with a strong 
peak, assume this is the 1st, 2nd, …, mth, … partial, and derive a 
harmonic particle candidate from each assumption; then we com-
pare these candidates with some criterion to choose the best one. If 
the audio frame has a single pitch, the found particle shall represent 
this pitched event. If the audio frame has multiple pitches, the 
found particle is interpreted as a predominant harmonic particle, 
representing one of the pitched events.  

2.5. Estimating f 1 and B 

The polygon R represents our knowledge of f1 and B accumulated 
from the frequency estimates involved in (3b). f1 and B do not ap-
pear explicitly during harmonic grouping or harmonic partial track-
ing. (6) estimates the two parameters as intervals. The sizes of the 
intervals are determined by the frequency estimates  and the 
error bounds .  As mentioned before, we use relatively large 
error bounds to enhance robustness. This results in a large R and 
imprecise f1 and B. Accordingly, more precise estimates of f1 and B 
can be obtained by reducing the overlarge error bounds. Let θ be a 
number between 0 and 1. By setting the error bound associated 
with the mth partial to , we can get an f1-B range R(θ). Appar-
ently R(1)=R, and the size of R(θ) (hence the precision of f1 and B) 
is monotonous regarding θ. Since the size of R(0) is 0, we know 
that there exists η, 0≤η<1, so that the size of R(η) is 0, and ∀θ>η, 
the size of R(θ) is positive. In other words, by reducing θ from 1 to 
η, we shrink R(θ) from R to a zero-sized polygon. We can further 
prove this zero-sized polygon to be a single point. Therefore R(η) 
provides estimates of  f1 and B in the precise form. 

mf1̂

m∆

m∆θ

We consider the constraints (3b) with argument θ. Given a 
point (f1, B) R, it lies on R(θ) if and only if it satisfies the co∈ n-
straint 
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θ(f1, B) is the minimal value of θ for R(θ) to contain the point (f1, 
B). We define  
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θ(R) satisfies 1) for any θ<θ(R), R(θ) is empty; 2) for any θ>θ(R), 
R(θ) is non-empty. Therefore we have η=θ(R). The model parame-
ters can be estimated at η: 
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This is a minimal-maximum problem. For the stiff string model this 
becomes 
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We can then calculate f1 and B by the inverse mapping of (4) 
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m
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GFe
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),(  the relative frequency estima-

tion error. Equations (15a) show that by shrinking R to zero-size, 
we locate the parameter pair that minimizes the maximal relative 
frequency error of all the given estimates.  

The implementation of the minimal-maximum search greatly 
benefits from the fact that the gradient ∇em has constant direction. 
Using this property we can show that if (F,G) R∈  is a local mini-
mal-maximum of em, then it is also the minimal-maximum in R. In 
other words, the minimal-maximum of em is unique. A key proposi-
tion for finding the minimal-maximum is given below. 

Proposition 1: if (F0, G0) R is not a minimal maximum, and∈  
= =…=  are K equalling maxima at (F0, G0), K>2, then 

there exist l1 and l2, 1≤l1, l2≤K, so that ∀1≤k≤K, along the de-
creasing direction of = , -  is non-increasing. 

1e 2e Ke

1le 2le ke 1le
Proposition 1 ensures that we can always search down a curve 

=  without losing track of the maximum. The search come to 
a stop when there is another l3 so that = = . If this is not 
the minimal-maximum, we continue the search on curve =  or 

= , in the decreasing direction. It can be shown that the mini-
mal-maximum can be reached in finite number of steps. 

1le 2le

1le 2le 3le

1le 3le

2le 3le

2.6. Detection in the presence of other harmonic particles 

In polyphonic music we have multiple concurrent pitched events. It 
is usual that we have multiple harmonic particles in the same 
frame. In [7] the detection of multiple pitches is addressed as itera-
tively detecting and removing pitched events. In harmonic sinusoid 
modeling we can also detect multiple harmonic particles in a simi-
lar iterative way. Instead of removing detected events, we ignore 
the spectral peaks that are already collected in other harmonic par-
ticles. The harmonic grouping process remains the same. We are 
able to ignore certain peaks by virtue that unfound partials do not 
critically affect harmonic grouping. However, this makes it easier 
for spurious peaks to be collected. We split the harmonic grouping 
in two stages. In the first stage, we skip a partial whenever there is 
an already used peak in its searching range; in the second stage, 
with R already reduced to a small size, we review these skipped 
partials. If the used peak is still within the searching range, and it is 
the only peak within the range, then it is appointed to the new par-
ticle (as a shared peak). However, if there is another peak within 
the range, we take the following actions. 

Let the partial index, frequency and amplitude estimates, and 
the f1-B range of the used peak 1 be m1, ,  and R1, of the un-

used peak 2 be m2, ,  and R2.  We define 
1̂f 1â

2̂f 2â

  (16) ))ˆ(),,,ˆ(()ˆ(),,ˆ,ˆ( asRmfdsasRmfas a
m
fa +=

and compare +  with 

+ .  If the former is larger, we 
collect peak 2 into the new harmonic particle; if the latter is larger, 
we replace peak 1 in the old harmonic particle with peak 2, and 
collect peak 1 into the new harmonic particle. 

),,ˆ,ˆ( 1111 Rmfas ),,ˆ,ˆ( 2222 Rmfas

),,ˆ,ˆ( 2211 Rmfas ),,ˆ,ˆ( 1122 Rmfas
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3. TRACKING HARMONIC PARTICLES 

Let pl be a harmonic particle at the lth frame in time, with the f1-B 
range Rl. Regarding f1 and B of the lth and (l+1)th frame, we assume 
that 

 
⎪⎩

⎪
⎨
⎧

∆<−

=

+

+

lll

ll

ff

BB
11

1

1
 (17) 

(17) is the harmonic version of the frequency jump limiting used 
for sinusoid tracking [1]. The first line says that the inharmonicity 
feature remains constant during the same event, and the second line 
says that the pitch is not allowed to vary too fast. Given Rl and (17), 
we have the following inequality for the mth partial at the (l+1)th 
frame: 
  (18) ),)((),)(( 1

1
1

lll
mm

llll
m BRfffBRff ∆+<<∆− ++−

This provides a range to look for any partial in the (l+1)th frame. To 
find a harmonic particle at frame l+1 as the successor of pl, we 
initialize Rl+1 by expanding Rl along the f1 axis by ∆l on both sides, 
i.e. 
  (19) }),(),,(|),{( 11

1 llll RBfBfR ∈+∆∆−∈∃=+ δδ

It can be shown that this expansion does not preserve the linearity 
of the sides of polygon R, so the Rl+1 initialized strictly by (19) is 
no longer a polygon in the F-G plane. However, as an approxima-
tion, we can initialize Rl+1 by expanding the vertices of Rl using (19) 
then take the convex hull (Figure 3). We can show that by taking 
this approximation Rl is expanded a little more than the amount in 
(19) near the sides, i.e. we are allowing a little more pitch variation 
at certain B’s. This is not a big problem since ∆l itself is not re-
quired to be very precise. 

 

Figure 3: Expanding R to allow pitch variation 

3.1. Short-term continuity 

Once Rl+1 has been initialized, the harmonic particle searching can 
be carried out using the method in section 2. However, with the 
knowledge of the predecessor particle, we are able to include short-
term continuity criteria in the harmonic grouping stage by compar-
ing the current candidates to the previous harmonic particle.  

3.1.1.  Frequency continuity 

The frequency continuity has already been used to initialize Rl+1. 
However, we may have competing pitches within the allowed pitch 
jump. This is comparable to completing peaks in standard sinusoid 
modeling. In sinusoid modeling the successor is often chosen to be 
the peak with the smallest frequency jump [1,2] or the peak that 

gives the smoothest frequency contour [8, 9]. Similarly, in case of 
competing pitches, we choose to favour small pitch jumps. This is 
implemented using a pitch continuity score 

 
p

l

ll
p

fflls
∆
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−=+ +
11

11)1,( , p≥1 (20) 

The exponent p tunes the balance of small and large pitch varia-
tions. The less is p, the less we tolerate large pitch jumps. 

3.1.2. Amplitude continuity 

Short-term amplitude continuity compares the partial amplitudes of 
candidate harmonic sinusoids of frame l+1 to those of frame l. We 
measure the similarity of two amplitude vectors  and 

 with 
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sa combines two types of continuities: the total amplitude continu-
ity (sa)1, and the amplitude distribution continuity (sa)2. (sa)1 is a 
measure of the change in total volume; (sa)2 is a measure of the 
change in short-time timbre. 0≤(sa)1≤1, 0≤(sa)1≤1. 

However, we have observed that if the frequency has fast varia-
tion, the short-time amplitude continuity (21a) becomes question-
able, especially when the event has a formant structure. This is due 
to the large variation of the short-time timbre that accompanies 
pitch changes. In this case we use a long-term amplitude continuity 
criterion, as follows. 

G

Rl+1 
Rl 3.2. Long-term amplitude continuity 

Long-term amplitude continuity criterion is useful for events in-
volving repetitive pitch variation. It assumes that the amplitude 
distributions of two frames on the same event are similar if its 
pitches in these two frames are close. Therefore instead of compar-
ing the amplitude distribution with the frame closest in time, we 
compare it with the frame closest in frequency. Let the current 
harmonic sinusoid track contain frames 1, 2, …, l, with fundamen-
tal frequencies , , …, , and let  be a candidate funda-

mental frequency of the (l+1)th frame. We select 

1
1f

1
2f

1
lf

1
1+lf

l  between 1 and l 
so that 1

lf  is closest to , i.e. 1
1+lf

F

 11
11

minarg kllk
ffl −= +≤≤

. (22a) 

We define the long-term amplitude distribution continuity score as 
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(21a) can then be replaced by 
 ( ) ( )31)1,( aaa sslls =+  (22c) 
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Although in (21a) and (22c) we are combining the two types of 
amplitude continuity measures by direct multiplication, it is not 
compulsory. We can use any other combination methods as long as 
0≤sa≤1, with the identity sa=1 for identical amplitude vectors. 

3.3. Extending harmonic sinusoids 

Let p1,1, p1,2, p1,3, … be harmonic particles detected at frame 1, and 
h1, h2, h3, … be the harmonic sinusoids these particles are associ-
ated with. Now we look at the task of finding successor particles to 
p1,1, p1,2, p1,3, …, so that h1, h2, h3, … can be extended 1 frame 
forward. This task differs from the detection of concurrent har-
monic particles (section 2.6) in that the particles detected in frame 
l+1 must satisfy additional continuity with the previous frame. 
Therefore, instead of using (12) to compare competing results, we 
use  
 )1,()1,()1,( +++=+ llsllslls ap  (23) 

where the two addends are defined by (20) and (21a) (or (22c)). 
Like the detection of concurrent harmonic particles, the extension 
of concurrent harmonic sinusoids is performed in an iterative way, 
i.e. after the first harmonic particle is detected, additional harmonic 
particles are detected in the presence of the already found ones. The 
searching method remain the same, except for the scoring function 
(23) and the initialization of Rl+1,k with Rl,k, k=1, 2, …. 

If a successor for pl,k cannot be found at the (l+1)th frame, or 
any successor found for pl,k cannot meet a minimal continuity 
score, then hk is terminated at frame l. This is the harmonic version 
of the death of a sinusoid track. 

3.4. Forward harmonic sinusoid tracking 

Forward harmonic sinusoid tracking creates, continues, and kills 
harmonic sinusoids in the forward procession of time. It takes pre-
detected spectral peaks as input, and outputs harmonic sinusoids.  

The forward harmonic particle tracking proceeds as follows. 
Let p1,1, p1,2, p1,3, … be harmonic particles detected at frame 1. We 
associate each of them with a harmonic sinusoid, say h1, h2, h3, …, 
i.e. p1,k is hk constrained at the 1st frame. For l=2, 3, …, we do the 
following. 

1) find the most continuous successors for the existing har-
monic sinusoids (section 3.3); 

1.1) initialize Rl,1 with Rl-1,1, detect harmonic particle pl,1; 
1.2) for k=2, 3, …, do 1.3; 

1.3) initialize Rl,k with Rl-1,k, detect harmonic particle in 
the presence of pl,1, pl,2, …, pl,k-1 using continuity score 
(23), or terminate hk in case of failure; 

2) find harmonic particles in the presence of the harmonic par-
ticles detected in 1), initialize a new harmonic sinusoid with 
each new harmonic particle. 

3.5. Post-tracking parameter estimation  

Pre-detected short-time sinusoid atoms are usually estimated using 
a stationary sinusoid assumption. However, accurate parameter 
estimation is possible only when the estimator considers parameter 
dynamics within a frame. Rather than estimating local dynamics 
from the spectrum, such as in [10], we access the dynamic informa-
tion from the sinusoid tracks [11]. Post-estimation proceed in an 
iterative way. In each iteration, we do the following: 

1) interpolate the frequency estimates using a cubic spline;  
2) reestimate amplitudes using the interpolated frequency with  
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where wn (0≤n<N) is a low-pass window function and xn is the 
signal being analyzed;  
3) interpolate the amplitudes using a cubic spline; 
4) reestimate the frequencies by finding an approximate solu-
tion of  
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where . fmndttf
n

mmn
ˆ)(2)( −−=∆ ∫ πϕ

More details about (24) and (25) can be found in [11].  

4. EXPERIMENTAL RESULTS 

We run numerical tests on synthesized signals, for which the 
ground truth is available. The synthesized samples are 44100 points 
long. Amplitude and frequency variation rules include constant, 
exponential, and sinusoid-modulated variations. Stiff string model 
is applied to constant-frequency sounds. Partial amplitudes are 
designed to follow a 1/m rule, i.e. amplitudes are reciprocal to the 
partial index. We use the frame size 1024 and hop size 512. The 
fundamental frequency ranges from 5 bins to 40 bins 
(1bin=1/1024), spanning 3 octaves. We sample this range every 
semitone, i.e. at 37 different pitches. White noises are added to the 
test sampled optionally. 

We measure two types of error: a harmonic grouping error and 
a waveform model error. The harmonic grouping error is measured 
by the number of correctly collected short-time sinusoid atoms 
divided by the total number of atoms. The waveform model error is 
measured by a signal-to-noise ratio, where the noise refers to the 
difference between the original source waveform and the resynthe-
sized harmonic sinusoid waveform. The errors are measured inde-
pendently for each test sample, which are then averaged over 
groups of samples. 

4.1. Constant harmonic sinusoids 

This group includes 925 test samples, with the 37 fundamental 
frequencies (f1) from 5bins to 40 bins, 5 stiffness coefficients (B) 
from 0 to 0.0008, and 5 signal-to-noise ratios (SNR) from -15dB to 
45dB. Given the three parameters, the test signal is synthesized by 

 n

M

m

mm
n rnBff

m
x

f
M ++=⎥

⎦

⎥
⎢
⎣

⎢
= ∑

=1

1
1 )),(2cos(1,35.0 πϕ  (26) 

The phase angles  are taken at random. The noise r has been 
amplified to meet the selected SNR. The results are given Table 1. 
For stationary sinusoids the modeling is very successful, with more 
than 99.9% sinusoid peaks correctly collected into the partials 
when the SNR is above 15dB. We constantly get slightly better 
results for higher stiffness coefficients. This is due to the constraint 
of B above zero, which makes it easier to collect spurious peaks 
with a positive frequency departure than a negative one. 

mϕ
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 SNR 
B  -15dB 0dB 15dB 30dB 45dB 

0 27.5 86.4 99.9 100 100 
0.0002 37.1 93.0 100 100 100 
0.0004 40.6 94.2 100 100 100 
0.0006 43.6 95.5 100 100 100 
0.0008 44.9 95.8 99.9 100 100 

(a) Group 1: peak collection rate (%) 

 SNR 
B  -15dB 0dB 15dB 30dB 45dB 

0 -0.9 14.8 30.6 45.7 60.7 
0.0002 0.3 16.2 32.1 47.2 62.1 
0.0004 0.6 16.5 32.4 47.5 62.3 
0.0006 0.8 16.8 32.7 47.7 62.6 
0.0008 1.0 17.0 32.8 47.9 62.7 

(b) Group 1: Resynthesis SNR (dB) 

Table 1: Results for constant harmonic sinusoids. 

4.2. Constant pitch with exponential amplitude 
Exponential amplitudes are found in real-world free vibrating bod-
ies. This group includes 1850 test samples, with 37 fundamental 
frequencies (f1) from 5 bins to 40bins, 2 stiffness coefficients (B) 0 
and 0.0005, 5 amplitude decay rates (α) at -0.5, -1, -1.5, -2, -2.5 
dB/frame (here “per frame” means per hop size, i.e. per 512 points) 
, and 5 SNRs from -15dB to 45dB. Given the four parameters, the 
test signal is synthesized as 

 n

M

m

mm
n

n rnBff
m

x ++=∑
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1
10240/

)),(2cos(10 πϕ
α

 (27) 

where M, and r are determined in the same way as in (26). The 
results are given in Table 2. 

mϕ

 
 SNR 
α  -15dB 0dB 15dB 30dB 45dB 

-0.5 28.1 78.5 99.2 100 100 
-1 21.5 55.4 84.5 98.9 100 

-1.5 17.4 40.6 63.6 84.7 96.7 
-2 14.8 32.7 49.6 67.7 81.6 

-2.5 13.7 27.6 41.8 55.4 69.0 
(a) Group 2: peak collection rate (%) 
α: amplitude decay rate (dB/frame) 

 
 SNR 
α  -15dB 0dB 15dB 30dB 45dB 

-0.5 -0.2 15.2 31.0 46.3 61.2 
-1 -0.5 13.9 30.0 45.6 59.7 

-1.5 -0.9 12.9 21.7 44.5 56.1 
-2 -1.3 11.8 23.7 43.2 49.3 

-2.5 -1.8 12.5 21.9 26.7 22.0 
(b) Group 2: Resynthesis SNR (dB) 

Table 2: Results for exponential amplitudes. 

The decay rate has a very regular effect on both errors, partially 
because the signal drops below noise level after certain points. 
Although in this test all partials have the same decay rate, for par-
tial-dependent decay rates, which is common in real music signals, 
the behaviour is similar: all partials that falls below the noise level 
become hard to pick up. Unlike matching pursuits, sinusoid model-

ing does not assume any specific coupling between partial ampli-
tudes. 

4.3. Constant pitch with modulated amplitude 
This group includes 550 samples, with 22 fundamental frequencies 
(f1) from 5bins to 40bins (3 octaves on diatonic scale) , 5 modula-
tion depths (d) 0.1, 0.2, …,  0.5, 5 modulator periods (T) 2, 4, …, 
10 frames, SNR is fixed at 15dB. Given the four parameters, the 
test signal is synthesized as 
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where M, and r  are determined in the same way as in (26). The 
results are given in Table 3.   

mϕ

 
d \T all 
all > 99.98% 

(a) Group 3: peak collection rate 
 

 T 
d  2 4 6 8 10 

0.1 28.17 30.34 30.55 30.57 30.60 
0.2 24.64 29.57 30.36 30.56 30.56 
0.3 21.85 28.60 30.15 30.42 30.49 
0.4 19.74 27.54 29.77 30.31 30.44 
0.5 18.09 26.58 29.48 30.17 30.39 

(b) Group 3: Resynthesis SNR (dB) 
d: modulation depth; T: modulator period (frames) 

Table 3: Results for exponential amplitudes. 

With the SNR at 15dB, the partial collection rate stays consistently 
close to 100%. The waveform error increases with modulation 
depth and frequency.  

4.4. Pitch modulation with constant amplitudes 

This group includes 550 samples, with 22 fundamental frequencies 
(f1) from 5bins to 40bins (3 octaves on diatonic scale), 5 modulator 
amplitudes (d) 0.3, 0.6, …, 1.5 semitones, 5 modulator periods (T) 
2, 4, …, 10 frames, SNR ratio is set to 15dB. Given the four pa-
rameters, the test signal is synthesized as 
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where M, and r  are determined in the same way as in (26). 
Again the partial collection rate stays consistently close to 100%. 
We list the resynthesis SNR’s in Table 4. Only amplitude reestima-
tion is used in the post-tracking stage to generate these results. 

mϕ

 
 T 

d  2 4 6 8 10 

0.3 14.5 23.6 27.9 29.0 29.3 
0.6 10.8 17.9 21.5 25.4 27.0 
0.9 7.7 14.7 17.7 21.3 24.0 
1.2 6.0 11.2 13.0 18.5 21.0 
1.5 4.8 8.3 7.8 13.0 18.9 

Group4: Resynthesis SNR (dB) 
d: modulator amplitude (semitones); T: modulator period (frames) 

Table 4: Results for vibrato. 
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If we compare Table 4 with Table 3(b), we see that a frequency 
modulation of as small as 0.3 semitones brings more error than an 
amplitude modulation of 50% the central value.  

5. CONCLUSIONS 

In this article we have proposed a harmonic sinusoid modeling 
system, and discussed the harmonic sinusoid analyzer in brief. The 
harmonic sinusoid model is an update to the standard sinusoid 
model. Unlike sinusoid models that describe mostly low-level 
spectral contents, harmonic sinusoids directly model pitched 
events, which could provide solid starting points for music-related 
tasks. An application of this model in audio editors has been pro-
posed in [12]. 

The current model can be further improved on several aspects. 
1) The partial harmony has its origin in 1-dimension simple har-
monic oscillation in string and air column, and does not describe 
membrane or bar vibration, which lies behind percussion instru-
ments such as the kettledrum and marimba [13]. The analysis of 
these instruments requires partial frequency coupling rules different 
from simple harmony. 2) Even for harmonic instruments, there may 
exist extra partials that do not fall within a harmonic context [14]. 
These can be picked up by introducing individual spectral lines into 
the model, or be included in a more comprehensive harmonic 
model. 3) Harmonic tracking can be further refined by introducing 
finer frequency and amplitude continuity criteria, and the use of 
object models in partial tracking. 4) In [12] we have proposed the 
use of forward-backward searching [15] where atoms can be lo-
cated at multiple frames, so that the tracking is more robust to local 
disturbance. 5) The current model treats very close (or overlapping) 
partials from two or more harmonic sinusoids as a shared partial; 
we also need separation techniques to resolve these shared partials 
into individual harmonic sinusoids. 6) On the synthesizer side, a 
more robust and accurate modeling of time-varying sinusoids is 
necessary to achieve better SNRs. 
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ABSTRACT

Object coding allows audio compression at extremely low bit-rates,
provided that the objects are correctly modelled and identified.
In this study, a codec has been implemented on the basis of a
sparse decomposition of the signal with a dictionary of Instrument-
Specific Harmonic atoms. The decomposition algorithm extracts
“molecules” i.e. linear combinations of such atoms, considered as
note-like objects. Thus, they can be coded efficiently usingnote-
specific strategies. For signals containing only harmonic sounds,
the obtained bitrates are very low, typically around 2 kbs, and
informal listening tests against a standard sinusoidal coder show
promising performances.

1. INTRODUCTION

Audio coding has traditionally evolved in two directions, depend-
ing on the target bitrate. At high rates, state-of-the-art audio coding
is transform-based (e.g. MPEG4-AAC and MPEG4-TwinVQ [1]).
At lower rates, parametric coders perform slightly better.MPEG4-
SSC [2], based on a sinusoids+transients+noise model, outper-
forms MPEG4-AAC at 24kits; but is not designed for lower bi-
trates. MPEG4-HILN [3], based on a harmonics+sinusoids+noise
model, works at lower bitrates but its performance appears to be
very signal dependent and on average it is comparable to MPEG4-
AAC at 16kbits and MPEG4-TwinVQ at 6kbits ; the benefit com-
pared to the transform-based coders is that HILN allows additional
functionality such as speed and pitch modifications at the synthe-
sis.

For more flexibility on the type of possible transform-domain
sound modifications (for instance the modification of timbrepa-
rameters of a single instrument in a polyphonic mixture), itis nec-
essary to go one step further in the understanding of the contents of
the audio file; this is the goal of so-called object-based audio cod-
ing, which fits well in the general context of MPEG4. Instead of
coding transform coefficients or parameters of a low-level model,
object audio coders consider higher-level “sound objects”, consist-
ing ideally of individual notes or chords. In [4], pitched sound ob-
jects consisting of the sum of harmonic sinusoidal partialsare ef-
ficiently estimated using a statistical approach; the resulting coder
appears to perform better than transform and parametric coders on
solo or duo of harmonic instruments at 8kbit/s and 2 kbit/s. How-
ever, this approach requires extensive computational ressources
which makes them unpractical for most applications.

In this paper, we present a novel object-based coding, which
allows the computation of objects in a reasonable computational

time. First, the sound is decomposed with a dictionary of instrument-
dependent atoms, or groups of atoms (“molecules”), with a modi-
fied version of the matching pursuit algorithm. Then, the atom pa-
rameters are encoded with variable precision. The main benefit of
this approach is that very low bit-rates can be achieved at full band-
width, while keeping an acceptable sound quality for most sound
examples. The price to pay, besides computational complexity, is
the necessity to store the full database of atoms at both encoder and
decoder, a requirement that is more and more acceptable given the
increase in storage capacities. This paper is organized as follows
: in section 2, we describe the decomposition process into sound
objects. In section 3, we detail how we encode the extracted sound
objects. Finally, preliminary results are given in section4.

2. DECOMPOSITION ALGORITHM

2.1. Signal Model

2.1.1. Instrument Specific Harmonic Atoms

The signal is modelled as a linear combination ofN harmonic
atomshsn,un,f0n ,c0n ,An,Φn parameterized in terms of scalesn

(atom duration), time localisationun, fundamental frequencyf0n ,
fundamental chirp ratec0n , partial amplitudesAn = {am,n}m=1:M

and partial phasesΦn = {φm,n}m=1:M :

x(t) =
NX

n=1

αn hsn,un,f0n ,c0n ,An,Φn(t). (1)

Each harmonic atom can be written as

hs,u,f0,c0,A,Φ(t) =

MX
m=1

am ejφmgs,u,m.f0,m.c0(t). (2)

The amplitudes of theM partials are constrained to
PM

m=1 a2
m =

1 and the signal corresponding to each partial is given by aGabor
atom normalized to unit energy

gs,u,f,c(t) = w

„
t − u

s

«
e2jπ(ft+ c

2 t2) (3)

with w as a weighting window.
When partial amplitudes are learned from a database (see 2.3.1),

these atoms are called Instrument Specific Harmonic (ISH) atoms.
Each amplitude vectorA is then associated with a classi (in our
case an instrument) and a discrete pitch valuep, and is thus defined
as belonging to a setCip. Generally, several vectors are used for
each class and each pitch value.
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2.1.2. Instrument Specific Harmonic Molecules

The long-term structures, such as music notes, cannot be efficiently
modelled with a single ISH atom. However, building sets of ISH
atoms (namedmolecules) can overcome this issue. The constraints
for atoms to belong to a single molecule are the following:

• the atoms span a range of time locationsu, with exactly one
atom per location,

• all atoms come from the same instrument,

• the log-variation of fundamental frequency between any two
consecutive atoms is bounded by a thresholdD:

|∆ log f0| ≤ D (4)

2.2. Decomposition algorithms

2.2.1. The Matching Pursuit Algorithm

Given a ISH dictionary, the problem becomes that of decompos-
ing the signal as a collection of molecules of ISH atoms from this
dictionary. A popular and efficient method to achieve atomicde-
compositions is the Matching Pursuit algorithm [5]. It can be mod-
ified for molecular decompositions [6, 7]. The Matching Pursuit
algorithm proceeds as follows:

1. The correlations between the signal and all the atomsh of
the dictionary are computed using inner products〈x, h〉 =PT

t=1 x(t)h(t).

2. The atomh that has the largest absolute correlation|〈x, h〉|
with the signal is selected, then subtracted from the signal
with a weighting coefficientα = 〈x, h〉.

3. Correlations are updated on the residual signal, and the al-
gorithm is iterated to step 2 until the stopping condition is
satisfied. This condition can be a target Signal-to-Residual
energy Ratio (SRR), or a fixed number of iterations.

2.2.2. Molecular Algorithm

The algorithm that is here briefly introduced is fully described
in [8]. Its flowchart is presented on Figure 1. Its main feature
is to iteratively extract molecules of ISH atoms using a Matching
Pursuit algorithm that has been modified as follows :

• Best atom path selection: an atom path is selected in instru-
ment-specific time-pitch planes using dynamic programming.
The search zone of this path is delimited around aseed
atom: the atom that is the most correlated with signal. A
threshold on the atom weightsαn is set to avoid the se-
lection of low-amplitude atoms, and as a consequence to
reduce the amount of data to encode.

• Atom parameters tuning on the path: the fundamental
chirp ratec0 is estimated jointly with the refinement of the
fundamental frequencyf0 using a maximization of the in-
ner product|〈x, h〉| with regard tof0 andc0. The partial
phasesφm of each atom of the molecule are computed us-
ing the following formula:

ejφm =
〈x, gs,u,m.f0,m.c0〉
|〈x, gs,u,m.f0,m.c0〉|

. (5)

x inner

products

initialisation (seed atom)
Best atom selection

tuning on the path

Atom parameters

store

atoms

output

signal residual

stop?

yes

no

selection

Best atom path

Atom weights

optimization

Inner products 

and signal update

decomposition

Figure 1: Flow chart of the algorithm for decomposing a signal
into molecules of ISH atoms

• Atom weights optimization: the respective weights of each
atom are re-estimated using an orthogonal projection of the
signal on the subspace corresponding to the atoms of the
molecule.

2.3. Sampling the dictionary

In practical applications, the search step can only be performed on
a finite number of atoms. Thus, one has to sample the dictionary
by making the atom parameterss, u andf0 discrete:

• The scales often spans a small set of powers of 2.

• The time localisationu is typically set to equally spaced
time bins, with a time shift∆u set to a fraction of the atom
scale.

• The fundamental frequencyf0 is sampled logarithmically.
This is a noticeable difference with the Harmonic MP al-
gorithm [6], where fundamental frequencies are sampled
linearly.

The amplitude vectorsA are already a discrete set of vectors and
the phase vectors are estimated using Equation 5.

2.3.1. Learning the model

For the following experiments, the vectors of partial amplitudes
{Ai,p,k}k=1...K are learned for each instrument/pitch classCi,p

on isolated notes from three databases: the RWC Musical Instru-
ment Sound Database [9], IRCAM Studio On Line [10] and the
University of Iowa Musical Instrument Samples [11]. We select
five instruments producing harmonic notes: oboe (Ob), clarinet
(Cl), cello (Co), violin (Vl) and flute (Fl).
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For each isolated note signal, the time frame with maximal en-
ergy is computed and all the subsequent time frames whose energy
lies within a certain threshold of this maximum are selected. This
relative threshold is set to a ratio of 0.05 in the following.The
partial amplitudes are computed on each of these training frames
by

am =
|〈x, gs,u,m×f0,m×c0〉|“PM

m′=1 |〈x, gs,u,m′×f0,m′×c0〉|2
”1/2

(6)

wheref0 andc0 are tuned in order to maximize the SRR on this
frame, using the same optimisation method as in the parameter
tuning step. The vector of amplitudes is then associated to the
pitch classp that is the closest tof0. The resulting number of
vectors per instrument and per pitch class are indicated in Table 1.

Inst. Ntrain Ntrain per pitch
Ob 5912 169
Cl 9048 193
Co 13868 285
Vl 37749 700
Fl 13216 330

Table 1: Total number of training time frames per instrumentand
average number per pitch class.

The size of the dictionary varies linearly as a function of the
number of amplitude vectors. Since the number of vectors is too
large to ensure computationally tractable decompositions, we chose
to reduce the number of vectors by vector quantization:K ampli-
tude vectors are kept for each classCi,p using the k-means algo-
rithm with the Euclidean distance.

3. PARAMETERS CODING

We use a simple scheme where a representation is first estimated
from the signal (see previous section) and then the representation
parameters are quantized and coded a posteriori. At the decoder,
the quantized parameters are decoded and used to synthesizea new
signal.

Two properties of the representation allow efficient codingat
very low bit rate. Firstly, the molecular algorithm builds “objects”,
composed of a succession of atoms. The parameters of the atoms
which belongs to the same molecule are highly correlated andthus
can be efficiently coded. Secondly, due to the greedy nature of the
molecular algorithm some parameters are already quantizedbefore
the coding stage; these parameters are consequently coded without
any loss using entropy coding.

In the following, we list all the parameters of the model and
the method we have chosen to code them.

• The scalesn is constant and thus is not coded.

• The time localisationun is on a grid with a step sizesn/2.
Only the absolute position of the first atom of a molecule
is coded, the positions of the following atoms are then the
consecutive values on the grid. The only additional param-
eter required by the decoder is the number of atoms that
belong to the molecule.

• The fundamental frequencyf0n of every atom is coded in
its crude version (before the atom parameters tuning stage,
see previous section). For the atoms of a molecule except

the first one, we compute differences between consecutive
values of the fundamental frequency, and the resulting val-
ues are entropy coded.

• The weightα of the first atom of a molecule is coded us-
ing a standard uniform quantizer + entropy coding approach
[12]. The weights of the next atoms are coded using differ-
ential coding and uniform quantization.

• The partial amplitudes vectorsAn are already vector quan-
tized. We then simply transmit the index of the correspond-
ing vector in the dictionary. The index is composed by: the
pitch class (crude version of the fundamental frequency, al-
ready coded) + the instrument class (coded one time for
each molecule) + the index in the table of the correspond-
ing pitch/instrument class. The index is entropy coded.

• We do not code the fundamental chirp ratec0n as we found
that this parameter is not perceptually relevant enough given
the necessary bit budget needed to code it.

• The phases are not coded. We use an alternative approach
where the phases are interpolated at the decoder to ensure a
continuity between the partials of the consecutive atoms.

4. EXPERIMENTS

The coder is evaluated on 5 solos (clarinet, cello, flute, oboe, vio-
lin) and 4 duos (clarinet/flute, cello/flute, cello/violin,flute/flute),
extracted from commercial CDs (hence having no relationship with
the single notes database used for learning).

The two steps of the coding process, namely the signal decom-
position and the parameters coding, have been performed with the
following parameters:

• Sampling parameters: for our application, the choice of a
single scales corresponding to a duration of about 50 ms is
sufficient. It is long enough to have a good frequency res-
olution. Concerning the localization period∆u, it is here
set to half the scale, short enough to track the perceptually
relevant amplitude and frequency modulations of the sig-
nal that correspond to expressive features such as vibrato
or tremolo (between 4 and 10 Hz). The fundamental fre-
quency is sampled with a step of1/10 tone.

• Decomposition parameters: The general threshold for the
decomposition has been set to 15 dB or 250 atoms per sec-
ond. For the atom path formation, the difference between
consecutive fundamental frequencies is the corresponding
sampling step of thef0 sampling:1/10 ton.

• Quantization parameters: The weight of the first atom of
a molecule is quantized on 6 bits, and the weights of the
next atoms are quantized on 4 bits. The order of the DPCM
quantizer is set to one. The entropy coder we use for all
parameters is the adaptive arithmetic coder from Witten et
al. [13].

With these parameters, we obtain computation times equiv-
alent to 10x real-time on a 3Ghz computer and Matlab, largely
dominated by the decomposition algorithm.

4.1. Full codec and reduced codec

During the analysis stage, at the end of the decomposition, the
molecular algorithm tends to produce molecules that do not cor-
respond to underlying music notes in the performance. These

DAFX-3

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

DAFX-07 43



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

molecules of low energy are thus not perceptually nor physically
relevant and are only extracted to reduce the overall SNR. Asa
consequence, the decomposition should be stopped before the ap-
parition of such molecules. However, it is hard to find an analyt-
ical solution for a stopping criteria in the decomposition.Instead,
in the framework of this study, we have prefered to manually de-
cide the optimum number of iterations for each audio signal.A
Matlab Graphical User Interface has thus been implemented (Fig.
2) where the user can listen to the synthesized signal in function
of the number of iterations and thus choose the optimum number
of iterations in the molecular algorithm. Such optima have been
found, except for two files (Cello solo and Cello/Violin duo)where
the original stopping criteria of the molecular algorithm gave the
best results. We call the coder based on this manipulation the “re-
duced codec”; while the coder which encodes the complete setof
molecules is the “full codec”.

Figure 2: Matlab Graphical User Interface allowing the user to
visualize the representation and to select the optimal threshold for
the decomposition. Different colors indicate different instruments
labels.

Figure 3:MUSHRA overall mean scores

Full Codec (FC) Reduced Codec (RC)
Clarinet 1.3 1.1
Cello 3.8 3.8 (*)
Flute 1.3 1.1
Oboe 2.6 1.0
Violin 4.4 2.3

Cl. / Fl. 2.4 1.9
Ce. / Fl. 1.6 1.5
Ce. / Vl. 3.9 3.9 (*)
Fl. / Fl. 4.6 2.6

Table 2: Bitrates (in kb per second) for each test file and the two
variants of our codec. for the 2 files marked with an asterisk (*),
the reduced codec was found equal to the full codec.

HR AN NQ FC RC SC
Clarinet 100 69 44 29 21 29
Cello 100 81 32 20 20 6
Flute 100 76 29 31 34 30
Oboe 100 70 40 12 20 18
Violin 100 66 62 33 33 14

Cl. / Fl. 100 74 41 36 42 36
Ce. / Fl. 100 74 25 15 21 8
Ce. / Vl. 100 70 43 13 13 6
Fl. / Fl. 100 68 30 23 21 3

Table 3: Mean of the MUSHRA scores for each version of each
test signal

4.2. Listening tests

To evaluate our codecs, we performed several listening tests based
on the standard MUSHRA method [14]. 15 persons took part in
the listening tests to compare 5 versions of each signal: a hidden
reference (HR), an anchor signal (AN) (3,5 kHz low-pass), the
synthesized signal (NQ) obtained at the end of the molecularalgo-
rithm (without any quantization), the full codec (FC), the reduced
codec (RC), and a simple frame-based sinusoidal coder used as a
reference parametric codec (SC). The average bitrate of thecodecs
is around 3 kb per second for the Full Codec, and around 2 kb per
second for the reduced codec (see Table 2). For the Sinusoidal
Codec (SC), the bitrate was fixed at 2 kb per second. The mean
of the scores obtained for each version of each signal are in Table
3. The overall means are in Fig. 3. These results first show that
the reduced codec has performances that are similar or better than
the full codec except for two files (Clarinet and Fl. / FL. ), a case
where more bits actually decrease the quality. It also showsthat
the reduced codec performs similarly or better than the reference
sinusoidal coder except for one file (Clarinet).

5. CONCLUSION

In this paper we have described preliminary experiments that demon-
strate that object-based coding of simple polyphonic musicis both
technically feasible and computationally tractable, whensome hy-
pothesis on the sources are verified (in our case, this is mainly
an hypothesis of harmonicity). The resulting representations can
achieve coding at bitrates as low as 2 kbs for monophonic sounds,
with a sound quality that is in general comparable to sinusoidal
coding, and in some cases significantly better. Further improve-
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ments will be focused on three directions : first, we can improve
on our decomposition model, for instance on estimating jointly the
combinations of notes that optimally explains the signal for poly-
phonic music. Then, we can improve the quantization and cod-
ing techniques, in order to reduce the loss of sound quality due to
quantization. Finally, we want to investigate criteria forstopping
strategies in the Matching Pursuit decomposition process corre-
sponding to the optimal codec (here called the reduced codec).

Another question, which is still open at the moment, is whether
these techniques would still perform well with an increase of the
number of instruments. It would as well be interesting to evaluate
its performance on sounds that are not included in the training set
but still verify the harmonicity assumption (for instance,voice).
However, other classes of sounds such as percussive sounds or
noisy sounds must be analyzed with different dictionaries,but object-
based coding would still be relevant in this case.
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ABSTRACT

A new approach to adaptive threshold selection for classification of
peaks of audio spectra is presented. We here extend the previous
work on classification of sinusoidal and noise peaks based on a set of
spectral peak descriptors in a twofold way: on one hand we propose a
compact sinusoidal model where all the modulation parameters are
defined with respect to the analysis window. This fact is of great
importance as we recall that the STFT spectra are closely related to
the analysis window properties. On the other hand, we design a
threshold selection algorithm that allows us to control the decision
thresholds in an intuitive manner. The decision thresholds calculated
from the relationships established between the noise power in the
signal and the distributions of sinusoidal peaks assures that all peaks
described as sinusoidal will be correctly classified. We also show
that the threshold selection algorithm can be used for different types
of  analysis windows with only a slight parameter readjustment.

1. INTRODUCTION

The decomposition of audio spectra in sinusoids, transients and noise
is a useful tool for improving the results of parameter estimation
and/or signal manipulation applications. As has been shown for the
case of transient detection [1] and sinusoidal and noise discrimination
[2], the classification of spectral peaks is a beneficial approach to
identify signal components. Such a classification scheme that makes
optimal use of the information provided by spectral peaks can then be
used to achieve a robust segmentation into higher level signal compo-
nents, e.g. partials or unvoiced regions.

The basis for spectral peak classification is an adequate
choice of criteria that would best describe sinusoidal and noise spec-
tral peaks of audio signals. Ideally, those criteria (from now on de-
scriptors) would be able to precisely detect the nature of each peak in
the spectrum and thus provide for a complete separation between the
corresponding peak classes in the descriptor domains. Consequently,
the decision boundary for the classification process would be unam-
biguous and no misclassfication of spectral peaks would occur. This
scenario, however, is purely hypothetical as the peaks corresponding
to sinusoids (partials) in the spectra of real-world signals are usually
subject to additive noise and some type of modulation. In these cases
the descriptor distributions of the different peak classes overlap and
the optimal determination of the decision boundaries will depend on
the specific application.

The peak classification method proposed in [2] makes use
of descriptors that were designed to adequately characterize non-
stationary sinusoidal signals. These descriptors have proven to lead to
superior classification performance than other approaches devoted to

sinudoidal detection/estimation [3,4]. It was shown in [2] that the
peak classes can be characterized by distributions in the descriptor
domains, similar to probability density functions. Once the distribu-
tions have been generated, a simple decision tree can be derived that
allows the classification of spectral peaks into sinusoids, noise and
sidelobes.

The peak classification method has been used successfully
in a number of applications. As examples we mention polyphonic F0
detection [5], adaptive noise floor determination [6] and voiced
unvoiced frequency boundary determination. Another interesting
application would be the pre-selection of the sinusoidal peaks to
reduce the number of candidate peaks considered for partial tracking
in additive analysis. A reliable classification of noise peaks could
reduce the number of incorrect connections and for probabilistic
approaches like [7] it would considerably reduce the computational
cost. The major problem with the classification scheme in [2] is the
control of the classification boundaries (classification thresholds) that
generally need adaptation for the specific problem at hand. A further
problem is that the descriptor boundaries of the different classes will
depend on the analysis window that is used. Up to know there did not
exist a high level control parameter that would allow to adjust the
sensitivity of the algorithm in an intuitive manner. There are two
signal parameters that directly affect the classification boundaries.
The first is the maximum modulation depth and period of the sinu-
soids. The second is the minimum amplitude of the sinusoids above
the noise floor. Both parameters influence the boundaries of the
sinusoidal class and accordingly both can be used to control the
decision boundaries. The problem using the modulation limits as
control parameter is the fact that the modulation is not a single pa-
rameter but a parameter vector of at least 4 dimensions (period and
depth for amplitude and frequency modulation). Therefore, it can not
be used to provide and intuitive control of the classification bounda-
ries. On the other hand the sinusoidal peak amplitude above the noise
floor is a single parameter that for a given modulation limit would
allow us to control the complex decision thresholds rather intuitively.

Accordingly, in this paper we investigate into the relation
between the peak amplitude above the noise floor and the descriptor
boundaries for the class of sinusoidal peaks. The descriptors are
defined and their properties discussed thoroughly in [2] but for sake
of clarity we will give a brief resume of the most prominent charac-
teristics in the section 2. For the sinusoidal model described in sec-
tion 3 we define the space of sinusoidal components by selecting
particular limits of the amplitude and frequency modulation rate and
depths, as well as the modulation laws. In section 4 we present the
descriptor distributions for the different signal classes and in section
5 we establish the mathematical model for the descriptor limits of the
sinusoidal class as a function of the peak amplitude level above the
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noise floor. In the experimental part in section 6 we show that the
threshold model successfully adapts to the limits of the distributions
of sinusoidal peaks for different types of analysis windows.

2. SPECTRAL PEAK DESCRIPTORS - SUMMARY

Being an elementary classification object, we define a spectral peak
as the normalized energy spectral density between two contiguous
minima in the DFT modulus |X(k)| of the signal x(n) multiplied by the
analysis window. The spectral peak descriptors proposed in [2] are
the Normalized Bandwidth Descriptor, the Normalized Duration
Descriptor and the Frequency Coherence Descriptor. The first two are
well suited to distinguish between sinusoidal and noise peaks while
the third can be used to detect the sidelobe structure that is an artifact
of the windowing process.

2.1. Normalized Bandwidth Descriptor (NBD)

Energy distribution along the frequency grid provides useful informa-
tion for identifying the nature of the signal related to a given spectral
peak. Being X(k) the DFT of the windowed signal and considering L
to be the number of samples in the spectral peak, we have defined the
NBD as a function of mean frequency k and root mean square band-
width BWrms:
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The sums are performed over the L bins in the peak under considera-
tion.

2.2. Normalized Duration Descriptor (NDD)

As with mean frequency and bandwidth, the mean time and root
mean square duration give a rough idea of the distribution of the
signal related to a spectral peak along the time grid. The time dura-
tion for continuous signals has been defined in [8] as the standard
deviation of the time with respect to the mean time. For discrete
signals, the following expressions characterize the duration Trms and
mean time n  respectively:

( ) ( )∑ −=
nrms nxnnT 22

,                        (3)

( )∑=
n

nxnn 2

,                                (4)

where |x(n)|2 is the normalized signal’s energy. It was shown in [8]
that, from the duality of the Fourier transform, both mean time and
duration can be expressed in terms of the spectrum. This important
feature permits us to describe individual spectral peaks through the
parameters generally employed in the time domain. Considering M to

be the size of the analysis window, for discrete spectra the NDD can
be obtained by means of:
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 ,                       (6)
where gd(k) is the group delay and A’(k) is the frequency derivative of
the continuous magnitude spectrum. The group delay gd(k) is defined
to be the derivative of the phase spectrum with respect to frequency.
For a single bin of the DFT spectrum it equals the mean time a c-
cording to [8] and specifies the contribution of this frequency to the
center of gravity of the signal related to the spectral peak. This prop-
erty of the group delay has been used in [9] to derive the time reas-
signment operator, which together with the frequency reassignment
aims to improve signal localization in the time-frequency plane.
According to [9] the group delay can be calculated efficiently by:

( ) ( ) ( )
( ) 2real
kX

kXkX
kg t

d

∗

−=
  ,                 (7)

being Xt(k) the DFT of the signal using a time weighted analysis
window. It can be shown that A’(k) is the imaginary counterpart of
the group delay in (7):

( ) ( ) ( )
( ) 2imag
kX

kXkX
kg t

d

∗

−=
 .                  (8)

As for the NBD all the summations are done over all the bins in the
spectral peak.

2.3. Frequency Coherence Descriptor (FCD)

The frequency reassignment operator for constant amplitude chirp
signals points exactly onto the frequency trajectory of the chirp at the
position of the centre of gravity of the windowed signal. The fr e-
quency offset 㥀㲐 between the frequency at the center of a DFT bin
and the reassigned frequency in radians is given by:

( ) ( ) ( )
( ) 2

imag
kX

kXkX
k dt

∗

=∆ω

 ,                     (9)

where Xdt(k) is the DFT of the signal windowed by the time derivative
of the analysis window. The Frequency Coherence Descriptor is
defined as a minimum absolute frequency offset 㥀㲐(k) for all the bins
belonging to that peak:

  
( )kN

k ωπ
∆= min

2
FCD

 ,                    (10)

being N  the number of bins in the DFT. The normalization factor in
(10) ensures that the descriptor is expressed in bins of DFT.
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3. SINUSOIDAL MODEL AND PEAK DISTRIBUTIONS

To be able to classify a sinusoidal component we need to define what
we consider to belong to the sinusoidal class. As is common for
sinusoidal modeling we are going to understand a sinusoidal compo-
nent as a sinusoid with slowly varying amplitude and frequency
parameters [10]. For an investigation into the properties of the spec-
tral peak classes this requirement is not sufficient.  To completely
define the space of sinusoidal components we have to select concrete
limits of the amplitude and frequency modulation rate and depths, and
we have to specify a concrete form of the modulation laws.

For the present application there exists an obvious con-
straint for the modulation which is related to the fact that the spe c-
trum of the sinusoidal component has to contain a dominant main-
lobe. Otherwise the investigation of an individual spectral peak can
not provide us with sufficient information about the underlying sinu-
soid. Accordingly, the modulation rate and depth have to be limited
such that a dominant mainlobe is present in the Fourier spectrum of
each sinusoidal component. Because frequency and time resolution
are related to the window size and form, the modulation limits will
depend on these two variables. A simple solution to ensure the
modulation constraint described above for all window sizes is to
determine the maximum modulation that respects the constraint for a
given window size and to change the worst case modulation rate
proportionally with the window size.

As the next step we need to define the worst case signal
that is the signal that will be used to derive the descriptor limits of
the sinusoidal class. From the wide range of possible modulation laws
we have chosen the sinusoidal amplitude and frequency modulation in
white Gaussian background noise as our worst case reference signal.
The choice is motivated by the fact that a wide range of FM and AM
conditions can be covered. If the window size is small compared to
the vibrato rate for example, it is easy to see that the vibrato signal
approximately creates linear FM and AM. Recent investigations have
shown [11,12] that for real world vibrato signals the AM and FM will
generally not be phase synchronous.  Accordingly, the worst case
signal model exhibits arbitrary phase relations between the amplitude
and frequency modulation. A special feature of real world AM is the
fact that the dominant AM rate may either be the same as the FM
rate, or twice as high. As the letter case is more critical, we chose it
for our worst case signal scenario.

In a view of the aforementioned discussion, the following
mathematical expression for the sinusoidal model is proposed:
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where r(n) is additive Gaussian noise. The parameters are selected as
follows. According to the previous discussion we set FAM = 2FFM. The
frequency vibrato rate FFM has to be selected such that the spectrum
always contains a significant mainlobe, which is ensured by FFM =
1/(4.2M). Accordingly, the window covers less than the fourth part of
the FM vibrato period. The values for the amplitude and frequency
modulation depth have been chosen as AAM  = 0.5 and  AFM  = 10.

These values ensure a dominant peak mainlobe for arbi-
trary phase angles (㬐 and 㬠). The window length M, the sinusoidal
frequency Fo, and the sample-rate R do not have any impact on the
results. The size of the DFT N is chosen in such a way to assure that
the Picket-Fence effect has minimal impact on a peak representation

in the discrete spectrum. For completeness we note the values that we
used for the following investigation into the descriptor distributions
(M = 40ms, N = 4096, Fo = 880Hz, R = 44 kS/s).

It is clear that the present worst case signal does not cover
all modulations that may be encountered in a real world setting, even
if we respect the fact that a dominant mainlobe is required to detect a
modulated sinusoid. The explicit inclusion of time varying sinusoids
into the model will nevertheless lead to a classifier that has signif i-
cant advantages in real world situations with time varying sinusoids.

Because the part of the sinusoidal peak that can be  ob-
served changes with the variance 㰰r

2 of the background noise level
r(n) the peak descriptors will not only change with the modulation,
but also with the SNR. For multicomponent signals the global SNR
does not provide meaningful insight, and therefore, we will use the
Peak Signal-to-Noise Ratio (SNRp) as our noise level parameter. The
SNRp indicates the sinusoidal peak power level in dB over the noise
floor (see Figure 1) and it presents a convenient parameter to control
the limits of the sinusoidal class.

To experimentally create the descriptor distributions we
proceed as follows. For the noise class distributions we calculate the
descriptors for all spectral peaks in the DFT of white Gaussian noise
processes using an analysis window of size M. For the sinusoidal
class we create a grid of phase values covering all combinations 㬐
and 㬠 over the range -㰀 to 㰀 and we set 㰰r

2 = 0. Then we calculate the
descriptor values for the largest peak in each frame. This gives us the
distributions for an infinite SNRp. The sidelobe distributions are
calculated from all but the strongest spectral peak in the spectrum of
the worst case sinusoid. The resulting descriptor distributions are
normalized by the maximum value and shown in Figure 2 for the
Hanning window.

As we can see from Figure 2 the NBD distributions for
modulated noise free sinusoidal peaks and for noise peaks do not
overlap at all, making them a very good candidate for sinusoidal and
noise separation. The sine and noise distributions for the NDD sig-
nificantly overlap, but the sinusoidal distribution covers only a small
range of descriptor values. This fact will be used to refine the
sine/noise separation done by the NBD for signals of finite SNRp as
will be explained in the next section. Finally, the sidelobe structures
can efficiently be distinguished by means of the FCD. Note that in
Figure 2 the maximum of the sidelobe distribution is to be interpreted
as a cumulus of all the sidelobe FCD values distributed out of the
current axis range.
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Figure 1: Illustration for the parameter SNRp (peak signal-
to-noise ratio)

4. CLASSIFICATION STRATEGY

The peak classification algorithm, based on the proposed peak d e-
scriptors, is established through a two-level decision tree as follows:
in the first level the sidelobe and non-sidelobe classification is per-
formed. Then in the second level the peaks previously declared non-
sidelobes are classified as sinusoids and noise. The thresholds for
both levels of classification are obtained by means of analyzing the
distributions shown in Figure 2. For infinite SNRp the classification
could be obtained by simply using FCD and NBD thresholds to per-
fectly seperate all three peak classes. Note that only in this particular
case the NBD attains almost perfect sine/non-sine classification,
therefore the contribution of the NDD is negligible.

For a finite SNRp the sinusoidal distributions experiment a
spread proportional to the noise level in the worst case signal. In
particular, the NBD sinusoidal distribution extends towards right
while the NDD sinusoidal distribution spreads in both directions. The
sinusoidal NBD distribution overlaps partially with the noise NBD
distribution, which means that the NBD can no longer separate per-
fectly the peak classes. In order to reduce this ambiguity, we make
use of the NDD. As mentioned before, the sinusoidal NDD distribu-
tion covers only a small range of descriptor values. Hence, by consid-
ering only the peaks within the limits of the sinusoidal NDD distribu-
tion as sinusoids, we can eliminate some of the noise peaks prev i-
ously classified as sinusoids and thus refine the initial sine/noise
classification. The classification scheme that is used for finite SNRp
is shown in Table 1. It is important to understand that a decreasing
SNRp will modify the limits of the sinusoidal distribution in a similar
manner as an increase in the modulation parameters would do. There-
fore, the minimum SNRp can be used to control the decision thresh-
olds in a rather intuitive manner.

In order to keep track of the limit values of the sinusoidal
distributions we would need to regenerate all the sinusoidal distribu-
tions every time the minimum SNRp that is selected by the user is
changed. As shown below, however, the experimental evaluation of
the distribution limits can be avoided, due to a simple approximate
formula that expresses the relationship between the parameter SNRp
and the margins of the sinusoidal peak distributions in the descriptor
domain. These can be used to adapt the classifier to the selected
SNRp. The thresholds to be adapted are the right margin of the NBD
sinusoidal distribution and both margins of the NDD sinusoidal dis-
tribution. As for the FCD, the threshold may be kept fixed thanks to
the good sidelobe separation from the rest of the peak classes.

sidelobe / non-sidelobe FCD ≥ N/M
sine / noise NBD ≤ 0.13  &  0.13 ≤ NDD ≤ 0.16

Table 1: Peak classification thresholds for infinite SNRp; the
window is Hanning.
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Figure 2: Normalized distributions for three peak classes in the de-
scriptor domain; 㰰r

2 = 0 and the window is Hanning.

5. MODELLING SNRP DEPENDENCY

The relation between the classification threshold and the SNRp is
rather complex and to be able to achieve a model of these relations
the problem requires a number of simplifications. The idea we pr o-
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pose is to first experimentally determine the signal pattern that is
related to the descriptor limits for infinite SNRp. Then we develop a
simplified model of the effect of the additive noise to be able to
achieve a mathematical formulation of the threshold dependency on
the SNRp. The relation does not take into account that the signal
pattern at the descriptor limits may depend on the SNRp.

Window 㬐max 㬠max

Hanning 0.75㰀 0.50㰀
Blackman 0.75㰀 0.55㰀
Hamming 0.70㰀 0.45㰀

Table 2: The phase values of the sinusoidal model corre-
sponding to NBDmax for various analysis windows
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 Figure 3: Envelopes of the signal patterns and noise patterns
corresponding to the NDD thresholds for SNRp = 10dB; the sign
symbols mark the carrier phase relationship between the wave-
form; the analysis window is Hanning.

5.1. NBD threshold (NBDmax)

Let us recall that the NBD is the ratio of the peak bandwidth and peak
width. As described above we first need to determine the sinusoidal
signal that will give rise to the maximum value of the descriptor
NBDmax = BW/L. This can be done by means of a straightforward
search over the two-dimensional grid of phase values 㬐 and 㬠 for a
given analysis window (see Table 2 for some prominent analysis
windows).

The presence of noise will affect both BW and L. It is clear that L will
decrease because the peak local minima get closer to the peak maxi-
mum in terms of magnitude. In a simple approximation we may
assume that BW will keep almost constant because the peak shape
around the maximum is only slightly affected by additive noise.
Accordingly, we may assume that the NBDmax is a function of L
solely, which in turn depends on the SNRp. Practically, for the given
㬐max and 㬠max we calculate the spectrum of the sinusoidal signal only
once and store it in memory. Then, the NBD threshold can easily be
calculated by taking into account only the DFT bins of the mainlobe
that lie above the noise floor given by SNRp. The validity of this
simple approximation will be checked in the next section by compar-
ing its values to those obtained by measuring NBDmax for different
SNRp and different analysis windows.

5.2. NDD threshold (NDDmin and NDDmax)

The sinusoidal model in (11) is herein simplified in order to invest i-
gate into the NDD thresholds. More specifically, the FM can be
disregarded because it does not modify the NDD of a sinusoid.
Hence,

    

( )
( )[ ] ( )nrnFA

nFnx

AMAM +++

×=

βπ

π

2cos1          
2cos)( 0

 .      (12)

The phase 㬠 that gives rise to the minimum and maximum values of
the NDD descriptor for the signal in (12) and after applying the
analysis window can be calculated numerically. The solution shows
that the maximum value is obtained when the minimum of the AM
envelope is located in the signal center. The minimum of the NDD is
obtained for a phase 㬠 that places the AM envelope maximum close
to the window center. Due to the interactions between the analysis
window and the envelope the AM envelope is not exactly aligned
with the window center. To simplify the discussion and due to the
fact that all values of beta in the range –㰀 ≤ 㬠 ≤ 0  result in a varia-
tion of the NDD of less than 1% we will use the signal pattern with
AM envelope maximum in the window center for the following
discussion. Accordingly the (approximate) signal patterns for the
shortest and longest signal in terms of the NDD are:

( ) ( )nwnxxd πβ 5.0;min −== ,

( ) ( )nwnxxd πβ 5.0;max == ,                        (13)

where w(n) is the analysis window. The envelopes of the signal
patterns xdmin and xdmax for the Hanning window are displayed in
Figure 3. For finite SNRp the patterns in (13) are superposed to a
narrow-band Gaussian noise. Due to the small bandwidth of the
signal peak the effective noise bandwidth is rather small. For each
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SNRp there exist two noise signal patterns, rdmin and rdmax, that will
maximally increase respectively decrease the NDDmax and NDDmin
values. We will use a very simple signal model consisting of an
amplitude modulated carrier as basis for our noise model. The noise
model is band limited (reflecting the bandwidth of the spectral peak)
but not necessarily time limited. Due to the small bandwidth the noise
pattern may extend out of the signal window. Because for the simple
model we are aiming at we don't want to take into account the length
of the DFT we will limit the noise signal to the time segment of the
analysis window.

In order to reduce NDDmin rdmin should narrow the width of
the central maximum of xdmin. To achieve this rdmin must be in-phase
with xdmin around the window’s centre and in counter-phase other-
wise. Because a strong amplitude at the window boundaries would
always enlarge the NDD we additionally assume that the noise pa t-
tern rdmin has the analysis window applied.

On the contrary, rdmax must be in counter-phase with xdmax
around the window’s centre and in-phase close to the window edges.
The resulting waveform would have the energy more uniformly
distributed along the analysis window and thus larger NDDmax. rdmax
must not be tapered in order to contribute significantly to the energy
concentration in xdmax around the window edges.
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 Figure 4: The resulting envelopes after the superposition
of the signal patterns to the corresponding noise patterns
for SNRp = 10dB; the analysis window is Hanning.

According to the above discussion we have used the fol-
lowing model for the narrow-band Gaussian noise patterns:

( ) ( )[ ] ( )nwMnmnFAnr od ππ 4cos12cos)( minmin +=  ,

( ) ( )[ ]MnmnFAnr od ππ 2cos12cos)( maxmax −−=  .         (14)

The noise patterns are therefore sine-modulated waveforms. The
modulation frequencies are different because the bandwidth of the
peaks related to NDDmin and NDDmax are different. They have been
selected such that they obey a simple relation to the window size.
Note that the exact frequency values are not critical for the model and
that the frequencies do not depend on the SNRp.

The modulation indices mmin and mmax have to be greater
than one in order to ensure the phase change of 㰀 in the crossover
between contiguous modulation lobes. Both amplitude A and modula-
tion indices are function of the SNRp. A determines the total energy
of each pattern while mmin and mmax control the distribution of that
energy along the analysis window. The amplitude is simply a scaling
factor that ensures the most of the spectral energy of the noise pa t-
terns lays SNRp decibels under the mainlobe of the worst case signal.
The values for the modulation indices are more difficult to estimate
as they change in a non-linear fashion with the SNRp. To obtain a
mathematical model we have used the signal (13) and a wide range of
SNRp settings and have experimentally determined the maximum and
minimum NDD as well as the values for mmin and mmax that would best
match the experimental data. Finally, we derived a second order
polynomial representation of the modulation indices by means of
adapting a second order polynomial to the set of modulation indices.
For various types of analysis windows the resulting functions are:

∑=
i

i
pi SNRammin

 ,      ∑=
i

i
pi SNRbmmax

,

while the corresponding coefficients are given in Table 3. For the
Hanning window, the envelopes of the corresponding noise patterns
for SNRp = 10dB are shown on Figure 3 while the envelopes of the
resulting waveforms after the superposition are shown on Figure 4.
We can observe that the energy distributions of the signal patterns
have indeed been modified coherently to the aforementioned expla-
nation. In practical applications, the signal patterns are calculated
only once while the noise patterns are recalculated each time the
SNRp or type of analysis window is changed such that the new
thresholds can be obtained. We will show in the following section the
behavior of this model with respect to the measured NDDmin and
NDDmax for different SNRp and various analysis window types.

6. EXPERIMENTAL RESULTS

In this section we aim to check the validity of the proposed adaptive
threshold selection algorithm. For different types of analysis windows
and for a wide range of SNRp values, the decision thresholds NBDmax,
NDDmin and NDDmax were generated from the corresponding models
(Section 5) and compared to their respective measured values. The
measured values are obtained from the Gaussian noise added to the
sinusoidal model in the proportion established by the SNRp. The
approximation errors are calculated as a difference between the
measured and modeled values and are shown on Figure 5. Generally,
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the approximation errors are larger for smaller SNRp. In case of the
NBDmax and the NDDmin thresholds the experimentally obtained errors
show a systematic trend.  This could be used to refine the model. For
the NDD thresholds the error is generally overestimating the change
of the boundaries that goes with the SNRp. For the NBD threshold the
threshold change is underestimated. The overall approximation error
is obtained by evaluating the correlation coefficient R between the
measured and approximated curve for each threshold and various
analysis windows. From Table 4 we can see that in almost all situa-
tions the correlation coefficient is above 0.95 which can be consi d-
ered a very good approximation. Also, note that the largest approxi-
mation errors are committed in the NBDmax thresholding domain for
the Hanning window. On the contrary, the Blackman window thresh-
olding adapts well to the corresponding curve of measured threshold
values.

Window ai (rdmin) bi (rdmax)

Hanning
0.0174
-0.5770
10.6280

-0.0006
0.1211
0.8279

Blackman
0.0081
-0.3903
9.0630

-0.0022
0.1472
0.7083

Hamming
0.0003
-0.2816
2.4716

-0.0037
0.1615
0.7230

Table 3: The coefficient values for modeling the mmin and
mmax dependency on SNRp.

Window Hanning Blackman Hamming
R(NDDmin) 0.9567 0.9685 0.9604
R(NDDmax) 0.9799 0.9792 0.9840
R(NBDmax) 0.9139 0.9885 0.9585

Table 4: The correlation coefficient calculated between the measured
and approximation threshold curves for various analysis windows

7. CONCLUSIONS

In this paper we have presented a new adaptive threshold selection
algorithm that can be used for classification of spectral peaks. By
means of the set of peak descriptors from previous work and a herein
proposed compact sinusoidal model related to the analysis window,
the limit values for the distributions of sinusoidal peaks in the de-
scriptor domain can be explicitly obtained. Next, the variations of
those limit values, due to the presence of noise in the sinusoidal
model, are characterized in a deterministic fashion through only one
parameter we refer to as the peak signal/noise ratio. By means of this
user-defined parameter the descriptor limits of the classification
algorithm can be controlled intuitively using as control parameter the
peak signal to noise ratio.
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Figure 5: Approximation errors calculated as a difference
between the measured and modeled values for each SNRp

and various analysis windows. The values in the legend cor-
respond to infinite SNRp.
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The approximation accuracy given through the correlation coefficient
is shown to be large for different types of analysis window. At the
present state the new threshold selection method provides a control
precision that can be considered sufficient for interactive control of a
classification algorithm. Further investigation will be concerned with
the improving the threshold models in order to reduce the approxima-
tion errors such that the precision of the control can be improved.

8. ACKNOWLEDGEMENTS

The first author of the paper would like to gratefully acknowledge the
financial support of the Universidad Publica de Navarra, Spain.

9. REFERENCES

[1] A. Röbel, “A new approach to transient processing in the phase
vocoder” in Proc. of the 6th Int. Conf. on Digital Audio Effects
(DAFx03), 2003, pp. 344–349.

[2] M.Zivanovic, A. Röbel, X. Rodet, “A new approach to spectral
peak classification”, in Proc. of the 12 th EUSIPCO, Vienna,
Austria, September 2004, pp.1277-1280

[3] X. Rodet, “Musical sound signal analysis/synthesis: Sinusoidal
+ residual and elementary waveform models,” in Proc IEEE
Time-Frequency and Time-Scale Workshop 97, (TFTS’97),
1997

[4] D. J. Thompson, “Spectrum estimation and harmonic analysis”,
IEEE Proc. Vol.70, No.9, September 1982

[5] C. Yeh, A. Röbel, X. Rodet, 'Multiple Fundamental Frequency
Estimation Of Polyphonic Music Signals”, Int. Conf. on Acous-
tics, Speech, and Signal Processing (ICASSP 2005), pp. 225-
228, Vol III, 2005.

[6] C. Yeh, A. Röbel, “Adaptive noise level estimation”, Proc. of
the 9th Int. Conf. on Digital Audio Effects (DAFx'06), Montreal,
pp. 145-148, 2006.

[7] P. Depalle, G. Garcia, X. Rodet, “Tracking of partials for addi-
tive sound synthesis using hidden Markov models,” in Proc. Int.
Conf. on Acoustics, Speech and Signal Processing, vol. I, pp.
242–245, 1993

[8] L.Cohen, “Time-frequency analysis”, Prentice Hall, 1995
[9] F. Auger and P. Flandrin, “Improving the readability of time-

frequency and time-scale representations by the reassignment
method,” IEEE Trans. on Signal Processing, vol. 43, no. 5, pp.
1068–1089, 1995.

[10] A. Röbel, “Adaptive additive modeling with continuous pa-
rameter trajectories”, IEEE Transactions on Speech and Audio
Processing, Vol. 14, No. 4, pp.1440-1453, 2006.

[11] V. Verfaille, C. Guastavino, P. Depalle, “Perceptual evaluation
of vibrato models”, Proc. of the Conf. on Interdisciplinary Mu-
sicology  (CIMOS), 2006

[12] I. Arroabarren, X. Rodet, A. Carlosena, “On the measurement
of the instantaneous frequency and amplitude of partials in vocal
vibrato”, ”, IEEE Transactions on Speech and Audio Processing,
Vol. 14, NO. 4, pp.1413-1421, July 2006

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

54 DAFX-07



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

REAL-TIME AUDIO PROCESSING VIA SEGMENTED WAVELET TRANSFORM

Pavel Rajmic and Jan Vlach

Dept. of Telecommunications
FEEC, Brno University of Technology

Czech Republic
rajmic@feec.vutbr.cz

ABSTRACT
In audio applications it is often necessary to process the signal in
“real time”. The method of segmented wavelet transform (SegWT)
makes it possible to compute the discrete-time wavelet transform
of a signal segment-by-segment, not using the classical “window-
ing”. This means that the method could be utilized for wavelet-
type processing of an audio signal in real time, or alternatively in
case we just need to process a long signal, but there is insufficient
computational memory capacity for it (e.g. in the DSPs). In the
paper, the principle of the segmented forward wavelet transform is
explained and the algorithm is described in detail.

1. INTRODUCTION

There are a number of theoretical papers and practical applications
of the wavelet transform. However, all of them approach the prob-
lem from such a point of view as if we knew the whole of the
signal (no matter how long it is). Due to this assumption, we can-
not perform the wavelet-type signal processing in real time in this
sense. Of course there are real-time applications of the wavelet
type, but, all of them utilize the principle of overlapping segments
of the “windowed” signal (e.g. [1]). In the reconstruction part of
their algorithms they certainly introduce errors into the processing,
because the segments are assembled using weighted averages.

Processing a signal in “real time” actually means processing
it with minimum delay. A signal, which is not known in advance,
usually comes to the input of a system piecewise, by mutually in-
dependent segments that have to be processed.

The new method, the so-called segmented wavelet transform
(SegWT – we introduce abbreviation SegWT (Segmented Wavelet
Transform), because SWT is already reserved for stationary wave-
let transform), enables this type of processing. It has a great poten-
tial application also in cases when it is necessary to process a long
signal off-line and no sufficient memory capacity is available. It is
then possible to use this method for equivalent segmentwise pro-
cessing of the signal and thus save the storage space. In this sense
SegWT corresponds to the overlap-add algorithm in Fourier-type
linear filtering.

Another possible application of the SegWT algorithm is the
instantaneous visualization of signal using an imaging technique
referred to as “scalogram”, see Fig. 1. The decomposition depth is
d = 5 in this Figure. The bigger is the absolute value of the single
coefficient, the whiter is the respective cell in the graph. In fact,
plotting scalogram is a technique very similar to plotting a spectro-
gram in real time. In wavelet transformation (represented by FIR
filters) there is an advantage in that the signal need not be weighted
with windows, which results in a distortion of the frequency infor-
mation, as is the case with the spectrogram. Moreover, there is

Figure 1: Signal (top) and its scalogram (bottom). Scalogram is
a type of graph representing the frequency contents of a signal in
time. It is constructed from the wavelet coefficients.

one more good thing about it: a scalogram created by means of the
SegWT is quite independent of the chosen length of segment.

In the available literature, this way of performing the wavelet
transform is practically neglected, and this was the reason why our
effort was devoted to developing modified algorithm. In fact, a
modified method of forward wavelet transform is presented in this
paper.

2. THE CLASSICAL DTWT ALGORITHM

Algorithm 2.1: (decomposition pyramidal algorithm DTWT)
Let x be a discrete input signal of length s, the two wavelet decom-
position filters of length m are defined, highpass g and lowpass h,
d is a positive interger determining the decomposition depth. Also,
the type of boundary treatment [2, ch. 8] must be known.

1. We denote the input signal x as a(0) and set j = 0.

2. One decomposition step:
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(a) Extending the input vector. We extend a(j) from both
the left and the right side by (m − 1) samples, ac-
cording to the type of boundary treatment.

(b) Filtering. We filter the extended signal with filter g,
which can be expressed by their convolution.

(c) Cropping. We take from the result just its central part,
so that the remaining “tails” on both the left and the
right sides have the same length m− 1 samples.

(d) Downsampling (decimation). We downsample the re-
sultant vector.

We denote the resulting vector d(j+1) and store it.We repeat
items (b)–(d), now with filter h, denoting and storing the
result as a(j+1).

3. We increase j by one. If it now holds j < d, we return to
item 2., in the other case the algorithm ends.

Remark. After algorithm 2.1 has been finished, we hold the wa-
velet coefficients stored in d+1 vectors a(d),d(d),d(d−1), . . . ,d(1).

3. THE METHOD OF SEGMENTED WAVELET
TRANSFORM

3.1. Motivation and Aim of the Method

Regularly used discrete-time wavelet transform (see Section 2) is
suitable for processing signals “off-line”, i.e. known before pro-
cessing, even if very long. The task for the segmented wavelet
transform, SegWT, is naturally to allow signal processing by its
segments, so that in this manner we get the same result (same wa-
velet coefficients) as in the ordinary DTWT case. In this problem,
the following parameters play a crucial role.

m wavelet filter length, m > 0,
d transform depth, d > 0,
s length of segment, s > 0.

The derivation of the SegWT algorithm requires a very de-
tailed knowledge of the DTWT algorithm. Thanks to this it is pos-
sible to deduce fairly sophisticated rules how to handle the signal
segments. We have found that in dependence on m, d, s, it is nec-
essary to extend every segment from the left by an exact number
of samples from the preceding segment and from the right by an-
other number of samples from the subsequent segment. However,
every segment has to be extended by a different length from the
left and the right, and these lengths can also differ from segment
to segment! Also the first and the last segments have to be handled
in a particular way.

3.2. Important Theorems Derived from the DTWT Algorithm

Before we introduce detailed description of the SegWT algorithm,
several theorems must be presented. More of them and their proofs
can be found in [3, ch. 8]. We assume that the input signal x is
divided into S ≥ 1 segments of equal length s. Single segments
will be denoted 1x,2x, . . . ,Sx. The last one can be of a length
lower than s. See Fig. 2.

By the formulation that two sets of coefficients from the k-th
decomposition level follow-up on each other we mean a situation
when two consecutive segments are properly extended see Figs. 2,
3, so that applying the DTWT, with step 2(a) omitted, of depth

Figure 2: Scheme of signal segmentation. The input signal x (a) is
divided into segments of equal length, the last one can be shorter
than this (b); the n-th segment of x is denoted by nx.

k separately to both the segments and joining the resultant coeffi-
cients together lead to the same set of coefficients as computing it
via the DTWT applied to the two segments joined first.
Theorem 3.1: In case that the consecutive segments have

r(k) = (2k − 1)(m− 1) (1)

common input signal samples, the coefficients from the k-th de-
composition level follow-up on each other.

Thus, for a decomposition depth equal to d it is necessary to
have r(d) = (2d − 1)(m − 1) common samples in the two con-
secutive extended segments.

The aim of the following part is to find the proper extension
of every two consecutive signal segments. We will show that the
length of such extension must comply with the strict rules.

The extension of a pair of consecutive segments, which is of
total length r(d), can be divided into the right extension of the
first segment (of length R) and the left extension of the following
segment (of length L), while r(d) = R+L. However, the lengths
L ≥ 0, R ≥ 0 cannot be chosen arbitrarily. The lengths L, R are
not uniquely determined in general. The formula for the choice of
extension Lmax, which is unique and the most appropriate in case
of real-time signal processing, is given in Theorem 3.2.
Theorem 3.2: Let a segment be given whose length including its
left extension is l. The maximal possible left extension of the next
segment, Lmax, can be computed by the formula

Lmax = l − 2d ceil

(
l − r(d)

2d

)
. (2)

The minimal possible right extension of the given segment is then

Rmin = r(d)− Lmax. (3)

For the purposes of the following text, it will be convenient
to assign the number of the respective segment to the variables
Lmax, Rmin, l, i.e. the left extension of the n-th segment will be
of length Lmax(n), the right extension will be of length Rmin(n)
and the length of the original n-th segment with the left extension
joined will be denoted l(n). Using this notation we can rewrite
equation (3) as

Rmin(n) = r(d)− Lmax(n + 1). (4)

Let us now comment on the special situation of the first or the
last segment. These naturally represent the “boundaries” of the
signal. The discrete-time wavelet transform uses several modes
how to treat the boundaries and we must preserve these modes
also in our modified algorithm. Therefore we must treat the first
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Figure 3: Illustration of extending of the segments.

and the last segment separately and a bit differently from the other
segments. For details and proofs we again refer to [3]. The ap-
propriate procedure is to extend the first segment from the left by
r(d) zero samples, i.e. Lmax(1) = r(d), and to process it using
Algorithm 3.7. Similarly the last segment has to be extended by
r(d) zeros from the right and processed using Algorithm 3.8.
Theorem 3.3: The length of the right extension of the n-th seg-
ment, n = 1, 2, . . . , S − 2, must comply with

Rmin(n) = 2d ceil
(ns

2d

)
− ns, (5)

and the length of the left extension of the (n + 1)-th segment is
Lmax(n + 1) = r(d)−Rmin(n).

Remark. From (5) it is clear that Rmin is periodic with respect
to s with period 2d, i.e. Rmin(n + 2d) = Rmin(n). This relation
and also some more can be seen in Table 1.
Theorem 3.4: (on the total length of segment)
After the extension the n-th segment (of original length s) will be
of total length

∑
(n) = r(d) + 2d

[
ceil

(ns

2d

)
− ceil

(
(n− 1)s

2d

)]
. (6)

This expression can acquire only one of two values, either

r(d) + 2d ceil
( s

2d

)
or r(d) + 2d ceil

( s

2d

)
− 2d. (7)

3.3. The Algorithm of Segmented Wavelet Transform

The algorithm SegWT works such that it reads (receives) single
segments of the input signal, then it extends – overlaps them in a
proper way, then it computes the wavelet coefficients in a modified
way and, in the end, it easily joins the coefficients.
Algorithm 3.5: Let the wavelet filters g,h of length m, the de-
composition depth d, and the boundary treatment mode be given.
The segments of length s > 0 of the input signal x are denoted
1x,2x,3x, . . .. The last segment can be shorter than s.

1. Set N = 1.
2. Read the first segment, 1x, and label it “current”. Extend it

from the left by r(d) zero samples.
3. If the first segment is at the same time the last one

(a) It is the case of regular wavelet transform. Com-
pute the DTWT of this single segment using Algo-
rithm 2.1.

(b) The Algorithm ends.

4. Read (N + 1)-th segment and label it “next”.
5. If this segment is the last one

(a) Join the current and next segment together and label
it “current”. (The current segment becomes the last
one now.)

(b) Extend the current vector from the right by r(d) zero
samples.

(c) Compute the DTWT of depth d from the extended
current segment using Algorithm 3.8.

Otherwise

(d) Compute Lmax for the next segment and Rmin for the
current segment (see Theorem 3.2).

(e) Extend the current segment from the right by Rmin

samples taken from the next segment. Extend the
next segment from the left by Lmax samples taken
from the current segment.

(f) If the current segment is the first one, compute the
DTWT of depth d from the extended current segment
using Algorithm 3.7. Otherwise compute the DTWT
of depth d from the extended current segment using
Algorithm 3.6.

6. Modify the vectors containing the wavelet coefficients by
trimming off a certain number of redundant coefficients
from the left side, specifically:at the k-th level, k = 1, 2, . . .
. . . , d− 1, trim off r(d− k) coefficients from the left.

7. If the current segment is the last one, then in the same man-
ner as in the last item trim the redundant coefficients, this
time from the right.

8. Store the result as Na(d),Nd(d),Nd(d−1), . . . ,Nd(1).
9. If the current segment is not the last one

(a) Label the next segment “current”.
(b) Increase N by 1 and go to item 4.

Remark. If the input signal has been divided into S > 1 seg-
ments, then (S − 1)(d + 1) vectors of wavelet coefficients

{ ia(d), id(d), id(d−1), . . . ,id(1)}S−1
i=1 .

are the output of the Algorithm. If we join these vectors together in
a simple way, we obtain a set of d + 1 vectors, which are identical
with the wavelet coefficients of signal x.

Next we present the “subalgorithms” of the SegWT method.
The second and third algorithms serve to process the first and the
last segment.
Algorithm 3.6: This algorithm is identical with Algorithm 2.1
with the exception that we omit step 2(a), i.e. we do not extend the
vector.
Algorithm 3.7: This algorithm is identical with Algorithm 2.1
with the exception that we replace step 2(a) by the step:

Modify the coefficients of vector a(j) on positions
r(d − j) −m + 2, . . . , r(d − j), as it corresponds
to the given boundary treatment mode.

Algorithm 3.8: This algorithm is identical with Algorithm 2.1
with the exception that we replace step 2(a) by the step:

Modify the coefficients of vector a(j) on positions
r(d − j) −m + 2, . . . , r(d − j), as it corresponds
to the given boundary treatment mode, however this
time taken from the right side of a(j).
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s n 1 2 3 4 5 6 7 8 9 10 11 12 . . .

512 Lmax(n) 105 105 105 105 105 105 105 105 105 105 105 105 . . .

Rmin(n) 0 0 0 0 0 0 0 0 0 0 0 0 . . .∑
(n) 617 617 617 617 617 617 617 617 617 617 617 617 . . .

513 Lmax(n) 105 98 99 100 101 102 103 104 105 98 99 100 . . .

Rmin(n) 7 6 5 4 3 2 1 0 7 6 5 4 . . .∑
(n) 625 617 617 617 617 617 617 617 625 617 617 617 . . .

514 Lmax(n) 105 99 101 103 105 99 101 103 105 99 101 103 . . .

Rmin(n) 6 4 2 0 6 4 2 0 6 4 2 0 . . .∑
(n) 625 617 617 617 625 617 617 617 625 617 617 617 . . .

515 Lmax(n) 105 100 103 98 101 104 99 102 105 100 103 98 . . .

Rmin(n) 5 2 7 4 1 6 3 0 5 2 7 4 . . .∑
(n) 625 617 625 617 617 625 617 617 625 617 625 617 . . .

516 Lmax(n) 105 101 105 101 105 101 105 101 105 101 105 101 . . .

Rmin(n) 4 0 4 0 4 0 4 0 4 0 4 0 . . .∑
(n) 625 617 625 617 625 617 625 617 625 617 625 617 . . .

517 Lmax(n) 105 102 99 104 101 98 103 100 105 102 99 104 . . .

Rmin(n) 3 6 1 4 7 2 5 0 3 6 1 4 . . .∑
(n) 625 625 617 625 625 617 625 617 625 625 617 625 . . .

518 Lmax(n) 105 103 101 99 105 103 101 99 105 103 101 99 . . .

Rmin(n) 2 4 6 0 2 4 6 0 2 4 6 0 . . .∑
(n) 625 625 625 617 625 625 625 617 625 625 625 617 . . .

519 Lmax(n) 105 104 103 102 101 100 99 98 105 104 103 102 . . .

Rmin(n) 1 2 3 4 5 6 7 0 1 2 3 4 . . .∑
(n) 625 625 625 625 625 625 625 617 625 625 625 625 . . .

520 Lmax(n) 105 105 105 105 105 105 105 105 105 105 105 105 . . .

Rmin(n) 0 0 0 0 0 0 0 0 0 0 0 0 . . .∑
(n) 625 625 625 625 625 625 625 625 625 625 625 625 . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .

Table 1: Example – lengths of extensions for different lengths of
segments s. The depth of decomposition is d = 3 and the filter
length is m = 16.

3.4. Corollaries and Limitations of the SegWT Algorithm

In [3] there can be found several practical corollaries for SegWT,
e.g. that the segments cannot be shorter then 2d.

From the description in the above sections it should be clear
that the time lag of Algorithm 3.5 is one segment (i.e. s samples)
plus the time needed for the computation of the coefficient from
the current segment. In a special case when s is divisible by 2d it
holds even Rmin(n) = 0 for every n ∈ N (see Theorem 3.3), i.e.
the lag is determined only by the computation time!

3.5. A Few Examples

• For d = 4 and m = 12, the minimum segment length is
just 16 samples. When we set s = 256, Rmin will always
be zero and Lmax = r(4) = 165. The length of every
extended segment will be 256 + 165 = 421 samples.

• For d = 5 and m = 8, the minimum segment length is 32
samples. When we set s = 256, Rmin will always be zero
and Lmax = r(5) = 217. The length of every extended
segment will be 256 + 217 = 473 samples.

• For d = 5 and m = 8 we set s = 300, which is not di-
visible by 25. Thus Rmin and Lmax will alternate such that
0 ≤ Rmin ≤ 31 and 186 ≤ Lmax ≤ 217. The length of
every extended segment will be 300+r(5) = 473 samples.

3.6. Implementation

The SegWT algorithm had been implemented in C++ and its func-
tionality had been verified. We implemented a simple “band-stop
filter” as a VST plug-in module utilizing the SegWT Algorithm
and a reduced version of the inverse transform. The testing of the
efficiency showed that the most demanding part of the algorithm
is the computation of the convolution which must be done in each
stage of the transform.

4. CONCLUSION

The paper contains a description of the algorithm which allows
us to perform the wavelet transform in real time. The algorithm
works on the basis of calculating the optimal extension (overlap)
of signal segments, and subsequent performance of the modified
transform.

In the future it would be convenient to improve the computa-
tional effectivity by reducing redundant computations at the bor-
ders of the segments, as it follows from the Algorithm 3.5. Also,
it should not be very difficult to generalize the SegWT method to
include biorthogonal wavelets and more general types of decima-
tion [4, 5], because the parameters of SegWT can be chosen in a
fairly general way.

Another important part of the future work is the derivation of
an efficient counterpart to the introduced method – the segmented
inverse transform. In fact, we made first experience, in which it
turned out, above all, that the time lag in the consecutive forward-
inverse processing will be, unfortunately, always nonzero.
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ABSTRACT

An impulse response of an enclosed reverberant space is composed
of three basic components: the direct sound, early reflections and
late reverberation. While the direct sound is a single event that can
be easily identified, the division between the early reflections and
late reverberation is less obvious as there is a gradual transition
between the two.

This paper explores two statistical measures that can aid in
determining a point in time where the early reflections have tran-
sitioned into late reverberation. These metrics exploit the simi-
larities between late reverberation and Gaussian noise that are not
commonly found in early reflections. Unlike other measures, these
need no prior knowledge about the rooms such as geometry or vol-
ume.

1. INTRODUCTION

A room can be assumed to be a linear time-invariant system where
the impulse response (IR) of the system can be found by record-
ing a broadband signal within the room. Often the IR is convolved
with non-reverberant audio to add artificial reverberation by simu-
lating recording the audio in the room.

An IR of a space consists of direct sound, early reflections, and
late reverberation. The early reflections are a set of discrete reflec-
tions whose density increases until individual reflections can no
longer be discriminated and/or perceived. While the direct sound
is a single event that can be easily identified, the early reflections
and late reverberation of an IR are more difficult to label. For this
paper, the transition time of an IR will be the earliest point in time
when the density of the reflections has reached a perceptual thresh-
old in which individual reflections can no longer be distinguished.

Since the seminal publications by Schroeder [1] and Moorer
[2], digital artificial reverberators have contained a component in-
tended to create discrete echoes in order to simulate early reflec-
tions and a component whose intent is to create a set of reflections
as dense as possible. Later developments with feedback delay net-
works acknowledge that prior to high frequency attenuation, the
reverberator should produce white noise [3] and Moorer in [2] first
discussed using frequency-shaped Gaussian noise to simulate the
energy in late reverberation. The transition from early reflections
to late reverberation can then be modeled as a deterministic system
that transitions into a stochastic one [4]. The statistics regarding
early reflections are of greater concern here because the statistics
of late reverberation has been covered in depth, particularly in [3].
Abel and Huang [5] have also recently explored similar statistics
as are examined here, looking at measures of reverberation quality,
particularly for judging artificial reverberation.

The late reverberation of an IR tends towards a normal dis-
tribution, unlike the energy from early reflections. A progression
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Figure 1: Basic design of a hybrid reverberator.

towards a more normal distribution occurs as time increases and
the acoustic energy within the space becomes more mixed [4]. A
measurement of distribution can then be used to determine whether
a point in time is more or less deterministic. That is, whether it is
within the early reflections or late reverberation.

The ability to determine the mixing time of a space is espe-
cially relevant to hybrid reverberation. Hybrid reverberation uses
both convolution and recursive filterbank techniques, as can be
seen in Fig. 1. An IR is truncated to ideally contain the early
reflections. The truncated IR is convolved with the dry audio and
then the late reverberation is simulated with a filterbank. A precise
measure of when a room is first mixed is important so that all per-
ceptually relevant information is preserved in the early reflections
of the truncated IR while the size of the truncated IR is as small as
possible to reduce the length of the convolution.

1.1. Definitions of Early Reflections

Early reflections are loosely defined as a set of echoes that have
not reached a perceptual threshold, and that can be described by
the mathematical relationships that define the dispersion of echoes
in a space such as

dNr

dt
= 4π

c3t2

V
(1)

where Nr is the number of reflections, t is the time from the direct
sound, c is the speed of sound, and V is the volume of the room
[6].

In [4], Blesser describes the mixing time as "how long it takes
for there to be no memory of the initial state of the system. There
is statistically equal energy in all regions of the space after the
mixing time." He estimates this to be approximately three times
the mean free path and directly a property of the geometry of the
room. Here the mixing time is accepted to be after the transition
from early reflections to late reverberation is complete. The upper
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Figure 2: Progression in time of histograms and fit normal func-
tions of 30 ms windows of an IR. Note the differing vertical and
horizontal scales. The absolute values of the vertical scale are not
important, but rather the relative values between the histogram
bars. The range of the horizontal scale decreases in subsequent
windows because the signal is decreasing in amplitude. It is im-
portant to note the distribution of the samples, not the absolute
values.

limit of mixing time has been discussed in [7] and further in [3] to
be

tmixing =
√

V (2)
where V is the volume in m3.

Standardized measurements of room acoustics divide the IR
of a room into an early and late portion in order to calculate early
lateral energy, clarity and definition. When measuring for musi-
cal material, the early portion is defined as the first 80 ms [8]. In
most literature, it is accepted that the early reflections are con-
tained within the first 80 ms [9].

The transition from early reflections from late reverberation is
either defined by a point in time regardless of the room properties,
usually 80 ms, or is calculated based on physical properties of a
room, most commonly volume. Using a single point in time re-
gardless of the space is inaccurate, but access to the dimensions of
a space may be impractical or impossible. A blind method that can
determine the transition point between early reflections and late re-
verberation without knowledge of the measurements of the space
is needed. Two possible methods are described here.

2. MEASURES OF DISPERSION

The transition from early reflections to late reverberation can be
observed in several domains. This paper only addresses the transi-
tion with regard to a Gaussian distribution in the time domain, but
other factors can be considered. As discussed in [10] and [11], the
frequency distribution tends towards a Rayleigh distribution. As
only monophonic impulse responses are studied here, the spatial
properties of the room are not being considered.

2.1. Standard Deviation

The standard deviation of a group of samples is a measure of the
spread of the samples and is defined as

σ =
p

E(x2)− (E(x))2 (3)
where E(x) is the expected value of x.

In a normal distribution, approximately one third of the sam-
ples lie outside one standard deviation of the mean and approxi-
mately two thirds of the samples are within one standard devia-
tion of the mean. Early reflections, however, have more samples

within one standard deviation and fewer outside (see Fig. 2). The
progression from early reflections to late reverberation can then be
observed through the ratio of samples outside one standard devia-
tion versus inside.

As an IR progresses in time the ratio of samples gradually ap-
proaches approximately one third. Fig. 3 shows the ratio outside
one standard deviation versus inside for a 30 ms window. The
ratio is divided by efrc(1/

√
2), the expected value of samples

outside one standard deviation, to normalize for Gaussian distri-
bution. This is similar to what is done in [5].

Examples for three different spaces can be seen in Fig. 3. Fig.
3(a) is a measurement from a smaller space, a 350 seat concert hall,
than those in Fig. 3(b) and 3(c) which are both large, reverberant
churches. The measuring of the IRs from the churches is described
in [12]; the concert hall was measured by the authors using the
same technique and equipment.

The normalized ratio outside versus inside one standard devi-
ation approaches one as time progesses, but it makes for a poor
measure. It is difficult to identify the point in time when it can first
be assumed that the room is mixed. While the curve approaches a
threshold, that threshold is not constant amongst IRs from differ-
ent spaces and is difficult to extrapolate from the curve. However,
it is clear that the IR does gradually transition from less diffuse
early reflections to more diffuse late reverberation. Using the ratio
of samples outside to inside one standard deviation does not allow
an easy selection of a transition point.

3. HIGHER ORDER STATISTICS

Moments describe deterministic signals as they “are numerical mea-
sures of the degree of similarity between a signal and a product of
delayed or advanced versions of itself" [13]. An nth order cumu-
lant is a function of its joint moment of orders up to n [14]. Higher
order cumulants contain amplitude and phase information unlike
second order statistics (correlation) which are phase-blind. The
second order cumulant is the variance, the third order is skewness
and fourth order is kurtosis [13].

While moments describe deterministic signals, cumulants are
measures for stochastic signals. If a set of random variables are
jointly Gaussian, then all information about their distribution is in
the moments of an order less than or equal to two. It can then
be interpreted that cumulants of order greater than two measure
the non-Gaussian nature of a time series [13]. Further, if a non-
Gaussian signal is mixed with a Gaussian signal, higher-order cu-
mulants will ignore the Gaussian noise portion of the signal [13].

3.1. Kurtosis

The fourth order zero-lag cumulant of a zero-mean process is often
referred to as kurtosis and can either be normalized or unnormal-
ized [15]. Here kurtosis will refer to the normalized definition.

γ4 =
E(x− µ)4

σ4
− 3 (4)

where E() is the expectation operator, µ is the mean, and σ2 is the
standard deviation.

The same sliding window of 30 ms is used for the kurtosis
analysis as for the standard deviation measurements. The values
have been normalized to one within each IR merely for the sake of
the figure. The values nearing zero, denoting a mixed room, and
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(a) Sir Jack Lyons Concert Hall, York, UK, a 350 seat concert hall. Reverberation time T30 = 4.9 s
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(b) York Minster in York, UK, a 330,000 m3 church. Reverberation time T30 = 8.19 s.
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(c) St. Andrew’s in Lyddington, UK, a 2600 m3 church. Reverberation time T30 = 1.5 s.

Figure 3: The solid gray lines are the IRs, the dashed lines are the normalized ratios of samples outside one standard deviation and the solid
black lines are the normalized kurtosis values.

the rate of change of the values are more important than the abso-
lute values, especially those of the peaks in the early reflections.

As can be seen in Fig. 3(a) to 3(c), the plots of the kurtosis
show a distinct difference between the early and late energy unlike
the plots of the standard deviation which only demonstrated the
gradual transition. Two significant points can be seen on the plots:
a rapid decrease in the kurtosis value and when the kurtosis value
is first zero. All three spaces depicted in Fig. 3(a) to 3(c) have
a large decrease in the kurtosis value at approximately the same
time, ranging from 2 to 5 ms. Differences occur in the later point,
when the kurtosis value is approximately zero. The time is much
later in Fig. 3(a) at 45 ms; the larger, more reverberant spaces have

earlier kurtosis values nears zero at 26 ms for Fig. 3(b) and 19 ms
for Fig. 3(c).

4. FURTHER WORK

The ability to determine the transition time of an IR is useful for
determining at what point in an IR an artificial reverberator can be
used such as in [3]. This is particularly useful for hybrid reverber-
ators such as in Fig. 1 which use a combination of convolution and
filterbank reverberators.

While the kurtosis of an IR shows a significant difference in
the early and late portions of a signal, the perceptual implications
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of this transition have not been explored. Listening tests need to
be conducted to determine if sufficient perceptual information is
contained in the signal before the transition point. An IR truncated
at the transition point needs to hold the same localization informa-
tion as the complete IR. Only the reverberation tail which contains
cues to the size of the space, not details of the localization of the
sound source, should be removed.

There are a number of acoustical parameters such as reverber-
ation time, clarity and early decay time that are dependent upon
the absorption and diffusion of space. These measurements help
characterize a space and quantitatively describe its suitability for
music or speech. A study surveying these standard measurements
and the transition point could be carried out to determine whether
the transition time is useful measure of a space.

5. DISCUSSION

A measure that can determine the point in time when the early re-
flections have fully transitioned to late reverberation is described.
Previous measures either need specific information about the space
such as volume, or completely disregard the space and define the
transition point to be 80 ms. A method that does not disregard
the room properties but still does not need specific dimensions is
implemented by analyzing the statistics of the IR of the space.

Higher order cumulants such as kurtosis are a more conve-
nient measure for the transition time than lower order descriptive
statistics. Kurtosis is essentially blind to symmetric probability
distributions, unlike standard deviation. This gives a more definite
threshold to determine a mixed room since the threshold when us-
ing standard deviation is dependent on the room.

Both standard deviation and kurtosis support the model of an
IR being a deterministic system transitioning into a stochastic one,
however they display this in two different ways. The standard de-
viation of the IR shows a gradual transition from the early reflec-
tions to late reverberation, but the earliest point in which the room
is mixed is difficult to find. The kurtosis takes into account phase
information while possessing blindness to symmetric distributions.
A much sharper transition is then shown allowing a specific tran-
sition point to be easily selected.

The estimator in Eq.2 finds the York Minster to have a mixing
time of 570 ms, while St. Andrew’s is estimated to be mixed by 60
ms. Both are much later times than the kurtosis measurements of
26 and 19 ms respectively. The volume of the Sir Jack Lyon Con-
cert Hall is not available, so the mixing time cannot be estimated
from Eq.2.

The mixing time is relative to the beginning of the file contain-
ing the IR. In order for the calculated mixing time to be relevant
amongst a group of IRs, the beginning of the files need to be stan-
dardized, preferably starting at the time of the impulse. Not all
IRs contain the time between the impulse and the direct sound and
some have the direct sound removed for use in convolution rever-
berators. This needs to be noted before multiple IRs are compared
to each other.

Further work needs to be done to explore the perceptual rel-
evance of this point in time and of the robustness of a truncated
IR to still contain localization information. If listening tests show
that an IR can be truncated to its transition point and still retain all
sufficient localization information, then this method of truncation
can be used in applications such as hybrid reverberators. The re-
lationship between the transition time, other acoustical measures,
and the properties of the room can also be studied further.
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ABSTRACT 

An automatic stereo panning algorithm intended for live multi-
track downmixing has been researched. The algorithm uses spec-
tral analysis to determine the panning position of sources. The 
method uses filter bank quantitative channel dependence, priority 
channel architecture and constrained rules to assign panning crite-
ria. The algorithm attempts to minimize spectral masking by allo-
cating similar spectra to different panning spaces. The algorithm 
has been implemented; results on its convergence, automatic pan-
ning space allocation, and left-right inter-channel phase relation-
ship are presented. 

1. INTRODUCTION 

An audio engineer carefully handcrafts the characteristics of mul-
tiple inputs to downmix it into a constrained number of channels. 
Creating a mix involves numerous spectral and gain processing as 
well as the use of several audio effects. This research explores the 
automatisation of one of these processes. The spatial effect, which 
has been investigated, is a stereo panner algorithm. The panner 
under study downmixes K inputs and converts them into a stereo 
mix. This automatic stereo panner makes panning decisions based 
on constrained spectral rules as well as priority criteria. The algo-
rithm has also been optimized for live downmixing situations 
where a second take is not an option. 
 
The first automatic processing for live sound environments for 
mixing applications can be traced to Dugan’s automatic micro-
phone mixer [1, 2]. Dugan set the basic principles of automatic 
gain adjustment for automatic mixing. This type of mixer was 
able to maintain constant gain structure regardless of the number 
of active microphone inputs. This mixer was completely analog 
and based its decisions on time domain gain compensation. Sev-
eral years later a mechanical approach based on directive sensitive 
gating for automatic mixing was developed by Julstrom [3]. Cur-
rently, in the authors’ knowledge, no frequency domain approach 
to automatic mixing for live applications has been proposed. With 
current DSP processing power and the expanding availability of 
fully automated digital consoles, it should be possible to develop 
automatic processes for automatic mixing in an easy and cost-
effective manner. Automatic mixing can prove useful in live mix-
ing for video games, live concerts and post-production. 
 
For the purpose of this research it is important to make a distinc-
tion between automatic mixing processes and automated mixing 
processes. An automatic process involves an autonomous process. 

This autonomous process can be treated as a constrained rule 
problem in which the design of the control rules determines the 
process to be applied to the input signals. The automated process, 
on the other hand, is the result of playing back in sequence a se-
ries of user recorded actions. This involves playing back previ-
ously recorded and stored actions, regardless of whether auto-
matically or manually generated. 
 
A common task in live mixing is downmixing a series of mono 
inputs into a two channel stereo mix. For doing this the input 
channels get summed into a Left (L) and a Right (R) channel. The 
proportion at which these multiple mono inputs are added to each 
L and R channels are responsible for the perceived stereo image. 
Previous related work on downmixing for spatial audio coding, 
from 5.1 surround to 2.0 stereo, has been attempted by [4]. Proc-
essing of multiple channels for real time applications using prior-
ity has been attempted by [5], but this method requires an off-line 
processing stage which requires pre-processing of the audio chan-
nel in order to enhance them with descriptors. This method is 
suitable for game and simulations but are not optimal for live 
environments where the signal nature is unknown. Work on up-
mixing has been researched by [6, 7]. In their work, they describe 
methods to turn a stereo downmix into a multi-channel upmix. 
Although these methods can prove useful if backtracked, they are 
more suitable for multi-channel surround format conversion rather 
than for multiple input mixing. By multiple input channels we 
refer to the individual instruments of a live group of musicians or 
multiple speech inputs as opposed to multi-channel format sub-
mixes, as contained in 5.1 surround formats. In the knowledge of 
the authors, no current approach to stereo downmixing multiple 
inputs channels in a live environment has been attempted. 
 
Other relevant related work includes the idea of on-the-fly-
mixing. On the fly multi-track mixing has as a central idea to 
maintain the intentions of the composer and sound engineer while 
providing the final user with some degree of control [8]. This 
system has the intention of enhancing the end user experience by 
providing him with controllable parameters, which have been 
constrained in order to keep even intention for non-expert user. 
The system proposed in this research differs in the idea that it 
searches an automatic approach to downmixing by reducing user 
interaction. The proposed system is to be seen as a helper to the 
sound engineer and composer rather than giving the engineer a 
new set of extra constraints parameters to be manipulated. The 
proposed approach seeks to enhance the user experience by auto-
matically downmixing the input sources while reducing or elimi-
nating the mixing tasks to the user. In particular, this paper ex-
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plores an algorithm for downmixing using an automatic stereo 
panner. 

2. AUTOMATIC PANNING 

The panner is based on channel priority, the algorithm was im-
plemented so that the user connects the most important input 
channels to the first channels of the downmixer and the least im-
portant channel inputs to the last channels of the downmixer. 
However, instrument recognition techniques can be used to im-
plement an automatic version of channel priority. In either case 
channel priority gives the algorithm data, which can be used to 
help determine, with better accuracy, the panning positions. For 
example if the lead vocal is the most important channel in the 
mix, in the current implementation of the algorithm, it should be 
located on channel one. The algorithm will treat the highest prior-
ity channel as a source, which should be as centered as possible. 
The algorithm also is based on the assumption that panning chan-
nels which have similar spectral content to opposite sides im-
proves intelligibility by reducing spectral masking. For the pro-
posed algorithm the panning space is determined by the number 
of channel to be mixed and the available panning steps. Finally 
the algorithm has been set so that the panning step is dependent 
on the spectral resolution of the analysis. The algorithm has been 
optimized for MIDI control. 

2.1. Design architecture 

One of the most important design considerations for any auto-
matic live sound process is the fact that input sources should be 
reproduced at all times. Missing just a few samples can mean 
losing important content of the live audio program to be heard. 
Figure 1 shows the general diagram of the proposed architecture 
that solves this problem. 

 
Figure 1: Diagrams of side processing algorithms for 
automatic live panning application. 

Other important consideration is that, because of the live nature 
of the input signal an instantaneous decision based on the current 
sample can prove wrong. For this reason an accumulative knowl-
edge based approach can prove more reliable. Because of this a 
side-chain accumulative analysis together with a constrained 
control rule structure is used to calculate the control parameters 
send to the desired signal processing procedure. This means that 
the input signal is free to reach the output even though the analy-
sis and processing decisions have not been determined. Once the 
analysis and rules calculations have been finalized the processing 
can take place. This design gives the opportunity to the algorithm 
to constantly get updated by using the input data against past-
accumulated data. This can influence the processing stage by 
using previous knowledge instead of performing decisions based 
on instantaneous transients, which could result in generating 
unwanted signal processing artifacts.  

2.2. The filter bank analysis 

The proposed system uses a filter bank as means of doing spectral 
analysis. The filter bank does not affect the output signal as it is 
only used for analysis. The filter bank uses first order band pass 
filters. The filters inside the bank are determined by the band-
width contained between the -3dB low cut off and -3dB high cut 
off points of the filter. Each  consecutive filter in the filter bank 
has double the bandwidth of the previous filter. The total number 
of filters inside the bank (K) is equal to the number of input chan-
nels to be mixed. This will result in an adaptive frequency analy-
sis resolution, which is dependant on the number of input chan-
nels.  
 
To design the channel dependent filter bank the following equa-
tions are provided. 
  Bw(k) =

F
max

40K
2
k!1   (1) 

Where Bw(k) correspond to the bandwidth of the kth filter con-
tained on the filter bank where k goes from 1 to K and K corre-
sponds to the total number of input channels to be mixed, which is 
equal to the total number of filters in the filter bank. Fmax is the 
maximum frequency to be reproduced and the constant 40 was 
chosen simply to give filter bandwidths at simple rational inter-
vals. 
  LCF(k) = F

min
.(2)

k!1   (2) 
Equation 2 calculates the Low Cut Frequency (LCF) for the kth 
filter. Where k goes from 1 to K. Fmin corresponds to the left -
3dB cut off point of the first filter, in the current implementation 
Fmin has a value of 20Hz. 20Hz has been chosen because it is 
widely accepted as the lower frequency limit of human hearing. 
To calculate the High Cut Frequency (HCF) for the kth filter the 
corresponding LCF(k) and Bw(k) must be added together. Where 
k goes from 1 to K. Because K is equal to the total number of 
input channels to be mixed, we can say that k corresponds to the 
individual filter identifier number. The HCF corresponds to the 
right -3dB cut off point of the filter. 
 
Once the filter bank has been designed the algorithm uses the 
spectral, band limited, information within each filter to obtain the 
absolute peak amplitude for each filter. The peak amplitude is 
measured within a 100ms window. Because noise contained in the 
signal of interest may trigger undesired readings a second thresh-
old peak meter is used to gate the peak readings of each filter. 
During development it was found that the optimal threshold value 
for this application is -60dB, with a 10ms window. For every 
occurrence of the peak amplitude measurement that has is suc-
cessful in passing through the gate, the following algorithm is 
performed. 
 
First all K filters are scanned in search of the highest amplitude. 
Second all filters are searched with the aim to identify the k filter 
responsible for having the highest amplitude. Once this is done 
the result is accumulated in a register corresponding to the kth 
filter responsible for the highest peak amplitude. Third the K ac-
cumulated registers are scanned in search of the k accumulator 
responsible for the highest number of occurrences. Finally the 
system outputs the k filter identifier number corresponding to the 
biggest accumulated spectral band of the input signal. This proc-
ess is repeated in a continuous manner for every peak amplitude 
value received after the gating stage. This approach uses digital 
logic operations of comparison, equity and accumulation only, 
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which makes it highly attractive for an efficient digital implemen-
tation. The block diagram of the bank filter analysis algorithm has 
been sketched in Figure 2. 

 
Figure 2: Analysis block diagram for one input channel 
for a Filter bank of K length. 

2.3. The constrained control rules 

The first rule consists of maintaining all sources whose main en-
ergy is contained in the lowest filter banks un-panned. There are 
two main reasons for doing this. First this ensures that the Low 
frequency content remains evenly distributed within speakers[9]. 
This ensures that reproduction of low frequencies, which are more 
likely to produce audible distortion at high levels, remains spread 
over two sources to reduce distortion. Second there is no point on 
panning low frequency sources below 200Hz because we fail to 
localize them properly [10]. It is thought that we are unable to 
localize properly low frequencies because its wavelength is so 
long that our left and right ears perceive them as coming simulta-
neously from the same place. It is also thought that because the 
head is unable to absorb the low frequencies, it is hard to localize 
them, in contrast, high frequencies do get some attenuation be-
tween ears which we associate with position.[11] For this reason 
all input signals, with accumulated energy contained in a filter 
with a HCF below 200Hz are not panned, and should remain cen-
tered at all times. 
 
The second rule decides the available panning step (PS) a posi-
tioning rule based on equidistant spacing. The rule uses 2 parame-
ters to determine its result. First the Integer location of the filter 
that contains the maximum number of accumulation (k). Second 
the total number of occurrences of signals containing accumulated 
energy in the same kth filter (Rk). 
 
This PS has to be calculated for every different accumulated kth 
filter. This means that for kth filters which have not reached 

maximum accumulation there is no need to calculate the PS, this 
makes the algorithm less computationnally expensive. If only one 
repetition exists for a given kth filter (Rk=1) the system is default 
to pan the input to the center (64 or 63 in the MIDI case). The 
system default initial value is to have all channels centered. 
 
In order to obtain all the available panning space locations for Rk 
bigger than one equation 3 is provided. 

  
PS

k
(i) = RND[

(i !1)maxPS

R
k
!1

]
  (3) 

Where PSk(i) is the ith available panning step and i has a range 
from 1 to Rk. i and k have a range from 1 to K. Because the algo-
rithm has been optimized for MIDI control the maxPS is 127, and 
the rounding function RND is to be used to obtain the proper dis-
crete MIDI PS.  
 
The third rule is priority-panning assignment. Priority is based on 
priority numbers (Prk) assigned to all Rk. In order to assign the 
panning priority first we must calculate PS with equation 3. An 
alternating priority algorithm has been used. This priority assigna-
tion works as follows; once K has been obtain by the algorithm, 
the system scans all channels to obtain the number of input chan-
nel sources which share the same accumulated filter Rk. Then the 
system proceeds to assign the priority channel number Prk from 
left to right. The Prk is done from left to right because it goes in 
accordance with the idea that the channel closest to the first mixer 
channel has more priority than the last one. This ensures that the 
channels closer to the first physical channels remain as centered 
as possible. This approach reduces spectral masking by separating 
inputs with similar spectral content as far as possible from each 
other. Since the implementation of this algorithm was intended 
for compatibility with MIDI controlled automated mixers the 
panning step has a range from 0 to 127 steps. Where centre is 64 
or 63 and maxPS=127. In Table 1 it is presented all possible PS 
for an 8CH automatic panning system.  
 
PS(i) Pr1 Pr2 Pr3 Pr4 Pr5 Pr6 Pr7 Pr8 
PS(1) 64  - - - - - - 
PS(2) 0 127 - - - - - - 
PS(3) 64 0 127 - - - - - 
PS(4) 43 84 0 127 - - - - 
PS(5) 64 32 95 0 127 - - - 
PS(6) 51 76 25 102 0 127 - - 
PS(7) 64 42 85 0 21 106 127 - 
PS(8) 54 73 36 91 18 109 0 127 

Table 1: Discrete panning rule by implementing alternate 
priority 

All values have been obtained using equation 3 and by imple-
menting alternate priority. It is important to notice that the maxi-
mum value of i is equal to the number of channels of the mixer, 
and the same applies for the maximum assignable priority num-
bers. Based on this, it can be stated that the total panning space 
can be calculated as the number of panning steps available times 
the filter bank filter which HCF are above 200Hz. It is also impo-
rtant to realise that thanks to this channel dependency the algo-
rithm will update itself every time a new input is detected in a 
new channel. The algorithm will also update itself if the spectral 
content of a input channel suffers from a drastic change over time 
of spectral content. The block diagram containing the constrained 
decision control rule stage of the algorithm is presented in Figure 
3.
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Figure 3: Block diagram of Automatic Panner algorithm constrain control rules algorithm for K input Channels

2.4. The panning processing 

The panning architecture used consists of a -3dB panning law. 
This means that when panning is centred the left (L) and right (R) 
channel have a -3dB gain. This is so, that when L and R channels 
are in phase and added, a 0dB gain is achieved. When the panner 
goes all the way to the left the L channel has a normalized gain of 
0dB and the R channel has a gain of -∞, and the inverse when the 
system is panned to the R channel. This approach keeps a con-
stant 0dB gain regardless of the panning angle. The panning angle 
is the degree measurement of rotation of a pan-pot. The panning 
step is the digital analogy used for MIDI implementation of a 
panning angle. The panning step is related to the signal gain mul-
tiplier. The panning algorithm uses the following equations for 
processing the right and left channel. 
 

 fRout (x) = (PSk (i) / maxPS). fin (x)   (4) 
 fLout (x) = [1! (PSk (i) / maxPS)]. fin (x)  (5) 
 
The term multiplying fin(x) in equations 4 and 5 have a range from 
0 to 1 and it is called the Panning Factor (PF). It has a maximum 
range of 1 In order to maintain the resulting signal normalized. 
The PF of one channel is complementary to the PF of the other. 
For this reason the sum of the squares of boat PF is always 0dB, 
making the overall amplitude equal to the original amplitude of 
fin(x) regardless of the panning position. 
 
An interpolation algorithm has been coded into the panner to 
avoid rapid changes of signal level. The interpolator has a 22ms 
fade-in and fade-out, which ensures a smooth natural transition 
when the panning control step is changed. 
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3.  RESULTS 

Several sinusoidal test signals and music tracks simulating a live 
playing band were used as a mean to test the automatic panning 
algorithm. The multi-track data used was obtained from the 
BASS-dB database [12]. BASS-dB is the Blind Audio Source 
Separation evaluation database; it contains links to multi-track 
recordings which license allows modification and redistribution of 
the data for non-commercial purposes. 
 
In all studied cases the algorithm was able to converge. In Figure 
4 we can see the convergence for 4 different sources. The 4 
sources were selected from a set of measurements obtained from 
an 8ch automatic panning downmixer. The plot shows the pan-
ning factor as it approaches stable state, as applied to the input 
signal. 
 
The dotted line, in Figure 4, is the result of plotting the PF of one 
of 4 tracks that have similar spectral content; the algorithm has 
spread all four signals equidistantly. The dotted line corresponds 
to the highest priority channel out of the four tracks. The dotted 
line has converged into a panning factor equal to 0.33858 or a 
MIDI panning step of 43. The other 3 sources not shown in this 
plot converged in accordance to Table 1 for a PS(4).  
 
It is important to notice that the speed at which the algorithm 
converges is dependant on the spectral content of the overall input 
channels. Also a track containing similar spectral content which 
start later in time than others can cause a panning space re-
assignation. Others convergence values where the source has been 
panned fully to the sides have been also plotted (PF=0 and PF 
=1). Finally the solid line represents a drum kit signal, which 
although the algorithm struggles to decide wheatear its spectral 
content is of mainly high frequencies (due to the hi-hat) or low 
frequencies (due to the kick drum) it manages to converge into 
central position (PF=0.5), which is technically the most conven-
ient panning position for a signal containing very low frequencies. 
 
In Figure 5 we can see the panning factor depicted as a solid line 
in Figure 4 superimposed on the MIDI panning step calculated by 
the algorithm. The MIDI panning step is one stage before the 
2000 sample interpolation is applied to the panning process. 
These results show how the interpolation step makes the auto-
matic panner more resilient to panning positioning flutter while 
achieving a more natural pan. 
 
In Figure 6 the result of downmixing 12 sinusoidal test signals 
through the automatic panner are shown. It can be seen that both 
f1 and f12 are kept centered and added together because their 
spectral content is below 200Hz. The three sinusoids with a fre-
quency of 5KHz have been evenly spread. F2 has been allocated 
to the center due to priority; while f4 has been send to the left and 
f6 has been send to the right, in accordance to Table 1 for a PS(3). 
Because there is no other signal with the same spectral content 
than f11 it has been assigned to the center. The four sinusoids 
with a spectral content of 15Khz have been evenly spread. Be-
cause of priority f3 has been assigned a MIDI step of 43, f7 has 
been assigned a MIDI step of 84 steps, f9 has been assigned all 
the way to the left, and f10 has been assigned all the way to the 
right, in accordance to Table 1 for a PS(4). Finally the two sinu-
soids with a spectral content of 20KHz have been panned to op-
posite sides. f5 has been send to the left while f8 has been send to 

the right, in accordance to Table 1 for a PS(2). All results prove to 
be in accordance to the constrained rule equations proposed in 
section 2.3.  

 
Figure 4: Convergence of automatic panning algorithm for 4 
different convergence values. (-) Panning Factor for a drum kit 
track,(--)panning Factor for a bass guitar, (.-) panning Factor for 
a vocal track, and (..) panning Factor for a channel input which 
spectral content is concentrated in the same filter.  

 
Figure 5: Discrete panning step (- -). Super imposed in-
terpolative panner angle (-) as applied to an input signal 
consisting of a drum kit recording. 

A Lissajous curve or stereogram is a two dimensional representa-
tion of a stereophonic signal and is usually perform by using a 
oscilloscope in XY mode or by using a vector oscilloscope. The 
stereogram can be obtained by plotting in time-synchronicity the 
left channel against the right channel. This measurement provides 
detailed information concerning inter-channel phase relationship 
[13]. The data contained in the stereogram of Figure 7 is widely 
spread in an oval. This means that the phase relation between the 
left and right channel is close to 90deg. This means we have 
achieved a wide spread stereo signal. In order to have a reference, 
a mono signal, which is represented by the diagonal separating 
the left and right planes of the stereogram has been plotted. The 
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plot also shows a good data equilibrium between the right and left 
channel. 

 
Figure 6: Spectrum spread panning space for a 12 input 
CH automatic panner based on the proposed design. The 
test inputs were sinusoids with amplitude equal to one 
and the following frequencies: f1=125Hz, f2=5KHz, 
f3=15KHz, f4=5KHz, f5=20KHz, f6=5KHz, f7=15KHz, 
f8=20KHz, f9=15KHz, f10=15KHz, f11=10KHz, and 
f12=125 Hz.  

 
Figure 7: Stereogram of 100,000 samples of a 5CH auto-
matic panner. The samples correspond to a section in 
time where all 5-channel instruments are interacting si-
multaneously. 

4. CONCLUSIONS 

An automatic panning algorithm for live multi-track sources 
has been successfully implemented. The algorithm reduces spec-
tral masking while achieving a wide stereo signal. The system 
achieves panning by using constrained rules and bank filter accu-
mulative techniques. Several test signals and multi-track signals 
have been tested. Results on its convergence, automatic panning 
space allocation, and stereogram have been presented. Subjective 
testing needs to be done in order to optimize the constrained rules 

and to verify the validity of our assumptions concerning place-
ment of instruments and avoidance of spectral masking. Further 
work will also use instrument recognition techniques to automate 
priority rules that are independent of user channel connections. 
Filter bank optimization using psycho acoustical optimized band 
pass filters remains to be researched.  
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ABSTRACT

There are several well known harmonization and pitch correction
techniques that can be applied to monophonic sound sources. They
are based on automatic pitch detection and frequency shifting with-
out time stretching. In many applications it is desired to apply such
effects on the dominant melodic instrument of a polyphonic audio
mixture. However, applying them directly to the mixture results
in artifacts, and automatic pitch detection becomes unreliable. In
this paper we describe how a dominant melody separation method
based on spectral clustering of sinusoidal peaks can be used for
adaptive harmonization and pitch correction in mono polyphonic
audio mixtures. Motivating examples from a violin tutoring per-
spective as well as modifying the saxophone melody of an old jazz
mono recording are presented.

1. INTRODUCTION

Pitch correction and harmonization are some of the most common
digital audio manipulations. They are typically applied to record-
ings of monophonic sound sources such as the singing voice or
melodic instruments. Currently if the original monophonic sound
source is not available it is not possible to apply these effects
on polyphonic audio mixtures. The main problem is that the re-
quired frequency shifting is also applied to the accompaniment,
background music resulting in severe artifacts. In addition, pitch
correction and harmonization are adaptive effects that rely on the
output of an automatic pitch detection algorithm. In general pitch
detection of the dominant melody in polyphonic audio is much
harder than the monophonic case and in most cases unreliable.

In this paper we describe how a dominant melody separa-
tion algorithm inspired by ideas in Computational Auditory Scene
Analysis (CASA) can be utilized for applying pitch corrections
and harmonizations to the melody in polyphonic audio recordings.
Unlike systems that use stereo panning information [1] our focus
is mono recordings where there is a clear dominant melody such
as a violin with piano accompaniment or saxophone and trumpet
melodies in jazz recordings. The source separation algorithm is
based on a sinusoidal representation and a spectral clustering tech-
nique is used to group the peaks of the dominant melody. Perceptu-
ally informed grouping cues such as amplitude/frequency proxim-
ity and harmonicity are utilized. Pitch correction and harmoniza-
tion are straightforward to express using a sinusoidal representa-
tion by simple frequency scaling of the peaks. This assumes that
the underlying fundamental frequency of the dominant melody is
known. We utilize a pitch detection algorithm based on [2] and
show that it works better using the separated signals.

The remainder of the paper is structured as follows. The dom-
inant melody separation algorithm is described in section 2. Pitch
correction and harmonization are described in section 3. Exper-
iments with a violin tutoring system and altering the saxophone
melody in a jazz recording are described in section 4. The paper
ends with conclusions and directions for future work.

2. SOUND SOURCE FORMATION

Computational Auditory Scene Analysis (CASA) systems aim at
identifying perceived sound sources (e.g. notes in the case of
music recordings) and grouping them into auditory streams using
psycho-acoustical cues [3]. However, as remarked in [4] the prece-
dence rules and the relevance of each of those cues with respect to
a given practical task is hard to assess. Our goal is to provide a
flexible framework where these perceptual cues can be expressed
in terms of similarity between time-frequency components. The
identification task is then carried out by clustering components
which are close in the similarity space. Therefore, the complex-
ity of the algorithm is strongly related to the number of compo-
nents considered. In this paper we use time-varying sinusoids as
the underlying time-frequency representation.

2.1. Sinusoidal Modeling

Most CASA approaches consider auditory filterbanks and/or cor-
relograms as their front-end [5]. In these approaches the num-
ber of time-frequency components is relatively small. However
closely-spaced components within the same critical band are hard
to separate. Other approaches [4, 6, 7] consider the Fourier Spec-
trum as their front-end. In these approaches, in order to obtain
sufficient frequency resolution a large number of components is
required. Components within the same frequency region can be
pre-clustered together according to a stability criterion computed
using statistics over the considered region. However, this approach
has the drawback of introducing another clustering step, and opens
the issue of choosing the right descriptors for those pre-clusters.
Alternatively, a sinusoidal front-end is helpful to provide mean-
ingful and precise information about the auditory scene while con-
sidering only a limited number of components, see Figure 1, and
is the representation we consider in this work.

Sinusoidal modeling aims to represent a sound signal as a
sum of sinusoids characterized by amplitudes, frequencies, and
phases. A common approach is to segment the signal into succes-
sive frames of small duration so that the stationarity assumption is
met. For each frame a set of sinusoidal components is estimated.
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Figure 1: Picking of 20 peaks in the spectrum of a mixture of two
harmonic sources.

The discrete signal xk(n) at frame index k is then modeled as
follows:

xk(n) =

Lk∑
l=1

ak
l cos

(
2π

Fs
fk

l · n+ φk
l

)
(1)

where Fs is the sampling frequency and φk
l is the phase at the

beginning of the frame of the l-th component of Lk sine waves.
The fl and al are the frequency and the amplitude of the l-th
sine wave, respectively, both of which are considered constant
within the frame. For each frame k, a set of sinusoidal parame-
ters Sk = {pk

1 , · · · , pk
Lk} is estimated. The system parameters

of this Short-Term Sinusoidal (STS) model Sk are the Lk triplets
pk

l = {fk
l , a

k
l , φ

k
l }, often called peaks.

These parameters can be efficiently estimated by picking some
local maxima from a Short-Term Fourier Transform (STFT) with
a frame size of 46ms and a hop size of 11ms. The precision of
these estimates is further improved using phase-based frequency
estimators which utilize the relationship between phases of suc-
cessive frames [8]. Using this enhanced frequency estimate, the
rough amplitude estimate provided by the magnitude of the local
maximum is also corrected.

2.2. Spectral Clustering

In order to simultaneously optimize partial tracking and source for-
mation, we construct a graph over the entire duration of the sound
mixture of interest. Unlike approaches based on local informa-
tion [9], we utilize the global normalized cut criterion to partition
the graph (spectral clustering). This criterion as been successfully
used for image and video segmentation [10]. In our perspective,
each partition is a set of peaks that are grouped together such that
the similarity within the partition is maximized and the dissim-
ilarity between different partitions is maximized. By appropri-
ately defining the similarity between peaks, a variety of perceptual
grouping cues can be used.

To express such similarity, the edge weight connecting two
peaks pk

l and pk′
l′ (k is the frame index and l is the peak index) may

depend on the proximity of frequency, amplitude and harmonicity:

W (pk
l , p

k′
l′ ) = Wf (pk

l , p
k′
l′ ) ·Wa(pk

l , p
k′
l′ ) ·Wh(pk

l , p
k′
l′ ) (2)

where Wx are typically radial basis functions of distance among
the two peaks in the x axis. For more details see [11, 12].

Figure 2: Block-Diagram of the Dominant Melody Segregation Al-
gorithm.

Most existing approaches that apply the Ncut algorithm to au-
dio [13, 7] consider the clustering of components over one analysis
frame only. However, the time integration (partial tracking) is as
important as the frequency one (source formation) and should be
carried out at the same time. We therefore propose in [12] to con-
sider the sinusoidal components extracted within a texture window
of several spectral frames (20 in the experiments). Figure 2 shows
a block diagram of the proposed separation scheme.

We considered a maximum of 40 sinusoids per frame. Those
frames are 20 ms long. We chose to select two out of three clusters
of peaks for each texture window to perform the resynthesis. The
clusters with the highest average within similarity based on Equa-
tion 2 are selected. An example of separation is depicted in Figure
3. A bank of sinusoidal oscillators is used for resynthesis.

3. PITCH CORRECTION AND HARMONIZATION

Pitch correction and harmonization both rely on the ability to mod-
ify the perceived pitch of a sound without changing its duration
in time. For the sounds we are interested in, the pitch directly
corresponds to the fundamental frequency of the sound, therefore
we do not differentiate between pitch and fundamental frequency.
A sinusoidal representation is ideally suited for this purpose and
therefore most systems for pitch modification and harmonization
are based on the phasevocoder [14]. These effects work particu-
larly well for signals with slowly varying harmonic structure that
have small amounts of transients and background noise.

Using a sinusoidal representation, pitch shifting is achieved by
scaling the frequencies of each peak in the representation. In the
case of pitch correction we multiply the peaks corresponding to the
dominant melody and do not retain the original peaks. For harmo-
nization both the original and the multiplied peaks are retained for
resynthesis and multiple scaling factors are used to form chords.
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Figure 3: Example of Segregation of the Violin (b) from a Violin
accompanied by Piano.

3.1. Pitch Detection

In order to know the required amount of frequency scaling it is
necessary to know the underlying pitch of the sound during the
frame under consideration. To automatically determine the pitch
an implementation of the method described in [2] was used. The
estimation of the pitch from a monophonic signal is a well studied
area and robust methods exist, see [5] for a review.

We utilize the autocorrelation function to efficiently estimate
the fundamental frequency (f0). For a time signal s(n) that is
stationary, the autocorrelation rs(τ) as a function of the lag τ is
defined as

rs(τ) = 1/N

t+N∑
j=t

s(t)s(t+ τ) (3)

This function has a global maximum for τ = 0. If there are
also additional global maxima, the signal is called periodic and
there exists a lag τ0, the period, so that all these maxima are placed
at the lags nτ0, for every integer n, with rs(nτ0) = rs(0).

The inverse of the lag τ0 provides an estimation of the funda-
mental frequency f0. The period is determined by scanning rt(τ),
starting at zero, and stopping at the first global maximum with non-
zero abscissa. Quadratic interpolation is used to further improve
the frequency estimation. In practical cases, the relative amplitude
of those maxima may change and some others maxima may ap-
pear due to small aperiodicities of the signal. The issue is then to
relevantly select which maximum corresponds to the f0 by consid-
ering several candidates under a plausible range and pick the one
with the highest confidence, see [2, 15] for further references on

the algorithm. To avoid picking harmonics as the fundamental fre-
quency the amplitude of the peaks is weighted using the following
equation:

rs(τ) = r(τmax)−OctaveCost2∗ log(MinPitch∗τmax) (4)

3.2. Note Segmentation

After the pitch contour has been generated we apply note seg-
mentation to convert the frequency values in Hz to floating-point
MIDI note numbers. The contour is scanned with a window size
of 500ms. If the median frequency value is sufficiently far away
from the previously detected notes (we found that 0.6 MIDI notes
produced good results), the sample is flagged as a note boundary.

Once we have divided the audio into notes, we compare the
pitches with the pitches given by a MIDI file. For each audio frame
inside each note, we compute

frequency_multiplier =
midi2Hz(expected_pitch)
midi2Hz(detected_pitch)

(5)

It would be desirable to previously estimate the tuning of the
performance. This way, if a different tuning standard (A = 442 Hz
instead of 440 Hz, for example) is desired, we can easily change
the mapping from Hz to floating-point values.

Currently, if a vibrato is present in the performance, the fre-
quency contour is linearized within each note. Removing any
micro-modulations of the pitch contour is desirable for correcting
the performances of inexperienced students. However, this is not
desirable for performances of skilled musicians who deliberately
produce such modulations (vibrato, glissandi, . . . ).

3.3. Harmonization

Adding chords to a melody is a standard task in Computer Assisted
Composition (CAC) [16], but this generally requires an analysis of
the entire piece of music and is not suitable for online processing.
In some cases we can use simple online algorithms to add chords.
The easiest to automatically add harmonies is to have them pre-
computed by a human: “at 1.0 seconds, play a C chord. At 1.5
seconds, play a G7 chord, etc”. This requires that we know exactly
what pitch the user should be creating at every moment.

While this is unreasonable for an improvised performance of
contemporary computer music, there are still situations where this
constraint is quite valid. In music pedagogy, we often ask stu-
dents to play their instrument in time with a metronome – in other
words, to play specific notes at exactly the right time. This is also
true of karaoke – since we are playing a vocal-less version of the
music, we know what the user should be singing at every moment
of the song. In these cases, adding pre-composed harmonies based
purely on the elapsed time is an entirely appropriate method.

In this paper we use a simple and naive harmonization algo-
rithm as a proof-of-concept. Simple harmonies may be added by
examining only the current pitch. If we know that the user will
be playing a simple melody in a specific key, we can calculate the
scale degree of each note. “Scale degree” is the musical term for
number of semitones within the octave. Adequate – although not
particularly interesting – harmonies can be created by examining
only the scale degree. For this paper, we used this simple method
to demonstrate that harmonization is possible. More sophisticated
approaches can easily be added to the system but are beyond the
scope of this paper.
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violin solo violin + piano violin sep.
good intonation 97.9% 83.5% 93.1%
bad intonation 93.1% 79.9% 93.0%

Table 1: Comparison of pitch recognition for separated and non-
separated audio.

4. EXPERIMENTS

In order to demonstrate how our proposed systems works we show
examples from two application areas: pitch correction in music
pedagogy and modifying the saxophone melody in monophonic
jazz recordings. Audio examples can be found at http://opihi.
cs.uvic.ca/Dafx2007/

Students learning instruments without fixed pitch (i.e. violin,
cello, trombone) spend a significant amount of time concentrat-
ing on their intonation. Music teachers may demonstrate sections
for the students, or encourage students to listen to recordings, but
the sound of an expert playing an expensive musical instrument
is quite different from the sound of a beginner playing a cheap
musical instrument. Students may compare their sound to the ex-
pert’s sound and become discouraged or distracted from the cur-
rent goal of correct intonation. On the other hand, playing the
correct melody using MIDI samples results in poor sound quality.

Using the student’s own sound avoids these problems: the stu-
dent hears music as it would sound if she played it with correct
intonation. This eliminates any doubt (or possible excuses) for the
student: the student listening to their pitch-corrected sound knows
that she should – and can – produce exactly the same sounds.
The audio examples are based on the following scenario: a violin
student practicing with a tutoring system with piano accompani-
ment. A standard laptop microphone is used for acquisition and
the recording is noisy. Various examples of pitch correction and
harmonization for this scenario can be found on the webpage.

We also achieved significantly better pitch detection (and there-
fore better note segmentation) by separating the dominant melody
from the original mixed audio. Table 1 shows our results; any pitch
that was within 1.0 MIDI note of the real value was deemed to be
“correct”.

Another example application is the pitch correction of melodies
in old mono recordings that are either live or for which the origi-
nal master tapes of the individual instruments are not available. In
the example provided on the webpage we modify the saxophone
melody of a well known jazz standard by pitch shifting certain
notes in the separated signal and then remixing with the residual.
The result sounds quite good and to some extent the resynthesis
artifacts are masked by the addition of the residual background.
We are currently working on improving the resynthesis quality.

5. CONCLUSIONS

Dominant melody separation using a spectral clustering approach
over a sinusoidal representation can be used for adaptive pitch cor-
rection and harmonization of polyphonic audio recordings.

Directions for future work include: incorporating more cues
into the peak similarity calculation, improving resynthesis by re-
ducing artifacts, more sophisticated harmonization, and adding the
pitch correction functionality to an open source audio editing en-
vironment such as Audacity.
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ABSTRACT 

The problem of signal synthesis from bilinear time-frequency 
representations such as the Wigner distribution has been investi-
gated [1,2,4] using methods which exploit an outer-product inter-
pretation of these distributions. The Modal distribution is a time-
frequency distribution specifically designed to model the quasi-
harmonic, multi-sinusoidal, nature of music signals and belongs to 
the Cohen general class of time-frequency distributions. Existing 
methods of synthesis from the Modal distribution [3] are based on 
a sinusoidal-analysis-synthesis procedure using estimates of in-
stantaneous frequency and amplitude values. In this paper we 
develop an innovative synthesis procedure for the Modal distribu-
tion based on the outer-product interpretation of bilinear time-
frequency distributions. We also propose a streaming object-
oriented implementation of the resynthesis in the SndObj library 
[6] based on previous work which implemented a streaming im-
plementation of the Modal distribution [7]. The theoretical back-
ground to the Modal distribution and to signal synthesis of Wigner 
distributions is first outlined followed by an explanation of the 
design and implementation of the Modal distribution synthesis. 
Suggestions for future extensions to the synthesis procedure are 
given. 

1. INTRODUCTION 

The Modal distribution was introduced by Pielemeier and Wake-
field [3] as a member of the Cohen general class of time-
frequency distributions [5] for the analysis of music signals. It is 
primarily a Wigner distribution, or more specifically, a smoothed 
pseudo-Wigner distribution (SPWD), with a kernel that takes ac-
count of the modes present in quasi-harmonic, multi-sinusoidal, 
music signals. Being based on the Wigner distribution, it provides 
a more accurate measure of time-frequency localisation and does 
not suffer from the time-bandwidth trade-off inherent in the spec-
trogram (also a member of the Cohen class) implementations. One 
drawback of the Wigner distribution is the existence of cross-
terms amounting to beats between partials not existing in the 
original signal. The Modal distribution kernel is designed to 
minimize the effect of these cross terms for music signals. Fur-
thermore, implementation of the time-smoothing kernel for the 
Modal distribution greatly reduces the number of Digital Fourier 
Transforms (DFTs) that need to be performed on the smoothed 
autocorrelation function and results in applying the DFT at hop 
steps related to the size of the time-smoothing kernel. Ultimately 
this decreases the load in computing the distribution. In order to 
apply an outer-product based synthesis procedure to the Modal 
distribution, therefore, it is necessary to devise a method of signal 
recovery from sub-sampled autocorrelation functions.  

2. THEORETICAL BACKGROUND 

Leon Cohen [5] proposed a general class of time-frequency distri-
butions which are related through linear transformations.  The set 
of all linear transformations of the Wigner distribution has come 
to be known as the Cohen general class.  A two-dimensional ker-
nel determines the linear transformation involved. The Wigner 
distribution, equation (1), in terms of the signal ( )tf  and the 
spectrum ( )ωF  is given by: 
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Here the kernel is 1. The autocorrelation with the lag variable, τ, 
produces the time-relative-time or temporal autocorrelation func-
tion given in equation (4). An important property of the Wigner 
distribution is that it is real with ( ) ( )ωω ,,* tWtW = . Also, the 
Wigner distribution gives a clear picture of the instantaneous fre-
quency and group delay, which is not the case for the spectrogram. 
These are important for resynthesis [1,7]. 

2.1. The discrete pseudo-Wigner Distribution 

The discrete implementation of the pseudo-Wigner distribution 
with a frequency smoothing window function ( )kw , with length 

12 −= LM , ( ) Lkkw ≥= for    0  is then defined by: 
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where 

 ( ) ( ) ( )kwkwkp −= *  (3) 

and: 

 ( ) ( ) ( )knfknfkng −+= *,  (4) 

( )kng ,  is known as the temporal correlation function (TCF) or 
autocorrelation function. Equation (2) can be interpreted as the 
discrete Fourier transform of the autocorrelation function ( )kng ,  
with respect to n for each value of m. 
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2.1.1. Cross terms 

Given a music signal model as follows:  
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where k  is the partial series index, t  is time, and the thk  term 
in the summation represents a partial with constant amplitude 

kA , frequency kω , and phase kφ , the Wigner distribution is: 
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The partials of ( )tf  (auto terms) are given by the first term in 
equation (6). The second double summation indicates the cross 
terms, arising from products between partials, which lie between 
any pair of auto terms. The magnitude of the cross terms is the 

product lk AA  of the amplitudes of auto terms k  and l  and 

they oscillate at a frequency, ( ) 2//ωω +k  equal to the differ-

ence between the frequencies of the two auto terms. For strictly 
harmonic signals, the cross terms form a partial series an octave 
below the fundamental, resulting in cross terms which fall at the 
same frequencies of and therefore corrupt the autoterms, and also 
cross terms at partial frequencies not in the original signal. 

2.2. The Modal distribution 

The modal distribution in equation (7) was designed to minimise 
these cross terms in equation (6) for music signals. The modal 
kernel consists of two different filter functions.  The time-
smoothing window, ( )phLP

, has the effect of smoothing the cross 
terms in the time direction, and the frequency-smoothing window, 

( )lgLP
, implements cross term suppression in cases of frequency 

modulation. ( )phLP
, is chosen to be a low pass filter with an up-

per cut-off just below the minimum frequency spacing in the dis-
tribution, this being the fundamental frequency for quasi-harmonic 
signals. The discrete form of the modal distribution is defined by:  
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where ( ) ( ) ( )phlpnRlnR LPflf ,,, −=  is the time-smoothed tem-

poral autocorrelation function (STCF). Computing the time-
smoothing in the autocorrelation domain greatly reduces the num-
ber of DFTs that need to be performed. DFT’s need to be com-
puted only at hop steps that sample at a rate approximately equal 
to the period of the time smoothing window. 

2.3. The Autocorrelation Function 
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Figure 1: Extent of the windowed autocorrelation func-
tion 

The autocorrelation function ( )kng , , represented by the dia-

mond-shaped function in Figure 1, is sampled in time ( t ) at twice 
the Nyquist rate, or sf2 , and in relative-time (τ ) at rate sf . 

This function, then, has duration T2  in τ  as shown in Figure 1. 
This requires that the discrete frequency index k in equation (2) be 
interpreted relative to this 2:1 sub-sampling rate [3]. With applica-
tion of a 2-D kernel function, 

MT2  represents the length of the 
frequency smoothing filter and the diamond-shaped region in the 
( )τ,t  plane in Figure 1 is limited to the rectangular region [6]: 
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3. MODAL DISTRIBUTION SYNTHESIS METHOD 

From equation (2) the inverse discrete transform is given by: 

 ( ) ( ) ( )kpkngkny ,2, =  (9) 
resulting in the autocorrelation function written as: 
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This outer-product formulation represents the product of two one-
dimensional functions separable in n and m into the odd-or even-
indexed sequences of signal samples. For the even-indexed sam-
ples, the outer-product formulation eC  can be written in matrix 

form as: 
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where there are P known even samples and L-P samples to be 
recovered. This outer-product (OP) formulation is used in [1] for 
synthesis from overlapping blocks of eC . 

For signal synthesis from the modal distribution, however, 
only hop number of frames of the autocorrelation function are 
available and therefore the OP method cannot be directly applied. 
We derive an alternative method, which requires hop number of 
known samples to recover the sequence of odd- or even-indexed 
samples on a frame-by-frame basis. 

3.1. Sub sampled autocorrelation function method 

Synthesis of the signal samples from a sub sampled version of 

eC is implemented in two stages: in the first stage, 1eC , processes 

all autocorrelation frames up to ffth _ , half the DFT length (or 

ophffthl _=  frames), where the size of each frame grows 

by hop  number of samples and hop  number of samples can be 

recovered from each frame. In the second stage, 2eC recovers 

2hop  samples from all remaining frames. There are three cases 
only which must be processed separately: 

i. the first frame of eC  contains the product 

( ) ( )00 *
ee ff  and so no processing is necessary 

ii. the number of samples recovered from the second 
frame is  h/2 

iii. the number of samples recovered for frame l+1 is:  

 )1_()2(   where2 −−∗+=− ffthhlaah  (13) 

The matrix eC can now be reformulated to take the hop  step into 

account. For the even-indexed signal samples ef  we define the 

autocorrelation samples: 
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where hopthophophopn ∗∗∗= ,...,3,2,,0 , and t is the total 

number of frames.  Now we can write:  
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where hoplhophopiii k *,,3,*2,,, 21 �� ∗= , gives 

the hop frame index. Given a matrix [ ]paaaA �10=  of p=hop-

1 known even samples, and )(AdiagX e = , a diagonal matrix 

generated from A, all even indexed samples from 1eC  can be 

determined by: 

 eee XCF 11 =  (16) 

Next we can write:  
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where 121 −= hopα , vααα == 21  and 

tkkjjj s ,,3,2,,, 21 �� ++=  for even hop, and 

221 −= hopα , 122 −= hopα  and 1αα =v or 

2αα =v  depending on s, for odd hop. The sequence 

( )2,, 2121 +−++ hopjj oriori αα �  where si �,2,1= , 

represents the hop/2 known samples used to recover hop/2 even-
indexed samples from each row of 2eC . An identical formulation 

applies to the odd-indexed samples of  and so need not be out-

lined. 

4. RESULTS 

 

Figure 2: Autocorrelation function (for Bb Clarinet note 
G3) slices at time=180ms, for hop steps of 5, 32 and 81 

Figure 2 shows TCF function relative-time slices at time 180ms, 
for a Bb clarinet G3 note of length 8000 samples with 

44100=sf  and 10242 =T  for hop sizes of 5, 32 and 81 re-

spectively. In each case the peaks in the relative-time direction 
(horizontal axis) indicate the signal harmonics. For example, the 
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fundamental frequency can be seen from the 9 signal cycles in 
each plot, indicating a frequency of approximately sf2 =9.1/1024 

or ~196Hz (G3). 

 

Figure 3: Comparison of (a) original Clarinet G3 note 
with synthesized Clarinet G3 note samples (b), (c) and (d) 
from respective autocorrelation functions in Figure 2. The 
diamonds in (b), (c), and (d) indicate gaps in the signal 
where samples could not be recovered. 

Figure 3 shows the original signal (a), and the three signals recov-
ered from the autocorrelation functions with hop steps of (b) 5, (c) 
32, and (d) 81 respectively. The diamonds on plots (b)-(d) in Fig-
ure 3 indicate where zeros occur in the recovered signals. These 
missing samples are subsequently interpolated to avoid ‘clicks’ in 
the recovered signals. Hop sizes of arbitrary length were tested 
and in each case the synthesised samples recovered were identical 
to the original signal, apart from where zeros occurred, and the 
recovered signal was audibly indistinguishable from the sound of 
the original signal. 

5. CONCLUSIONS AND FUTURE WORK 

This frame-by-frame resynthesis method for Modal distributions 
exactly recovers the even- and –odd indexed signal samples for 
arbitrary hop steps. It provides an alternative signal recovery 
method for the Modal distribution based on the outer-product 
method in [1]. Current work focuses on a comparison of the outer-
product approximation (OPA) method in [1] implemented for the 
Modal distribution using eigenvalue-eigenvector decomposition 
for signal recovery, with the method outlined in this paper.  Im-
mediate further work will implement signal filtering for the Modal 
distribution using these methods. Future work will also investigate 
the effect of the Modal distribution’s smoothing kernel on this 
method and the possibility of signal modification in comparison 
with analysis-synthesis approaches. Finally, this frame-by-frame 
approach readily integrates into the SndObj library’s Modal distri-
bution routine [6,7], thus allowing a streaming implementation of 
Modal distribution synthesis in conjunction with many of the tools 
necessary for sound analysis and modification such as time 
stretching and vocoding. 
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ABSTRACT

In the following paper we investigate into the estimation of sinu-
soidal parameters for sinusoids with linear AM/FM modulation.
It will be shown that for linear amplitude and frequency modula-
tion only the frequency modulation creates additional estimation
bias for the standard sinusoidal parameter estimator. Then an en-
hanced algorithm for frequency domain demodulation of spectral
peaks is proposed that can be used to obtain an approximate max-
imum likelihood estimate of the frequency slope, and an estimate
of the amplitude, phase and frequency parameter with significantly
reduced bias. An experimental evaluation compares the new esti-
mation scheme with previously existing methods. It shows that
significant bias reduction is achieved for a large range of slopes
and zero padding factors. A real world example demonstrates that
the enhanced bias reduction algorithm can achieve a reduction of
the residual energy of up to 9dB.

1. INTRODUCTION

Additive (or sinusoidal) models are often used for the representa-
tion, analysis or transformation of music or speech signals [1, 2].
An important step that is necessary to obtain the sinusoidal model
consists of the estimation of the amplitude, frequency and phase
of the sinusoids from the peaks of the discrete Fourier transform.
The estimation is rather simple as long as the signal is stationary.
A standard method for this estimation is the quadratically interpo-
lated FFT (QIFFT) [3]. The QIFFT estimator uses the bin at the
maximum of each spectral peak together with its two neighbors to
establish a 2nd order polynomial model of the log amplitude and
unwrapped phase of the peak. The amplitude and frequency esti-
mates of the sinusoid that is related to the spectral peak are then
derived from the height and frequency position of the maximum of
the polynomial. The evaluation of the phase polynomial at the fre-
quency position provides the estimate of the phase of the sinusoid.

For non-stationary sinusoids the parameter estimation becomes
more difficult because the QIFFT algorithm is severely biased when-
ever the frequency is not constant. The term bias refers to the sys-
tematic estimation error. It describes the offset of the estimator
that exists even if no measurement noise is present. For the par-
tials in natural vibrato signals the estimation bias of the QIFFT
estimator accounts for a significant amount of residual energy. It
is the major reason for the perceived voiced energy in the residual
of vibrato signals. A number of algorithms with low estimation
bias for non stationary sinusoids have been proposed. Algorithms
that try to implement a MLE are generally assuming that the am-
plitude of the sinusoids are constant. As example we refer to an
algorithm that is based on signal demodulation employing an ini-
tial search over a grid of frequencies and frequency slopes and

a final fine-tuning of the parameters using an iterative maximiza-
tion of the amplitude of the demodulated signal [4]. Similar as
for multi-component signals with stationary sinusoids the MLE of
sinusoidal parameters for multi-component signals with FM mod-
ulated sinusoids is rather costly as in this case a highly nonlinear
and high dimensional cost function needs to be maximized [5].
Due to the computational savings and despite the fact that win-
dowing reduces the estimator efficiency the windowing technique
is generally preferred if the signal contains more than a single si-
nusoid. The algorithms that employ analysis windows for the pa-
rameter analysis of AM/FM modulated sinusoids generally rely
on the fact that the analysis window is approximately Gaussian
such that a mathematical investigation becomes tractable [6, 7, 3].
The method presented in [3] is special in that it tries to extend its
range to other analysis windows by means of a set of linear bias
correction functions. The resulting estimator is computationally
rather efficient and achieves small bias for standard windows as
long as the zero padding factor is sufficiently large (≥ 3) and the
frequency chirp rate is relatively small.

In the following paper we present a bias correction scheme for
sinusoidal parameter estimation of sinusoids with linear AM/FM
modulation. As a first step we provide a mathematical foundation
for the conjecture that linear amplitude modulation does not create
any additional bias for the QIFFT estimator. With respect to bias
reduction we may therefore ignore the amplitude modulation of
the signal. Then we extend an initial version of our bias reduction
method that has been proposed originally in [10]. The basic ideas
of the algorithm are similar to [4] in that the algorithm is based on
signal demodulation and maximization of the amplitude of the de-
modulated signal to find the sinusoidal parameters. In contrast to
[4] however, the algorithm allows the use of a analysis window and
does not use time domain demodulation. Therefore, it can be ap-
plied if the signal contains more than a single sinusoid. Moreover,
the initial 2-dimensional grid search of the algorithm presented in
[4] is avoided due to the fact that first, a simple and efficient ini-
tial estimate of the frequency slope estimate is used, and second,
the frequency and frequency slope estimation have been decou-
pled. After demodulating the frequency slope the standard QIFFT
estimator can be applied to obtain an estimate of the sinusoidal
parameters. Due to the fact that the QIFFT estimator has small
bias for constant frequency sinusoids the resulting estimate is sig-
nificantly improved. In [10] it has been shown that demodulation
can be achieved by means of spectral deconvolution using only the
peak to be analyzed and a properly selected and scaled demodu-
lation kernel. In the original version the frequency slope estimate
was entirely handled by the frequency slope estimator in [3].

The version to be presented here is a refined version of the
original demodulation algorithm. The enhancements include a
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new procedure to improve the initial estimate of the frequency
slope reducing the remaining bias for large frequency slopes. Fur-
thermore, the constraint to use the same analysis window for the
signal spectrum and the demodulation kernel has been removed.
Accordingly, it becomes possible to trade-off bias against noise
sensitivity. A computationally efficient version of the algorithm
using precomputed and linearly interpolated demodulation kernels
is presented. We describe an experimental comparison of the new
frequency slope estimator with the previous version and the ap-
proach presented recently in [3] and an experimental evaluation of
different bias reduction schemes for a real world vibrato signal.

The organization of the article is as follows. In section2 we
will show how the bias of the standard estimators is related to the
frequency slope. In section3 we will describe the demodulation
scheme and the improved frequency slope estimator. In section4
we present experimental results for the frequency slope estima-
tion algorithm as well as for the bias reduction scheme by means
of comparing the results of different algorithms. Furthermore we
compare different bias reduction methods by means of comparing
the residual energy of the sinusoidal model of a real world vibrato
signal. In section5 we conclude with an outlook on further im-
provements.

2. ESTIMATION BIAS

The signal model that will be used in the following assumes a lin-
ear evolution for amplitude and frequency trajectories. Accord-
ingly, a complex discrete time sinusoid can be represented as

s(n) = (A + an) exp(i(φ + 2πω0n + πDn2)). (1)

HereA is the mean amplitude of the signal anda is the amplitude
slope.φ is the phase of the sinusoid at timen = 0, ω0 is its mean
frequency andD is the frequency slope. Note, that all frequency
values are normalized with respect to the samplerate. The center
of the analysis window is is located at time0 such that an ideal
estimator should provide(A, ω0, φ) as estimates for amplitude,
frequency, and phase. The model equation (1) is necessarily time
limited due to the fact that we assumeA + an > 0 for all sample
positionsn that are used in a signal analysis.

As introduction into the problem we will summarize the sources
of bias that are known to exist for the standard QIFFT estimator
and discuss there implications in the context of parameter estima-
tion for linear AM/FM modulated sinusoids.

First, there is the use of a second order model for interpolating
the spectral bins. While this is systematically wrong for the present
sinusoidal model, it does not have any direct relation to the fact
that the sinusoidal parameters are varying. Because the QIFFT
algorithm will be used extensively, it is nevertheless important to
reduce this type of bias as far as possible. This can be achieved by
means of zero padding the analysis window or, as demonstrated
recently, by means of simple bias correction functions [8].

Second, there is the cross component bias that is due to other
sinusoidal components. The technique that is generally used to
reduce this bias is windowing. The analysis window reduces the
sidelobes of the sinusoidal components such that the cross com-
ponent bias of distant sinusoidal components can be effectively re-
duced. Note however, that the reduction of the sidelobe amplitudes
is always accompanied by an increased mainlobe width. There-
fore, the windowing technique will slightly increase the cross com-
ponent bias for nearby components. Moreover, due to the tapering

of the signal at the frame borders the noise sensitivity of the pa-
rameter estimation is slightly increased. In the following we will
assume that the sinusoidal components are resolved such that the
frequency distance between two sinusoids is always larger than
the width of the mainlobe of both components. In this case the
cross component bias will stay nearly the same for stationary and
non-stationary components such that the cross component bias will
only change marginally with the modulation of the sinusoids.

Third, there is the bias due to the non-stationary parameters.
For the sinusoidal model in equation (1) and a Gaussian analysis
window the bias has been analyzed mathematically in [7]. The
result shows, that the QIFFT algorithm suffers from additional bias
due to parameter variation only if the frequency slopeD 6= 0. In
this case, the estimation of all three basic parameters are biased
and the bias increases with the absolute value ofD.

To study the dependency of the estimation bias on the fre-
quency slope for arbitrary analysis windows we split the sinusoidal
model in equation (1) into two parts, a sinusoid with constant am-
plitudeA and sinusoid with mean amplitude 0 and amplitude slope
a. Then we investigate the properties of the spectra of the individ-
ual parts and use the linearity of the Fourier transform to draw
conclusions for the complete spectrum. We first write the DFT of
the signal equation (1) using analysis windowW (n) as follows

S(w) =

∞X
n=−∞

W (n)(A+an)ei(φ+2πω0n+πDn2)e−i2πωn. (2)

Assuming the analysis window to be even symmetric we can make
use of the symmetry relations and remove all parts of the sum in
equation (2) that are odd symmetric inn. As a result equation (2)
simplifies into

S(ω) = Sc(ω) + Sl(ω) with (3)

Sc(ω) = Aeiφ
∞X

n=−∞
(W (n) cos(2π(ω0 − ω)n)eiπDn2

(4)

Sl(ω) = aeiφ
∞X

n=−∞
W (n)ni sin(2π(ω0 − ω)n)eiπDn2

.(5)

Here Sc represents the spectrum of the constant amplitude part
andSl represents the spectrum of the linear amplitude part of the
sinusoid.

For the discussion of equations (3-5) we assume the coordi-
nate system of the amplitude and phase spectra to be shifted using
the translationω′ = ω − ω0. Accordingly, the frequency origin
of ω′ is located at the sinusoidal frequencyω0. For D = 0 the
amplitude of the spectra of both parts will be even functions with
the spectrum of the second part being 0 at the origin.Sc(ω

′) and
Sl(ω

′) have a local maximum respectively minimum at the origin.
The phase ofSc(ω

′) is constant with valueφ within the mainlobe.
The phase ofSl(ω

′) is odd, it consists of two constant parts (with
valueφ ± π/2) with a phase jump ofπ right at the origin. The
sum ofSc(ω

′) andSl(ω
′) has even amplitude and odd phaseφ

with the valueAeiφ at the origin. Depending on the ratio ofA and
a the spectrum may present either a local maximum or minimum
at the origin. For all common analysis windows and the sinusoidal
model in equation (1) the resulting spectrum has a maximum. As
our first result we may conclude that forD = 0 the QIFFT estima-
tor provides results that are biased only by the first two sources of
bias mentioned above and that the time varying amplitudea 6= 0
does not add any additional bias.
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For D 6= 0 the factoreiπDn2
adds an even phase to the el-

ements of the sum. As a result the magnitude ofSc(ω
′) and

Sl(ω
′) does keep all the characteristics discussed above, notably

even symmetry and extreme value characteristics (maximum and
minimum). The (unwrapped) phase spectra however are no longer
(locally) constant, but both phase spectra have an additional even
phase function superimposed. The phase offset ofSc(ω

′) does not
vanish at the origin and by consequence the phase is biased already
for a = 0. Fora 6= 0 the even symmetric phase offset that is ap-
plied toSl(ω

′) will destroy the even symmetry of the magnitude of
S(ω′) such that the peak maximum moves away from the origin,
and therefore, the amplitude and frequency estimates of the QIFFT
estimator are no longer correct. Accordingly, the QIFFT estimator
suffers from additional bias quite similar as has been shown for the
Gaussian window in [7].

3. REDUCING THE BIAS

In the previous section we saw that the source of the bias of the
QIFFT estimator is the frequency slope of the sinusoid. A concep-
tually simple approach to estimate the parameters(A, φ, ω) of a
sinusoid related to a spectral peak requires two steps:

1. estimate the frequency slope,

2. demodulate the sinusoid and use the QIFFT estimator to
find the sinusoidal parameters.

Note, that this approach is in principle equivalent to the MLE
for constant amplitude linear FM signals described in [4]. Because
the demodulation technique is used for the frequency slope esti-
mation we will first discuss the frequency domain demodulation
algorithm. In the following section the frequency slope estimation
is described.

3.1. Demodulation

The main objective of the present algorithm is to provide a means
to demodulate the sinusoid using only the part of the spectral peak
that is accessible for analysis. Because the sinusoidal peak is cov-
ered by noise this part will generally be the part of the mainlobe
exceeding the noise level. Initially, we assume we are given a fre-
quency slope estimatêD = D for a peak that is part of a signal
spectrum.

In time domain the demodulation can be achieved simply by
multiplication with a demodulator signal

y(n) = e−iπD̂n2
. (6)

Multiplication of the signal in equation (6) with the signal equation
(1) will remove the frequency slope and keep all other parameters
unchanged such that the QIFFT algorithm can be applied. How-
ever, the signal we are interested in is observable only via the part
of its mainlobe that constitutes the observed spectral peak.

The demodulation algorithm that uses the observed peak to de-
modulate the sinusoid will be described in the frequency domain
using as sources the spectral peak to be analyzed and the spectrum
of the deconvolution signal. AssumeS(k) is theN -point DFT of
the sinusoid to be analyzed andY (k) the DFT of the demodula-
tor signal. All DFT spectra are calculated such that the origin of
the DFT basis functions is in the center of the analysis window.
The signal analysis window isws(n) and the demodulator signal
is windowed usingwy(n). To obtain the demodulated sinusoid

spectrumX(k) we would need to compute the circular convolu-
tion

X(k) = C
S(k) ~ Y (k)

N
, (7)

whereC is a normalization factor taking into account window-
ing effects. The demodulator windowwd will be multiplied with
the signal window such that the resulting spectrum contains as
effective window the product windowwy(n)ws(n). Therefore,
proper normalization would be achieved by means of settingC =
1/

P
n(wy(n)ws(n)).

Due to the fact that only part of the sinusoid spectrum is avail-
able the normalization factor needs to be adapted. Assume the
peak under investigation is denoted byP (k). P (k) is part of the
spectrumS(k) and coversB bins. To estimate the impact of the
missing part we create a spectral model of the observed sinusoid
assuming the initial slope estimate is correct

Pm(k) =
X

n

ws(n) exp(iπD̂n2) exp(−2πj

N
kn), (8)

and select a subset̄Pm(k) of B bins around the center frequency
k = 0. 1 The required normalization factor can now be approxi-
mately estimated as

C =
1

maxk(|P̄m(k) ~ Y (k))
. (9)

Now we can replaceS(k) in equation (7) byP (k) and demodulate
using the corrected normalization factorC. Some remarks are in
order:

• The correction factor will be more precise (lower bias) for
demodulator windows that concentrate more energy in the
B-bin wide band around frequency 0 of the spectrum. This
calls for low side lobes. The demodulator window, how-
ever, will as well be applied to the signal. As a result the
estimator sensitivity to noise will increase. Accordingly the
demodulator window allows to trade-off noise sensitivity
and bias. The experimental investigation suggests that the
use of the Hanning window as demodulator windowwd is
a favorable choice for all analysis windowsws.

• The compensation of the normalization factor assumes that
the amplitude slopea = 0 and that the peak model is cut
symmetrically with respect to the peak center. To create
an optimal correspondance between the compensation fac-
tor and the missing part of the signal it is preferable if the
spectral peakP (k) that is used for demodulation is as close
as possible to the peak model that is used to derive the com-
pensation factor. The comparison of a number of strategies
that may be employed to extract the observed peak from
the spectrum we found that cutting the peak such that its
left and right magnitude have approximately the same value
creates the smallest bias. Besides the fact that this method
achieves perfect compensation fora = 0 there is a second
advantage of this method that is related to the impact of
the background noise. Assuming the background noise en-
ergy to be constant and understanding the maximum border
amplitude of the peak as a very rough indicator of the back-
ground noise level we may conclude that cutting the peak
at its maximum border level could be beneficial because it
avoids the parts of the signal where the background noise is
dominant.

1If B is even the resulting model is not symmetric!
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• For parameter estimation from demodulated peaks with the
QIFFT estimator it is essential to use the bias correction
functions proposed in [8] with correction factors adapted to
the effective windowwy(n)ws(n).

Our experimental investigation shows, that the demodulation
kernelsY (k) can be precalculated for a fixed grid of frequency
slopes and then linearly interpolated to obtain an approximate de-
modulation kernel for any given slope. If the length of the analysis
windows isM a frequency slope grid with step size0.025/M2

is sufficient to produce estimates that are nearly indistinguishable
from the results produced with the non interpolated kernels. To
use the complete information that is available in the observed peak
we use deconvolution kernels of length2B + 1 centered around
the maximum of the deconvolution spectrum.

The implementation of the deconvolution can be done in the
frequency domain (as described) or in the time domain. Time do-
main implementation would probably be more efficient if at least
the demodulation kernel could be directly stored in the time do-
main. The possibilities of time domain interpolation of the demod-
ulation kernels have not yet been studied, we believe however, that
time domain interpolation would require on the fly generation of
the complex kernels from interpolated phase functions. Due to the
linearly modulated frequency of the demodulation kernels this will
most likely be less efficient than the frequency domain implemen-
tation that has been described above.

3.2. Frequency slope estimation

As mentioned above the maximum likelihood (ML) frequency slope
estimator for constant amplitude linear FM sinusoids maximizes
the amplitude of a demodulated peak [4]. Accordingly the maxi-
mization of the amplitude of the demodulated peak using the de-
modulation algorithm described above can be considered an ap-
proximate MLE as long as the amplitude slope is sufficiently small.

To avoid the search of a large grid of frequency slopes we
propose to use an approximate initial estimate of the frequency
slopeD̂, and then to use the frequency slope estimate and two
slopes withD̂±Do to create three different demodulations of the
observed peak. From the amplitudes of these demodulated peaks
a 2nd order polynomial model of the relation between frequency
slope and demodulated amplitude can be derived. The maximum
of this polynomial is expected to provide a refined estimate of the
frequency slope.

The open question we need to address is: how do we get an
approximate estimate of the frequency slope? Given the highest
order coefficientsαφ andαA of the QIFFT polynomial for am-
plitude (A) and phase (φ) of the peak under investigation the fre-
quency slope estimate for a Gaussian analysis window is [3, 9]

D̂ =
αφ

α2
φ + α2

A

. (10)

Note the remarkable fact, that the same estimator has been ob-
tained for exponential amplitude evolution in [3] and for a first
order approximation of the spectrum of a sinusoid with linear am-
plitude evolution in [9]. The fact that the amplitude evolution func-
tion does not affect the frequency slope estimator leads us to sup-
pose that that equation (10) will provide useful estimates for other
windows than the Gaussian window as well. The argument here
is that the signal that is obtained after the analysis window has
been applied can always be considered to be equivalently gener-
ated by means of a Gaussian analysis window and a sinusoid with

appropriately modified amplitude evolution. Because the desired
frequency estimate does not change with the amplitude evolution
of the sinusoid and because the estimator equation (10) appears to
be rather insensitive to small changes of the amplitude evolution
of the sinusoid it will be considered as approximate estimator for
the frequency slope for arbitrary analysis windows.

The free parameter to select is the frequency slope offsetDo.
In general a polynomial approximation improves when the approx-
imation range is decreased. This would call for a smallDo. In the
present case, however, the relation between demodulation slope
and amplitude of the demodulated peak is covered by measure-
ment noise (due to estimation errors of the amplitude of the de-
modulated peak, due to the partially observed sinusoidal spectrum,
and due to the sampling of the Fourier spectrum by the DFT). The
final selection of theDo parameter will be discussed in section4.1.

The precision of the frequency slope estimate that is obtained
from the maximum of the polynomial is slightly, but consistently
improved if the polynomial model is not constructed for the de-
modulated amplitudeŝAi but for Âi

√
Ci whereCi is the normal-

ization factor from equation (9). Up to now a theoretical expla-
nation of this experimental finding has not yet been found. Using√

C to calculate the demodulated amplitudes will obviously create
biased amplitude estimates. For the problem of slope estimation it
appears to improve the fit of the polynomial model and therefore,
it will be preferred. After the slope has been determined from the
maximum of the polynomial a re-normalization can be performed
if the amplitude of the supporting points is required.

4. EXPERIMENTAL EVALUATION

The proposed parameter estimation procedure will be evaluated by
means of comparing it to the bias correction algorithm proposed in
[3] for which Gaussian and Hanning analysis windows are used.
The results of that algorithm are denoted asAS. Furthermore we
use the original version of the demodulation estimator according to
[10]. (denoted asDE) and the new version that includes the slope
enhancement and uses the Hanning window for all demodulation
kernels (denoted asDS).

The window type that is used will be indicated by adding the
letterG for Gaussian orH for Hanning orX for both to the estima-
tor shortcut. The window applied to the demodulation kernels will
be equal to the analysis window forDEX and Hanning forDSX.
The Gaussian analysis window is cut such that it has a length of
8σ with σ being the standard deviation of the Gaussian. To facil-
itate orientation we display the results of the QIFFT estimator as
well as the Cramer-Rao bounds for second order polynomial phase
estimation with that have been presented in [11]. Note, however,
that these bounds have been found for constant amplitude polyno-
mial phase signals, such that they can only be used to provide an
approximate idea of the estimator efficiency.

In the experiments we use synthetic test signals with a single
sinusoid according to equation (1) withA = 1, ω0 randomly sam-
pled from a uniform distribution over the frequency range[0.2, 0.3],
φ randomly chosen from a uniform distribution between[−π, π],
and varying slopesa andD. The analysis window coversM =
1001 samples in all cases. The frequency slopeD is selected from
a uniform distribution over interval[−Dmax/M2, Dmax/M2].
Similarly the amplitude slopea is sampled from a uniform dis-
tribution over the range[−amax/M, amax/M ]. The slope ranges
are considered realistic for real world signals. Note, that in har-
monic signals the frequency slope scales with the partial number
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Figure 1: Comparison of the frequency slope estimation errors for theDSX estimator with varying slope offsetDo and theASX estimator.
Window size isM = 1001 and sinusoids with strong (a,c) and weak (b,d) amplitude and frequency modulation are considered. DFT size is
N = 4096 (a,b), andN = 1024 (c,d). The CRB for constant amplitude polynomial phase signals is displayed as lower limit. Algorithms
using a Gaussian/Hanning window are distinguished by means of solid/dashed lines. See text form more details.

.

such that for high partials extreme slopes may arise.

Note, that the implementation of the algorithm used for the
experimental investigation uses linearly interpolated demodulation
kernels as proposed in section 3.1.

4.1. Frequency slope estimation

In the first experiment we investigate into the frequency slope es-
timation. In Figure 1 we compare the enhanced demodulatorDSX
with theASXmethod according to equation (10). Because theDEX
estimator uses the frequency slope estimate provided byASXdi-
rectly we don’t considerDEX here. We use two different zero
padding factors (FFT sizeN = 1024 andN = 4096) and two
different sets of modulation ranges, the strong modulation is using
Dmax = 4 andamax = 1, while for weak modulation we select
Dmax = 0.5 andamax = 0.15. Note, that the weak modula-
tion range approximately covers the interval for that theASHbias
correction has been derived in [3]. TheDSXestimator is operated
with a set of demodulation offsetsDo ∈ [0.2, 0.4, 0.6, 0.8]/M2.

The results of the experiment are shown in Figure 1. There
are a number of conclusions that can be drawn from these figures.
First, we find that for strong modulation theDSXmethod has sig-
nificantly lower bias then theASXmethod. Second, we observe
that for the Hanning window theDSHestimator achieves a reduc-
tion of the estimation bias by2 − 30dB. The smallest improve-
ment is achieved for weak modulation and large oversampling fac-
tor. The only case where theASXestimator significantly outper-
forms DSX is weak modulation with small oversampling factor
and Gaussian analysis window. This could have been expected
because theASGestimator is exact for the Gaussian analysis win-
dow and the small oversampling factor does not influence this es-
timator. As expected the Hanning window has larger bias than the
Gaussian window but at the same time it is less sensitive to noise
by about4dB. In general theDSXare more sensitive to noise by
about2− 3db.

Considering the demodulation offsetDo we find that the off-
set has a significant impact only for strong modulation with small
oversampling factor and Hanning window. This is related to the
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Figure 2: Comparison of the estimation errors for the different parameter estimators using window sizeM = 1001 and FFT size
N = 4096 and (strong) linear AM/FM withDmax = 4 andamax = 1 (a-c). Figures (d-f) show phase estimation errors for different
modulation limits and FFT sizes. The CRB for constant amplitude polynomial phase signals is displayed as lower limit. Algorithms using
a Gaussian/Hanning window are distinguished by means of solid/dashed lines. See text form more details.
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fact that the initial frequency slope estimate of theASHthat is the
basis of the slope refinement inDSX is rather bad, such that the
model needs to compensate a larger range of slope errors. More-
over the amplitude estimation is less precise for smaller oversam-
pling factors such that a larger slope offset may be required to ob-
tain a polynomial model that captures the underlying relations. For
Do = 0.5 we get nearly optimal results for all cases which is why
we select this value for the following experiments.

4.2. Bias correction

After having discussed the properties of the frequency slope es-
timation we now investigate into the main topic of this paper, the
bias reduction. Due to space constraints we will only discuss a few
of the experiments we have conducted. We will discuss the results
for all parameters for strong modulation withDmax = 4/M2 and
amax = 1/M and an FFT size ofN = 4096. Furthermore we
select the phase bias reduction as an example and discuss the bias
reduction for the phase estimate for weak and strong modulation
and FFT sizesN = 1024 andN = 4096.

The results of the bias reduction for strong modulation and
N = 4096 are displayed in the left column of Figure 2. As
expected the amplitude estimate a.) of ASX is strongly biased
due to the fact that the amplitude trajectory model does not match
the signal. DEX and DSX are both similar and better then ASX.
Note, that the improved frequency slope estimate of DSX hardly
improves the amplitude estimate compared to DEX and that the
increase of the noise sensitivity of DEX and DSX is negligible.
For frequency b.) and phase estimation c.) DSX has by far the
smallest bias (compared to the other estimators using the same
analysis window). DEH and ASH perform approximately simi-
lar for both for frequency and phase estimation. Given that DEX
and ASX estimators both use the same frequency slope estimate
this shows that the bias of these two estimators is due to the error
in the frequency slope estimate which is improved by the refined
slope estimate of DSX.
The increase of the noise sensitivity for the demodulation algo-
rithms is negligible for phase estimation. For the frequency esti-
mator the use of the Hanning window instead of the analysis win-
dow is clearly diminishing the noise sensitivity when the analysis
window is Gaussian.

The right column of Figure 2 shows the phase bias removal
for all the experimental settings that were used in the evaluation of
the frequency slope estimation. A close inspection of the results
reveals that the performance of the bias removal is directly related
to the performance of the frequency slope estimation. This can
be expected because any error in the frequency slope estimate will
translate into an error in the bias correction algorithm.

As a summary of the experimental investigation of the algo-
rithm using synthetic signals we conclude that compared to the
QIFFT estimator all the bias reduction algorithms dramatically re-
duce the estimation bias. Compared to the recentASXestimator
the simple and enhanced demodulation algorithm both provide a
significant reduction of the estimation bias especially if the range
of the modulation is not confined to the rather limited range of val-
ues that has been considered in [3]. Comparing theDEX andDSX
algorithms we have shown that the enhanced slope estimation has
a direct and significant impact on the bias of the sinusoidal param-
eters. Due to the fact that the frequency slope bias of theDEX
algorithm increases with the modulation we expect that theDSX
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Figure 3: Residual signal of a vibrato tenor singer using QIFFT
estimator (top) and the enhanced demodulation method DSH (bot-
tom).

estimator is especially advantageous if the modulation is strong.
The possibility to freely select the demodulator window improves
the noise sensitivity in case the Gaussian window is used as anal-
ysis window.

4.3. A real world example

To demonstrate that the advantages of the proposed estimator are
effective in real world situations we have implemented the bias
reduction methods in a complete additive modeling system. The
theoretical investigation has been restricted to cover the case of re-
solved sinusoids, only. For real world applications, however, the
algorithm has to prove that it will act gracefully when the under-
lying model no longer holds (transients, unresolved sinusoids due
to reverberation, ...). The major problem in real world signals is
related to the fact that the enhanced frequency slope estimation
described in 3.2 may produce extreme values whenever the under-
lying signal model does not match the observed peak. In these
cases the method may for example try to model the transient or
nearby sinusoids by means of extreme slopes.
To prevent the degeneration of the estimator we use a number
of tests that are designed to allow us to detect the cases for that
the signal model that is used to analyze the peak does not hold.
The tests that verify the reliability of the second order polynomial
model of the relation between demodulation slope and amplitude
are: verification that the extremum of the polynomial model is a lo-
cal maximum, verification that the amplitude that is obtained with
the optimal demodulation slope is larger than the amplitude ob-
tained with the initial slope estimate, verification of that the slope
offset to reach the optimal slope is within±2Do. If one of these
tests fails the polynomial representation of the slope and amplitude
relation is considered unreliable and theDEX estimator is used as
a fallback.

The test that verifies the validity of the linear AM/FM sinu-
soidal representation is based on the center of gravity of the energy
(the mean time) of the signal related to the spectral peak under in-
vestigation. If the mean time is larger then the maximum mean
time that can be expected for the signal model equation (1) then

DAFX-7

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

DAFX-07 83



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

we can assume that the peak is related to a sinusoid with transient
amplitude evolution [12]. In this situation the exponential ampli-
tude evolution used by theASXestimator is more appropriate than
the linear AM and therefore theASXestimator is used. Note, that
theASXandDEX estimators are sub modules that are required for
theDSXestimator anyway such that the fallback solutions do not
require additional costs in terms of implementation or calculations.

freq band ASH DEH DSH
full -4.19 -4.72 -5.04
0-2kHz -3.13 -3.75 -4.05
2-4kHz -7.32 -8.40 -9.33
4-6kHz -5.78 -6.90 -7.32

Table 1:The reduction of the energy of the residual signal obtained
with the different bias reduction algorithms. The performance of
the algorithms varies with the frequency band.

For the last experiment we compare the estimators by means
of the energy of the residual signal of an harmonic model of a tenor
singer. The signal contains strong vibrato, and therefore, the bias
due to the non-stationary parameters is expected to be significant.
The harmonic models contain a maximum of 30 sinusoids at each
time instant. We calculate the variance of the residual signal for
the QIFFT,DEH, DSH, andASH methods for a signal window
of 800 samples and a FFT size of 4096 samples. The variance
of the residual signal is compared to the QIFFT estimator and the
reduction of the residual energy in different frequency bands that
can be achieved with each estimator is listed in table (1).

From table (1) we can conclude that all bias reduction meth-
ods achieve significant improvements of the residual energy. It is
interesting to compare the performance in the different frequency
bands. In the low band the improvement is in the range from 3-
4dB. The improvement is less pronounced because the FM mod-
ulation extend is low. In the mid band range the FM modulation
becomes stronger and the reduction methods achieve residual en-
ergy reduction from 7.3-9.3dB. For the highest band the FM mod-
ulation is still stronger, but the noise level is higher as well such
that the reduction of the residual energy is not as strong.

The advantage of the demodulation methods overASHis clearly
visible. TheDEX estimator improves the reduction of theASHes-
timator by 0.5-1.2dB. TheDSXestimator is clearly the best with
an improvement compared to theASHestimator by 0.8-2dB. The
residual signals for the QIFFT andDSH estimator are shown in
figure Figure 3. The reduction of the residual is clearly visible.

5. CONCLUSIONS

In the present paper we have shown that an efficient bias reduc-
tion strategy for estimation of sinusoidal parameters consists of a
frequency slope estimation and demodulation prior to application
of the standard QIFFT estimator. The procedure significantly re-
duces the bias of the standard estimator. It does not require the use
of a Gaussian analysis window and does work for a much larger
range of modulation depths than a recently proposed algorithm.
The computational costs are significantly higher then those for the
standard estimator (≈ factor 8). However, they are sufficiently low
such that real time estimation of some tenth of sinusoids from au-
dio signals can be achieved. By means of investigation into the re-
duction of the residual energy that can be obtained for a real world

vibrato signal we have shown that the proposed enhanced demod-
ulation estimator is effectively working in real world situations. It
has been shown that compared to the standard QIFFT estimator
the reduction of the residual error depends on the frequency range
and can be as large as 6-9dB.
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ABSTRACT

In this paper we introduce a simple and fast method for realtime
recognition of multiple pitches produced by multiple musical in-
struments. Our proposed method is based on two important facts:
(1) that timbral information of any instrument is pitch-dependant
and (2) that the modulation spectrum of the same pitch seems to re-
sult into a persistent representation of the characteristics of the in-
strumental family. Using these basic facts, we construct a learning
algorithm to obtain pitch templates of all possible notes on vari-
ous instruments and then devise an online algorithm to decompose
a realtime audio buffer using the learned templates. The learn-
ing and decomposition proposed here are inspired by non-negative
matrix factorization methods but differ by introduction of an ex-
plicit sparsity control. Our test results show promising recognition
rates for a realtime system on real music recordings. We discuss
further improvements that can be made over the proposed system.

1. INTRODUCTION

We address two important problems often discussed in the music
information retrieval and computer music research communities:
estimating multiple fundamental frequencies of music signals and
musical instrument recognition. Both topics have received sub-
stantial effort from the research community especially in the recent
years for polyphonic sounds (as opposed to solo or monophonic
audio). Both are also important tasks for many applications in-
cluding automatic music transcription, music information retrieval
and computational auditory scene analysis. Another motivation
for this work is the continuing need for live algorithms in com-
puter music where the recognition of musical characteristics of the
signal such as pitches and instruments becomes essential.

The multiple-pitch detection literature contains a wide variety
of methods spanning from pure signal processing models to ma-
chine learning methods for both music and speech signals. For
an excellent overview of different methods for multiple-f0 esti-
mation, we refer the reader to [1]. The main aim of instrument
identification is to determine the number and the names of the
instruments present in a given musical excerpt. Whereas musi-

cal instrument recognition studies mainly deals with solo musical
sounds, the number of those dealing with polyphonic music has
been increasing in the recent years. In [2], Kashino et al. develop a
template-matching method that compares the observed waveform
locally with sum of template waveforms that are phase aligned,
scaled, and filtered adaptively. Similarly [2, 3] use feature match-
ing methods where features computed in zones where several notes
overlap are modified or discarded before stream validation depend-
ing on their type. Other systems directly address the instrument
identification without considering note models or pitch detection.
In [4], Essid et al. introduce an SVM model with a hierarchical tax-
onomy of a musical ensemble that can classify possible combina-
tions of instruments played simultaneously. In another approach,
Livshin and Rodet [5] use an extensive set of feature descriptors on
a large set of pitched instrument sound samples, reducing the fea-
ture dimensions with Linear Discriminant Analysis and then clas-
sifying the sounds with a KNN method. More recently Kitahara
et al. [6] have proposed a method for visualizing the instrument
existence probabilities in different frequency regions.

In this paper, we propose a new technique that recognizes mul-
tiple pitches along with their instrument origin in polyphonic mu-
sical audio signals and in realtime; hence, addressing both prob-
lems mentioned earlier. The main difference between our proposed
method and the ones discussed above is the fact that our system is
geared towards real-time recognition and for realistic musical sit-
uations. Our approach is similar to [2] where instrument-based
pitch templates are being matched to the ongoing audio but differs
significantly by the extensive reliance on sparse machine learning
in our approach. Our proposal is inspired by simple observational
facts regarding the nature of musical instruments and consists of
decomposing an ongoing audio signal using previously learned
instrument-dependant pitch templates and sparse non-negative con-
straints. We discuss the basic idea and general architecture of the
algorithm in section 2. The algorithm both in learning and realtime
decomposition phases, uses a recently introduced signal represen-
tation scheme based on modulation spectrum [7]. The key fact
here is that the modulation spectrum of musical instruments seems
to be an important discriminating factor among them. We will dis-
cuss the modulation spectrum and its pertinence to our problem in
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section 3 as the main signal processing front-end for our algorithm.
In section 4 we show how instrument templates are learned. This
learning is once-for-all and is based onNon-negative Matrix Fac-
torization (NMF) algorithm [8]. These learned templates would
be imported to the main algorithm for realtime instrument-based
pitch detection called sparse non-negative decomposition detailed
in section 5. This is followed by some results and discussion on
further improvement envisioned for the proposed system. An ear-
lier version of the machine learning algorithm proposed here has
appeared previously in [9] by the first author and for a different
application. In this paper, we have refined the learning methods
and are introducing it in a more elaborate and different context.

2. GENERAL ARCHITECTURE

As mentioned earlier, we attempt to address both the problem of
multiple-pitch detection and musical instrument recognition. The
motivation behind this mix is the simple fact that for each given
musical instrument, the timbral profiles vary along different pitches
or notes produced by the instrument. Moreover, the timbral pro-
file of a given pitch on a given instrument varies along different
modes of performance for certain instruments (for example play-
ing ordinario or pizzicatoon violin family). Given this fact, we
propose learningtemplatesfor each sound produced in each in-
strument once and for all, and use these templates during realtime
detection.

Another important motivation behind the proposed algorithm
is the simple intuition that humans tend to use a reconstructive
scheme during detection of multiple pitches or multiple instru-
ments and based on their history of timbral familiarity and music
education. That is to say, in music dictation practices, well-trained
musicians tend to transcribe music by conscious (or unconscious)
addition of familiar pitches produced by musical instruments. The
main idea here is that during detection of musical pitches and in-
struments, there is no direct assumption ofindependenceassoci-
ated with familiar patterns used for reconstruction and we rely
more onreconstructionusing superpositions.

Considering these facts, we can generally formulate our prob-
lem by non-negativefactors. Non-negativity in this case simply
means that we do notsubtractpitch patterns in order to determine
the correct combination but rather, we somehow manage to di-
rectly point to the correct combination of patterns that reconstruct
the target by simple linear superposition. Mathematically speak-
ing, givenV as a non-negative representational scheme of the re-
altime audio signal inRN

+ , we would like to achieve

V ≈WH (1)

whereW is a non-negativeRN×r
+ matrix holdingr templates cor-

responding to objects to be detected andH is a simple non-negative
r × 1 vector holding the contribution of each template inW for
reconstructingV . During realtime detection, we are already in
possession ofW and we tend to obtainH indicating the presence
of each template in the audio buffer that is arriving online to the
system inV . Given this formulation, there are three main issues to
be addressed:

1. What is an efficient and pertinent representation forV ?

2. How to learn templates inW using this representation?

3. And how to obtain an acceptable result inH in realtime?

We will give a general overview of the three questions above
in the following subsections and present algorithmic descriptions
in the coming sections.

2.1. Representational Front-end

Any representational front-end chosen for the formulation above,
should at least meet two important properties: (1) obviously it
should have enough information for discrimination between in-
struments, and (2) due to the non-negative formulation in equa-
tion 1 it should preserve itself when multiple instruments are present
at least to a good extent and in our case, observe superposition of
different instruments.

Dubnov et al. have shown in [10] that phase coupling is an
important characteristic of a sustained portion of sound of individ-
ual musical instruments and show results obtained for various in-
struments observing consistencies in phase coupling templates for
at least flute and cello. Furthermore, they note that the statistical
properties of a signal due to phase variation can not be easily re-
vealed by standard spectral analysis techniques due to the fact that
second-order statistics and the power spectrum arephase blind. In
their proposal they use a quadratic phase coupling method using
higher-order statistics to obtain the phase coupling representation.
Using additive sinusoidal analysis, their method is highly sensitive
to the fundamental frequencies of the sound itself.

The representational front-end we propose in this paper is in-
spired by findings in [10] as an indirect but efficient method to
represent spectral modulations of the signal, also capable of rep-
resenting pitch information. We will detail this representational
scheme in section 3.

2.2. Sparsity of the solution

Equation 1 simply assumes a linear combination of the previously
learned templates with non-negative coefficients for reconstruction
of V or learningH. The price to pay for this simplicity is of
course solving for the correct results inH where there are many
possible combinations of templates that might achieve a given er-
ror criterion. This issue becomes even more important if there is
no mathematical independence between the basis stored inW as
templates. This is a major difficulty with non-negative constraint
problem solving. More specifically, for our problem, harmonic re-
lations between pitches of an instrument and among instruments
themselves always lead to various approximate solutions forH
and leading to the famousoctave errorsand more.

To overcome this problem, we use the strong assumption that
the correct solution for a given spectrum (inV ) uses a minimum of
templates inW , or in other words, the solution has the minimum
number of non-zero elements inH. This assumption is hard to
verify for every music instrument and highly depends on the tem-
plate representations inW , but is easily imaginable as harmonic
structure of a music note can be minimally expressed (in the mean
squared sense) using the original note than a combination of its
octaves and dominant.

Fortunately, this assumption has been heavily studied in the
field of sparse coding. The concept of sparse coding refers to a
representational scheme where only a few units out of a large pop-
ulation are effectively used to represent typical data vectors [11].
In section 5 we propose a technique to control sparsity in a non-
negative constraint problem.
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3. MODULATION SPECTRUM

For non-stationary signal classification, features are traditionally
extracted from a time-shifted, yet short data window. For instru-
ment classification, these short-term features do not efficiently cap-
ture or represent longer term signal variations important for the
given task and can barely represent important discriminative char-
acteristics such as spectral envelope or phase coupling for musical
instrument recognition. Sukittanon et al. in [7] propose a mod-
ulation spectrum representation that not only contains short-term
information about the signal, but also provides long-term informa-
tion representing patterns of time variation on the spectrum itself.
In this model, the audio signal is the product of a narrow band-
width, stationary low-pass modulating random processm(t) and
the high-pass carrier, a deterministic functionc(t)

x(t) = m(t) · c(t)

For the model to be accurate,m(t) is assumed to be non-negative
and its bandwidth does not overlap with that ofc(t). The above
model has been applied to speech and audio coding [12]. Fol-
lowing the observations in section 2.1 and in [10], we study the
feasibility of this representation for our task and hope thatm(t)
will provide an informative representation for pitched musical in-
struments.

Modulation Spectrum is based on a two-dimensional repre-
sentation of the acoustic and modulation frequency or a joint fre-
quency representation. Moreover, it does not require prior estimate
of the periodicity of the signal. One possible representation of this
form is Px(η, ω), as a transform in time of a demodulated short-
time spectral estimate whereω andη areacoustic frequencyand
modulation frequencyrespectively. To obtain this representation,
we first use a spectrogram with an appropriately chosen window
length to estimate a joint time-frequency representation of the sig-
nal Px(t, ω). Second, another transform (Fourier in our case) is
applied along the time dimension of the spectrogram to estimate
Px(η, ω). Figure 1 shows the analysis structure undertaken on the
audio (top) to obtain the modulation spectrum (down). A more
rigorous view ofPx(η, ω) is the convolution inω and multiplica-
tion in η of the correlation function of a Fourier transform of the
signalx(t) and the underlying data analysis windoww(t), as in
equation 2 [7].

Px(η, ω) =
�
W ∗(ω − η

2
)W (ω +

η

2
)
�

(2)

∗ w
�
X∗(ω − η

2
)X(ω +

η

2
)
�

Figure 2 shows this representation for one analysis frame of
piano and trumpet both playingA4 (f0 ≈ 440Hz). The time-span
of this analysis corresponds to the length of the first transformN1,
the length of the second transformN2 and the sampling frequency
fs which here are2048, 32, 44100 leading to a span of almost1.5
seconds. Frequency modulation resolution, similar to frequency
and time resolution in Fourier transform, relies on the choice of
N2 and both transforms’ overlap sizeH1 andH2.

Interpretation ofPx(η, ω) above is straightforward. The val-
ues ofPx(η, ω) lying along η = 0 is an estimate of the non-
stationary information about the signal which, in our case, corre-
sponds mostly to harmonic partials in the spectrum. Values along
η > 0 correspond to the degree of spectral modulation. For exam-
ple, in figure 2 almost all partials of the trumpet are being mod-

Figure 1: Analysis structure for obtaining modulation spectrum
(bottom) from audio (top).

ulated whereas for piano (left) modulation decreases for higher
partials.

The non-negativity of the modulation spectrum representation
and its ability to demonstrate phase coupling of instruments as
modulation frequencies makes it a perfect candidate for the repre-
sentation needed forV in our problem definition. Furthermore, At-
las et al. discuss associativity of this representation in [13], leading
to superposition of instrument templates when several are present
in the spectrum. This is demonstrated in figure 3 where modula-
tion spectrum of flute playingA6 alone is represented at left and
modulation spectrum of a recording of piano playingA4 and flute
playingA6 at the same time is represented at the right. Intuitively,
the figure on the right of figure 3 would be a straight superposition
of the left figures in figure 2 and 3 despite their different scaling.
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Figure 2:Modulation Spectrum of Piano (left) and Trumpet (right)
playingA4, zoomed over0− 10KHz acoustic frequencies.
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Modulation Spectrum for Flute A6
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Figure 3:Modulation Spectrum of Flute playingA6 (left) and Pi-
ano (A4) and Flute (A6) playing together (right), zoomed over
0− 10KHz acoustic frequencies.

Hence, we adopt this two-dimensional joint frequency repre-
sentation as the front-end of our system.

4. LEARNING INSTRUMENT-BASED PITCH
TEMPLATES

As mentioned in section 2, the proposed system solves for the
existence of previously learned instrument-based pitch templates
(stored inW in our notation). Here we discuss how these tem-
plates are learned and resolve the second question in section 2.
As a reminder,W contains modulation structures of all pitches of
each given instrument. For example, for an acoustic piano, matrix
W would contain all88 notes as88 different 2-D representations.
To this end, training is done on databases of instrumental sounds
[14, 15] using an off-line training algorithm that learns different
modulation structures of instruments by browsing all sounds given
in the database and stores them in matrixW for future use.

For each audio file in the database, training is an iterative NMF
algorithm [8] with a symmetric kullback-leibler divergence for re-
construction error as shown in Equation 3, where⊗ is an element
by element multiplication. In this off-line training,V would be
the modulation spectrum of the whole audio file as described in
Section 3 and the learning algorithm factorizesV asV ≈ WH.
The subscripta refers to theath template and other subscripts in
equation 3 are vector indexes used during learning. In order to ob-
tain precise and discriminative templates, we put some constraints
onW vectors learned during each NMF iteration. For each sound
in the database (or each pitch) we force the algorithm to decom-
poseV into two objects (W has two 2-D elements) where we only
learn one vector and have the other fixed as white non-negative
noise, where only the first one would be stored for the globalW .
This method helps the algorithm focus more on the harmonic and
modulation structure ofV . Furthermore, we require modulation
frequencies higher that zero (η > 0) at each iteration by a con-
stant factor (Emph in equation 3). The idea behind this factor is
to emphasize non-stationary structure of the signal, important for
between instrument discrimination.

Haµ ←− Emph⊗Haµ

P
i WiaViµ/(WH)iµP

k Wka

Wia ←− Emph⊗Wia

P
i HaµViµ/(WH)iµP

ν Haν

(3)

When the training reaches an acceptable stopping criteria, the
modulation spectra in the localW will be saved in the globalW
and the algorithm continues to the next audio file in the database

until it constructsW for all given sounds in the database. Fig-
ure 4 shows learned modulation spectrum templates for flute and
violin playing A4. During analysis, the parameters areN1 =
2048, N2 = 32, H1 = 1024, andH2 = 16 leading to a time
resolution of∼ 370ms and modulation upper bound of around
21Hz for a sampling frequency of44100Hz. Both templates were
trained on audio files in the SOL database [15] and were converged
after slightly more than100 iterations.
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Figure 4: Learned Modulation Spectrum of FluteA4 (left) and
Violin A4 (right).

Note that using this type of representation for templates has
an important disadvantage. The modulation spectrum described
above provides a large dimension compared to traditional short-
term spectral estimations. To compensate for this, we reduce the
representation by cutting frequencies above6KHz. This choice
was adopted by trial-and-error and since most useful partial and
modulation information lie below this threshold. Moreover, dur-
ing learning and decomposition, we consider the 2-D modulation
spectrum and templates asimagesthat hence, can be reshaped into
a 1-D vector and back.

5. SPARSE NON-NEGATIVE DECOMPOSITION

We are now in a position to address the third and last issue brought
in section 2. HavingV as the modulation spectrum analysis of
real-time audio andW as stored instrument-based pitch templates,
we would like to obtainH such thatV ≈ WH. As mentioned
earlier in section 2.2, in order to decompose the spectrum using
learned pitch templates, the solution needs to be sparse. One of the
useful properties of the original NMF [8] is that it usually produces
a sparse representation of the data. However this sparseness is
more of a side-effect than a goal and one can not control the degree
to which the representation is sparse. In this section, we introduce
a modified sparse non-negative decomposition algorithm.

Numerous sparseness measures have been proposed and used
in the past. In general, these measures are mappings fromR

n

to R which quantify how much energy of a vector is packed into
a few components. As argued in [16], the choice of sparseness
measure is not a minor detail but has far reaching implications
on the structure of a solution. Very recently, Hoyer has proposed
an NMF with sparseness constraints by projecting results intoℓ1
andℓ2 norm-spaces [17]. Due to real-time considerations and the
nature of sparseness in audio signals for pitch determination we
propose a modified version of Hoyer’s method described in [17].

The definition commonly given for sparseness is based on the
ℓ0 norm defined as the number of non-zero elements

‖X‖0 =
# {j, xj 6= 0}

N
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whereN is the dimension of vectorX. It is a characteristic for the
ℓ0 norm that the magnitude of non-zero elements is ignored. More-
over, this measure is only good for noiseless cases and adding a
very small measurement noise makes completely sparse data com-
pletely non-sparse. A common way to take the noise into account
is to use theℓǫ norm defined as follows:

‖X‖0,ǫ =
# {j, |xj | ≥ ǫ}

N

where parameterǫ depends on the noise variance. In practice, there
is no known way of determining this noise variance which is inde-
pendent of the variance inx. Another problem of this norm is that
it is non-differentiable and thus can not be optimized with gradi-
ent methods. A solution is to approximate theℓǫ norm bytanh
function,

g(x) = tanh(|ax|b)

wherea andb are positive constants. In order to imitateℓǫ norm,
the value ofb must be greater than1.

In addition to thetanh norm, we force anℓ2 constraint on
the signal. This second constraint is crucial for the normalization
of the results and emphasis on significance of factorization during
note events in contrary to silent states.

In summary, the sparseness measure proposed is based on the
relationship between theℓǫ norm and theℓ2 norm as demonstrated
mathematically in Equation 4.

sparseness(x)=

√
N −

P
tanh(|xi|2)/

pP
x2

i√
N − 1

(4)

Algorithmic realization of this sparsity constraint is a straightfor-
ward and cheap iterative procedure that projects the results first to
the ℓǫ hyperplane and then solves for the intersection of this pro-
jection with the hyperplane possessed byℓ2. Figure 5 shows a
synthetic signal (left) and its sparse projection using the proposed
procedure withℓǫ = 0.9 andℓ2 equal to signal’s energy.
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Figure 5:Synthetic signal before sparse projection (left) and after
(right).

For non-negative sparse decomposition, we use gradient de-
scent updates instead of the original NMF multiplicative updates
(Equation 3) and project each vector in real-time to be non-negative
and have desiredℓ2 andℓǫ norms. This projected gradient descent,
adapted from [17], is outlined below. Once again this algorithm
shows the factorization forH when templates are known.

GivenV andW , find the non-negative vectorH with a givenℓǫ

norm andℓ2 norm:

1. Initialize H to random positive matrices or to previous
value ofH in sequence

2. Iterate

(a) SetH = H − µHW T (WH − V )

(b) Setsi = hi + (ℓǫ −
P

tanh(h2
i ))/N

andmi = ℓǫ/N

(c) Sets = m + α(s−m) where

α =
−(s−m)T m+

√
((s−m)T m)2−

P
(s−m)2(

P
m2

−ℓ2
2
)P

(s−m)2

(d) Set negative components ofs to zero
and setH = s

Algorithm 1. Sparse Non-negative Matrix Decomposition

Here, step (a) is a negative gradient descent and (b) through (d)
are the projection process on theℓǫ andℓ2 space. In (b) we are
projecting the vector to theℓǫ hyperplane and (c) solves a quadratic
equation ensuring that the projection has the desiredℓ2 norm.

For realtime pitch/instrument detection, theℓ2 norm is pro-
vided by the spectrum energy of the realtime signal (directly cal-
culated from the column inV corresponding toη = 0) and the
ℓǫ takes values between0 and1, is user-specified and can be con-
trolled dynamically. The higher theℓǫ, the more sparse is the so-
lution in H. V would be a vector of sizeN1 × N2 where here
we useN1 = 2048 andN2 = 32 and further reduced (alongN1)
to capture modulation structures up to about6KHz acoustic fre-
quency in a sampling rate of44.1KHz. Equivalently,W would
be a matrix of SizeOf(V )×m with m as the number of templates
andH would be a vector of sizem.

6. EVALUATION

A clean evaluation of a systems such as the one proposed in this
paper bears practical difficulties. It should be clear by now that we
are attempting towards a multi-instrument transcription of music
signals in form of apiano roll presentation. To evaluate such rep-
resentation one needs an annotated and transcribed music of the
same type to an order of milli-seconds. There has been recent at-
tempts in creating such database but for monophonic music or in
the best case, polyphonic but mono-instrument sounds (such as pi-
ano music). Evaluation procedures that has been undertaken so far
in the literature do not seem to be close to ideal either. In systems
where the authors aim for multiple-instrument identification, the
pitch information is missing [4, 6]. Otherwise, other researchers
aimed at manual mixing of single note recordings of different in-
struments as the basis of their evaluations (for example in [5]).

As mentioned in the beginning of this paper, our system is des-
tined towards real-time applications in computer music systems.
Therefore, it is vital that the evaluation procedure is done on real
music recordings and in real musical situations despite the diffi-
culties of such approach.

In this section we showcase the performance of our system in
two manners: (1) A subjective evaluation where we demonstrate
the real-time output of the system on short musical examples and
compare the results visually with the piano-roll representations of
their scores. (2) An objective evaluation where we evaluate the
algorithm on mixed music recordings and provide detailed results.
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All audio files and results used during evaluation as well as more
fine-tuned and detailed images can be viewed on the project’s web-
site1.

6.1. Subjective Evaluation

Figures 6(a) and 6(b) show the performance of the system (bot-
tom) on a real recording of the first phrase of Beethoven’s Sonata
for Piano and Violin(The spring). A piano roll representation of
the MIDI score of the same phrase is represented in figure 6(a)
where the Piano section has darker color than the violin part. In
the sample result (figure 6(b)), decomposition results are repre-
sented as an image where the Piano and Violin results occupy a
separate space. The Y-axis represents pitches for each instrument
(88 for Piano and41 for Violin) and are sorted in ascending order
to resemble a piano-roll representation.

0 2 4 6 8 10 12

A2

C3

E3

G3

A3

C4

E4

G4

A4

C5

E5

G5

Time in beats

P
itc

h

ch1

ch2

MIDI Excerpt Score of Beethoven "Spring" Violin Sonata − Movement II

(a) MIDI Score Representation

Time (s)

Results on Beethoven’s "Spring" Sonata for Violin and Piano, Movement II

V
io

lin
P

ia
n

o

0.0 0.7 1.5 2.2 3.0 3.7 4.5 5.2 6.0 6.7 7.5 8.2 9.0 9.7 10.5 11.2 12.0 12.7 13.5
A0
B0

C#1
D#1
F1
G1
A1
B1

C#2
D#2
F2
G2
A2
B2

C#3
D#3
F3
G3
A3
B3

C#4
D#4
F4
G4
A4
B4

C#5
D#5
F5
G5
A5
B5

C#6
D#6
F6
G6
A6
B6

C#7
D#7
F7
G7
A7
B7

−−−−NOISE−−−−
G#3
A#3
−C4
−D4
−E4
F#4
G#4
A#4
−C5
−D5
−E5
F#5
G#5
A#5
−C6
−D6
−E6
F#6
G#6
A#6
−C7
−D7
−E7

(b) Decomposition Results

Figure 6: Sample result (1): Beethoven’sSpring Violin-Piano
Sonata, 2nd movement, starting bars with score (top) and system
result (bottom).

Similarly, figures 6.1 shows the performance of the system
(bottom) on a real recording of a few bars from Francis Poulenc’s
Sonata for Flute and Piano with the score excerpt shown in a pi-
ano roll presentation on the top. Here again, the flute section is
represented by a lighter color in the piano roll score of figure 7(a).

1http://cosmal.ucsd.edu/arshia/DAFx07/
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Figure 7: Sample result (2): Francis Poulenc’s Sonata for Flute
and Piano (excerpts).

The parameters used for training and real-time decomposi-
tions for both examples are as follows:Fs = 44100Hz, N1 =
4096, N2 = 32, H1 = 256, andH2 = 16. During real-time anal-
ysis, these choices leave us with an analysis time-span of almost3
seconds and response delay of93 milli-seconds.

For a subjective evaluation, it suffices to compare the score
piano-roll representation with the result images in figures 6(b) and
7(b). For the Piano parts, specially for the Piano and Violin exam-
ple, the low notes are hard to distinguish, especially with the cur-
rent scaling of the paper. However, in both figures the main con-
tour of both scores can be easily detected with the eyes. An impor-
tant remark here is the (weaker) presence of the first instruments
(Violin and Flute) in the accompaniment instrument (Piano). Both
detailed analysis of the results and the confusions are addressed in
the next section.

6.2. Objective Evaluation

Due to the lack of high-resolution annotated and transcribed en-
semble recordings, we tend to mix transcribed and annotated mono-
phonic music for different instruments and evaluate the perfor-
mance of our system on the mixed audio. The advantage of this
approach is that first, we will be dealing with real music recordings
and two, we can easily calculate precisions for instrument/pitch
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detection across instruments since the annotations for each instru-
ment are separate. The disadvantage, of course, is that after-the-
fact mixing of two instruments can not demonstrate eventual spec-
tral fusions common in ensemble recordings (which was not the
case in our subjective evaluation). For this paper, we focus on
two-instrument mixes and address more enhanced evaluations in
another publication.

Audio and annotation files used for this evaluation session are
taken from theScore Following Evaluation Taskprepared by the
author for MIREX 2006 [18] and also from a previous experi-
ment reported in [9]. Table1 shows the specification of Audio
and (aligned) MIDI files used during the evaluation. The MIDI
annotations that come with each audio file, provide aligned score
to audio information. Note that although these annotation were
created automatically and double checked using a high-resolution
analysis software, they are not perfect especially in the case of Pi-
ano because of the difficulty in assigning correct note lengths in a
polyphonic situation and in the presence of the piano pedal. This
issue is quite present for piece number2 which is usually played
with a high utilization of the sustain pedal.

Table 1: Specification of Audio and Midi used for evaluation

# Piece Name Time Events Instr.

1 Mozart’sPiano Sonata in A major,K.331 9:55 4268 Piano

2 Chopin’sNocturne no.2, opus 9 3:57 1291 Piano

3 Bach’sViolin Sonata 1, Movement 4 3:40 1622 Violin

4 Bach’sViolin Sonata 2, Movement 4 5:13 2042 Violin

For this evaluation we created two Piano and Violin mixtures
according to their lengths:1 + 4 and2 + 3, and ran the system
on both mixtures. Mixing starts at time zero so since the piano
recordings are always longer in our case, we are sure that during
the length of the violin parts there is always activity in both instru-
ments and we are left with some extra piano-only section in the
end. During evaluations, for each note event in the aligned score,
we look at the corresponding frames of the analysis observation
and check if the corresponding template has high activity and if it
is among the topN templates, whereN specifies the number of
pitches active at the event frame time taken out of the reference
MIDI. This way, for each event in the score we can have a pre-
cision percentage and the overall mean of these can represent the
algorithm’s precision. Moreover, since we do not have any specific
temporal model and also the ending of notes are usually doubtful
(especially for Piano) we can consider (subjectively) positive de-
tection during at least80% of a note life to beacceptableand
refine the precision. Cross classification can be computed in the
same way by switching the piano and violin references between
results.

Tables2 and3 show confusion matrices out of the above eval-
uation for each mix (where numbers refer to specifications in ta-
ble 1). This confusion matrix is to be read as follows: the row
elements correspond to the results being evaluated and the col-
umn elements correspond to the reference alignment being used
for evaluation. For example, element(1, 2) refers to the percent-
age within which the system has decoded violin elements in the
Piano results. Therefore, it is natural that this confusion matrix
is not symmetrical. On another note, values in the confusion ma-
trices do not add up to100%. Each row column of the matrix
represents the instances in a predicted instrument class while each
row represents the instances in an actual class. These measures ob-

viously are not representative of all sorts of errors a transcription
system can undergo. For a detailed description of different kinds
of errors in a music transcription problem we refer the reader to
[19]. In what follows we emphasize theprecisionrate and inner-
instrumental confusion thereof through the results. Finally, note
that precision rates in Tables2 and3 correspond to both (multiple)
pitch and instrument classification where the reference for both is
obtained from the aligned MIDI scores to audio.

Results in tables2 and3 suggest that the precision rate (diag-
onal values) for the violin parts are significantly higher than the
Piano part. This is mainly due to the fact that the Violin sections
(files 3 and 4 in table 1) are much louder than the piano audio
files and we did not normalize the loudness before mixing to be as
natural as possible. Other reasons for the deficiency of the Piano
pitch/instrument detection comes from the fact that in both pieces
there is an extensive use of sustain pedals which confuses the sys-
tem when trying to match templates for reconstructing the ongoing
modulation structure. Furthermore, lower Piano precision in Table
2 is because the sustain pedal is being used much more in Chopin’s
Nocturnethan Mozart’sSonata, which is stylistically reasonable.

Confusion Matrices

Piano Violin

Piano 45% 9.2%

Violin 17.1% 67.5%

Table 2: Mix of2 + 3

Piano Violin

Piano 52.8% 17.9%

Violin 24.3% 89.3%

Table 3: Mix of1 + 4

Overall, given the nature of the problem, that is simultaneous
multiple-pitch and multiple-instrument detection in real-time, the
results are satisfactory and not far from other state-of-the-art sys-
tems cited earlier in section 1.

7. CONCLUSION AND DISCUSSION

In this paper we presented a technique for detection of multiple-
pitches produced by multiple-instruments and in real-time. The
core of the proposed system relies on a rather simple machine
learning principle based on sparse non-negative constraints. The
simplicity behind this algorithm is due to observations on the na-
ture of musical instruments and basic facts regarding musical pitch
and timbre structures. After formulating the problem we discussed
three main issues regarding the formulation and presented solu-
tions for each.

If the proposed method is to be useful in computer music ap-
plications, the precision rates should obviously be higher than the
ones in Tables2 and3. The work presented in this paper is re-
garded as a first step towards the complex problem of multiple
pitch and instrument recognition in real-time. However, obtained
results with a more rigorous evaluation framework as stated be-
fore, are close to the state-of-the-arts reported elsewhere. Here we
elaborate on the future directions of this project and on how the
proposed algorithm can be improved.

The on-line learning algorithm developed in section 5, uses
a simple gradient descent update that is projected at each itera-
tion to assure sparsity. From a machine learning perspective, gra-
dient descent updates are not always the best solution and more
intelligent optimization techniques such as convex optimization
and semi-definite programming would be more suitable. How-
ever, for this experiment and due to our real-time constraints, we

DAFX-7

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

DAFX-07 91



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

adopted the gradient descent approach and will report on more ad-
vanced methods in later publications. Also, the sparse constraints
introduced are quite powerful in order to avoid inner-instrumental
overuse of templates but does not directly address avoiding inner-
instrumental confusions. New sparsity measures should be exper-
imented in order to overcome this issue. On another note, we use
the amplitude (or absolute value) of the complex modulation spec-
trum reported in section 3. Later improvements will consider the
complex values or in other words, the phase information of the
modulation spectrum directly into the decomposition algorithm.

We conducted subjective and objective evaluations of the algo-
rithm but in the limited case of two instruments. A more elaborate
evaluation procedure is needed to discover true deficiencies and
outcomes of the proposed algorithm. However, for the given task,
the evaluation frameworks that has been introduced so far in the
literature do not provide sufficient and accurate data for such fine-
tuned evaluation. We will be elaborating on this subject to further
improve the test-bed that can lead to better frameworks and im-
proved systems.

Finally, as mentioned earlier in the paper, one of the main
motivations for this research is to provide real-time tools for the
computer musicians and researchers with their growing need for
real-time detection tools. The algorithm and application proposed
in this paper is currently under development for MaxMSP2 and
Pure Data3 real-time computer music environments and will soon
be available for free download4.
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ABSTRACT

This paper proposes a new multipitch estimator based on a
likelihood maximization principle. For each tone, a sinu-
soidal model is assumed with a colored, Moving-Average,
background noise and an autoregressive spectral envelope
for the overtones. A monopitch estimator is derived follow-
ing a Weighted Maximum Likelihood principle and leads
to find the fundamental frequency (F0) which jointly max-
imally flattens the noise spectrum and the sinusoidal spec-
trum. The multipitch estimator is obtained by extending the
method for jointly estimating multipleF0’s. An application
to piano tones is presented, which takes into account the
inharmonicity of the overtone series for this instrument.

1. INTRODUCTION

Multipitch estimation is a critical topic for many applica-
tions, both in the field of speech processing (e.g. prosody
analysis) [1] and in the context of musical signal analysis
(e.g. automatic transcription) [2, 3]. The challenge offered
by the spectral interference of the overtones of simultaneous
notes has been taken up by various methods, some aiming at
detecting a periodicity in the signal [4] or in its spectrum [5]
while others use a combination of both spectral and tempo-
ral cues [6, 7]. Recent trends in the task include estimation
in a bayesian framework [8] or in a perceptually compliant
context [7]. The technique proposed in this paper is based
on a Weighted Maximum Likelihood (WML) principle and
belongs to the spectral estimators category.

This paper is organized as follows. Section 2 introduces
the Maximum Likelihood principle applied to the proposed
signal model. Section 3 then details the adaptation of the
theoretical method to the multipitch estimation task in the
case of piano sounds. Experimental results are given in sec-
tion 4. Finally, conclusions are presented in section 5.

The research leading to this paper was supported by the French GIP
ANR under contract ANR-06-JCJC-0027-01, Décomposition en Éléments
Sonores et Applications Musicales - DESAM, and by the FrenchMinistry
of Education and Research under the Music Discover project of the ACI-
Masse de données

2. WEIGHTED MAXIMUM LIKELIHOOD PITCH
ESTIMATOR

2.1. Main idea

This work focuses on signals which can be decomposed
into a sum of sinusoidal components and a colored noise.
In the following, a moving average process is assumed for
the latter, with a corresponding FIR filter of transfer func-
tion B(z). The spectral envelope of the partials is modeled
by an autoregressive filter of transfer function1

A(z) . The
technique presented herein is based on the decomposition
of the set of DFT frequencies into two subsets: the subset
N owing to the background noise properties and the other,
H, associated with the sinusoidal part. Once both1/A(z)
andB(z) have been estimated, the constructed likelihood
is maximized for the true value ofF0 since it simultane-
ously whitens the noise sub-spectrum and the sinusoidal
sub-spectrum. In the case where a badF0 candidate is se-
lected, the choice of a FIRN -support sub-spectrum and an
AR H-support sub-spectrum ensures that such a flatness of
both sub-spectra is not achieved.

2.2. Statistical framework

Let x denote theN -dimensional vector containingN suc-
cessive samples of data,X theN -dimensional vector of its
Digital Fourier Transform (DFT) andF theN × N ortho-
normal DFT matrix (F(p,q) = 1√

N
e−2iπ

pq

N ). We assume
thatx results from the circular filtering of a centered white
complex Gaussian random vectorw of varianceσ2. Let h
be the corresponding impulse response vector, andH its
N -dimensional DFT vector. SinceX = diag{H}Fw, X

is a centered Gaussian random vector of covariance matrix
σ2 diag{|H|2}.

Below, we consider that the observed data consist of a
subsetS of the DFT coefficients in vectorX. Then the
previous discussion shows that the probability law of the
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observed data is

p(XS) =
∏

k∈S

1

πσ2|H(k)|2
e
− |X(k)|2

σ2|H(k)|2 .

Thus the normalized log-likelihoodLS(σ,h) =
1

#S ln p(XS) can be written in the form

LS(σ,h) = C+
1

#S

∑

k∈S

[
ln

(
|X(k)|2

σ2|H(k)|2

)
−

|X(k)|2

σ2|H(k)|2

]

(1)
whereC = − 1

#S
∑

k∈S
ln(π|X(k)|2) is a constant with re-

spect toσ andh, and#S denotes the number of elements in
S. Normalizing the likelihood by factor1/#S aims at ob-
taining comparable, homogeneous values when#S varies.
MaximizingLS with respect toσ yields the estimate

σ̂2 =
1

#S

∑

k∈S

∣∣∣∣
X(k)

H(k)

∣∣∣∣
2

. (2)

Then substituting equation (2) into equation (1) yields

LS(h) , LS(σ̂2,h) = C − 1 + ln (ρS(h)) (3)

where

ρS(h) =

( ∏
k∈S

∣∣∣X(k)
H(k)

∣∣∣
2
) 1

#S

1
#S

∑
k∈S

∣∣∣X(k)
H(k)

∣∣∣
2 (4)

is equal to the ratio between the geometrical mean and the

arithmetical mean of the set

{∣∣∣X(k)
H(k)

∣∣∣
2
}

k∈S
. Such a ratio

is maximal and equal to 1 when|X(k)/H(k)| is constant,
independant ofk, which means thatρS(h) measures the

whiteness, or theflatnessof
{

X(k)
H(k)

}

k∈S
. The next step con-

sists in choosing a parametric model forh, and maximizing
LS with respect to the filter parameters. This optimization
results in maximizingρS(h). For instance, ifh is modeled
as an autoregressive (AR) filter, an approximate solutionĥ

to the optimization problem can be obtained by means of
linear prediction techniques [9]. Ifh is modeled as a finite
impulse response (FIR) filter of lengthp ≪ N , an approx-
imate solutionĥ can be obtained by windowing a biased
estimate of the autocovariance function.

2.3. Application to pitch estimation

Our pitch estimator relies on a weighted maximum likeli-
hood (WML) method: for all subsetsH, i.e. for all possible

F0’s, we calculate the weighted likelihood

LH = α ln ρ̂H + (1− α) ln ρ̂N (5)

with





ρ̂H = max

A
ρH

(
1

A(z)

)

ρ̂N = max
B

ρN (B(z))

whereN = H is the complement set ofH and0 < α < 1
(in practice we chooseα = 1/2). The pitch estimate is
given by the setĤ which maximizesLH. This maximum
depends on the sum of the twoH-dependent terms in (5):
ln ρ̂H andln ρ̂N . The flatnessρ̂H of the whitened compo-
nents has a local maximum for a smooth spectral envelope,
obtained when analyzing the trueF0 (see figure 1) or one
of its multiples (i.e. H is a subset of the right set of over-
tones, see figure 2), or whenH only contains noisy compo-
nents. Low values ofρ̂H are obtained when amplitudes at
the frequencies of̂H are alternately low and high since AR
filters have no zero, which means that they cannot fit a spec-
trum where some sinusoidal components inH are missing.
This particularly happens for a sub-harmonic of the trueF0

(see figure 3). In other respects, when considering the spec-
tral envelope of the noisy part of the sound, FIR filters have
no pole, which means that they cannot fit any sinusoidal
component: the spectral flatnesŝρN of the whitened resid-
ual part reaches high values when the frequencies of over-
tones have been selected inH, i.e. when analyzing any sub-
harmonic frequency of the trueF0 (see figure 3). As illus-
trated in figure 4, by combining both spectral flatnessesρ̂H
and ρ̂N , a global maximum is found for the trueF0 while
any other local maximum in̂ρH (or ρ̂N ) is attenuated bŷρN
(or ρ̂H), particularly harmonics and sub-harmonics.

3. APPLICATION TO MULTI-PITCH ESTIMATION
OF PIANO TONES

3.1. Inharmonicity in piano tones

In a piano note, the stiffness of strings causes the frequen-
cies of overtones to slightly differ from a perfect harmonic
distribution. We are focussing one these quasi-harmonic
sounds and exclude from this study other inharmonic tones
like bell tones. The frequency of the overtone of ordern is
thus given by the inharmonicity law [10]:

f (f0,β)
n = nf0

√
1 + β (n2 − 1) (6)

wheref0 is the fundamental frequency andβ is the inhar-
monicity coefficient. Note thatβ varies along the range of
the piano keyboard and from one instrument to the other.
Thus, the setH, characterized by these two parameters, is
defined as:

H(f0,β) =
{

f (f0,β)
n /n ∈ N, f (f0,β)

n < Fs/2
}

(7)
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Analysis of a synthetic signal with fundamental frequency1076.6602 Hz.
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Figure 1:LH estimation forH = Ĥ (trueF0). Overtones
are selected in the spectrum (top), amplitudes of compo-
nents fit the AR model (bottom left) and the residual spec-
trum is well whitened by the MA model (bottom right). In
order to avoid overlapping between curves in the graph-
ical representation, an constant offset is added to post-
whitening dB-curves.
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Figure 2:LH estimation at twice the trueF0. Amplitudes
of components fit the AR model whereas the residual spec-
trum is not perfectly whitened by the MA model, due to
remaining components.
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Figure 3:LH estimation at half the trueF0. While residual
spectrum is well whitened by the MA model, amplitudes
of components do not fit the AR model, resulting in a low
flatness of whitened amplitudes (bottom left, circles).
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Figure 4:H-dependent termsln ρ̂H (top) andln ρ̂N (mid-
dle), and weighted likelihoodLH (bottom), computed for
all possibleF0’s (i.e. all possibleH’s).
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whereFs is the sampling frequency. Optimizing the log-
likelihoodL

(
H(f0,β)

)
with respect toH(f0,β) then consists

in maximizing it with respect tof0 andβ.

3.2. From the theoretical model to real sounds
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Figure 5: Real piano tone: separation between note compo-
nents and residual part, and related MA and AR models

How do real piano tones fit the signal model described
above? The AR model for the sinusoidal component, the
MA noise model and the inharmonicity distribution of fre-
quencies seem to be robust hypotheses. Conversely, the
practical application of the method has to cope with two
deviations from the theoretical point of view:

1. the assumption thatfn lies in the exact center of a
frequency bin (multiple of1/N ) is usually false, and
spectral leakage thus influences theN -support sub-
spectrum.

2. the amplitude of the overtone may vary within the
analysis frame, reflecting various effects as the en-
ergy loss of the sound and the beating between close
adjacent components. This can affect the spectral en-
velope of theH-support sub-spectrum.

The windowing of the analyzed waveform by a Hann
window has proved to be a robust trade-off to overcome
these issues. It prevents the spectral leakage associated with
high energy components from masking weak overtones.
Amplitudes of every overtonek are estimated by perform-
ing a parabolic interpolation of the spectrum (in decibels)
based on the values in the nearest Fourier bins. The result-
ing (linear) value is used when computing the sinusoidal-
part spectral flatnesŝρH, i.e. in place ofX (k) in equa-
tion (4). In order to minimize the effects described above

in ρ̂N (see equation (4)), primary lobes of the frequencies
selected inH are removed fromN , which is redefined as:

N = {k′/∀f ∈ H, |k′/N − f | > ∆f/2} (8)

where∆f is the width of the primary lobe (∆f = 4
N

for
a Hann window). Note that the question of removing a
set of components is a key step in the implementation of
our algorithm. As shown in figure 5, the proposed method
performs an approximate removal that offers a satisfying
trade-off between efficiency and computational cost. Other
techniques based on amplitude estimation and adapted filter
design have been tested without bringing major improve-
ments. The non-stationary nature of signals seems to be re-
sponsible for this limitation. It should be taken into account
for enhancing the separation between a set of components
and the residual signal.

3.3. Extension to polyphonic sounds

We now consider that the deterministic signals(n) is a

sum ofM inharmonic sounds:s(n) =
M∑

m=1
s(m)(n) and

∀m ∈ {1 . . . M}, f
(m)
n = nf

(m)
0

√
1 + β(m)(n2 − 1),

wheref
(m)
0 is the pitch andβ(m) > 0 is the inharmonic-

ity coefficient of themth tone. Each note is associated with
one individual AR model, and weights in the likelihood are
uniformly distributed among notes. Thus the WML princi-
ple consists in maximizing the log-likelihood:

L(H(1), . . . ,H(M)) =
1

2M

M∑

m=1

ln ρH(m)

(
1

A(m)(z)

)

+
1

2
ln ρ̂N (9)

whereH(m) = H

�
f
(m)
0 ,β(m)

�
andN is the set of bins out-

side primary lobes of frequencies of anyH(m). The opti-
mization is performed with respect to each of the sets
H(1), . . . ,H(M). Each setH(m) is defined by the parame-
ters{(f (m)

0 , β(m))}m∈{1...M} and1/A(m)(z) is the AR fil-
ter related to notem. Two distinct setsH(m1) andH(m2)

may intersect, allowing overlap between spectra of notes
m1 and m2. The algorithm presented in section 2.3 can
be applied straightforwardly.

3.4. Multi-pitch estimator implementation

Multi-pitch estimation is often performed either in an iter-
ative or in a joint process. The proposed method belongs
to the joint estimation category. While iterative methods
consist in successively estimating and removing a predom-
inantF0, joint estimation simultaneously extracts the set of
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F0’s. Thus, a direct implementation of the algorithm de-
scribed above would require to compute the ML of all pos-
sible combinations of notes, leading to a high-order combi-
natory task. For instance, more than2.106 different chords
exist for a 4-note polyphony in the full piano range, each
of these candidates requiring several calls to the likelihood
function since the exactF0 andβ values are unknown.

In order to reduce the cost of the ML estimation, a
two-step algorithm is proposed. First, each possible chord
is evaluated on a reduced number of pointsNp in the

(f
(m)
0 , β(m)) region aroundF0 values from the well-

tempered scale and approximateβ values.Ncandchord can-
didates are extracted among all combinations by selecting
theNcandgreatest likelihood values. Then, the likelihood of
each selected candidate is locally maximized with respect
to coefficientsf (m)

0 andβ(m). A simplex method is used
to perform this optimization, which is initialized with the
f

(m)
0 andβ(m) values selected during the first step. Finally,

the chord with maximum accurately-computed likelihood is
selected as the chord estimate.

4. EXPERIMENTAL RESULTS

The algorithm has been tested on a database composed of
about540 isolated piano tones of the RWC database [11]
and random chords generated by several virtual piano soft-
wares based on sampled sounds. About600 two-note
chords and600 three-note chords were evaluated. In each
case, the polyphony is known a priori by the algorithm and
the estimation results from the analysis of one93 ms frame,
beginning10 ms after the onset.F0 estimates are rounded
to the nearest half-tone in the well-tempered scale in order
to determine if an estimated note is correct. This approx-
imation onF0 is carried out in order to evaluate the pitch
estimation at a note level rather than at a frequency level.
The note search range spreads over 5 octaves, from MIDI
note 36 (f0 = 65 Hz) to MIDI note 95 (f0 = 1976 Hz).
These test conditions are similar to the ones used in com-
petitor systems [4, 5, 7] in terms of frame length,F0 search
range and error rate definition.

The parameters of the system have been adjusted as fol-
lows. Sounds are sampled at22050 Hz. DFT are computed
on 4096 points after zero-padding the2048-point frame.
The AR model order is set to8, the MA model order to
20. In the first step of the implementation described in sec-
tion 3.4, all chord combinations are evaluated, each one
with Np = 10 (polyphony≤ 2) or Np = 5 (polyphony

three) different(f (m)
0 , β(m)) values. ThenNcand = 75

(monophony) orNcand = 150 (polyphony≥ 2) chord can-
didates are selected for the second step.

Error rates are2.0% in monophony,7.5% in polyphony
two and23.9% in polyphony three. They are reported in
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Figure 6: Estimation results: for a given polyphony (1 to 3
from top to bottom), random chords are generated (circles)
and estimated (crosses). For visual representation clarity,
only 50 samples of them are shown (center). Distribution of
false negatives is displayed on the left. Distribution of false
positives is displayed on the right.
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Polyphony 1 2 3
Error rate 2.0% 7.5% 23.9%

±0.6% ±0.75% ±1.0%
Octave error rate 0% 1.6% 5.2%
State of the art 2 ∼ 11% 7 ∼ 25% ≈ 10 ∼ 35%

Table 1: Error rates with respect to polyphony. Lower and
upper bounds of state-of-the-art performances are also re-
ported. Confidence interval is derived as the standard devi-
ation of the error rate estimator.

table 1 and can be compared to the three competitor sys-
tems previously mentionned. Their performances have been
established in [7] for polyphony one, two, four and six:
error rates vary from2 to 11% in monophony, from7 to
25% in polyphony two and from14 to 41% in polyphony
four. Error rates in polyphony three are not given, but could
be figured out as intermediate values between results in
polyphony two and four, which would lead to approximate
error rates between10 and35%. The proposed pitch esti-
mator is comparable to competitor systems in terms of per-
formance. Error rates are particularly competitive in poly-
phonies one and two.

The evaluation task has been performed using randomly
uniformly-distributed notes in order to provide experimental
results from an objective point of view rather than from mu-
sical considerations. The distribution of errors is reported in
figure 6. The few errors in polyphony one occur in the low-
est and highest pitch regions. In polyphony two and three,
most of missed notes (or false negatives, FN) are located
in the treble part of the piano range whereas the false-alarm
notes (or false positives, FP) estimated in place of them tend
to be distributed in a more uniform manner along the piano
range. Closely-spaced chords in the medium range seem
easier to detect than widely-spaced chords. Octave error are
scarce – around one fifth of all errors for each polyphony
number –, which can be explained by the complementary
contributions of note and noise likelihoods. On the con-
trary, high-pitched FN and large-interval errors often occur,
in spite of the likelihood normalization stage, due to the
sensitivity of the ML approach to the variable number of
frequency parameters that depends onF0 candidates.

5. CONCLUSIONS

The multipitch estimation task has been performed here
through a Maximum Likelihood approach. It consists in
modeling notes and residual noise by AR and MA mod-
els, and results in a criterion on their spectral flatness af-
ter a whitening process based on the models. The method
has been validated by satisfying experimental results for
polyphony one to three.

Future works will deal with managing the overlap be-

tween notes spectra, with improving the model for the spec-
tral envelope of notes and with making the computational
cost decrease in order to both benefit from the efficiency
of the estimator and avoid the inherent complexity of joint
estimation of multipleF0’s.
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ABSTRACT 

Interactive environmental audio spatialization technology has 
become commonplace in personal computers and is migrating into 
portable entertainment platforms (including cell phones) and multi-
player game servers (virtual online worlds). While the primary 
current application of this technology is 3D game sound track ren-
dering, it is ultimately necessary in the implementation of any per-
sonal or shared immersive virtual world (“virtual reality”). The 
successful development and deployment of such applications in new 
mobile or online platforms involves maximizing the plausibility of 
the synthetic 3D audio scene while minimizing the computational 
and memory footprint of the audio rendering engine. It also requires 
a flexible, standardized scene description model to facilate the de-
velopment of applications targeting multiple platforms. This paper 
reviews a computationally efficient 3-D positional audio and spatial 
reverberation processing architecture for real-time virtual acoustics 
over headphones or loudspeakers, compatible with current interac-
tive audio standards (including MPEG-4, OpenAL, JSR 234 and 
OpenSL ES). 

1. INTRODUCTION AND OVERVIEW 

The applications of interactive 3D audio technologies include simu-
lation and training, telecommunications, video games, multimedia 
installations, movie or video soundtracks, and computer music [1]-
[5]. 

Virtual acoustics technology has its origins in research carried 
out in the 1970’s, which targeted two distinct applications: 
- Architectural acoustics: Schroeder et al. developed simulation 
methods based on geometrical acoustics to derive a computed echo-
gram from a physical model of room boundaries and the source and 
listener positions [6]; 
- Computer music: Chowning developed a 4-channel spatialization 
system for simulating dynamic movements of sounds, which pro-
vided direct control of two perceptual control parameters for each 
source: apparent direction of sound arrival and apparent distance to 
the listener, along with a derived Doppler shift [7]. Artificial rever-
beration was included to enhance the robustness of distance effects. 
Later, Moore proposed an extension of this approach where early 
reflections were controlled indirectly via a geometrical acoustic 
model [8]. 

Interactive virtual acoustics systems require real-time rendering 
and mixing of multiple audio streams (sound sources) to feed a set 
of loudspeakers or headphones. This rendering system is driven by 
an acoustic scene description model which provides positional and 
environmental audio parameters for all sound sources. 

The scene description represents a virtual world including 
sound sources and one or more listeners within an acoustical envi-
ronment which may incorporate one or more rooms and acoustic 
obstacles. 

Standardization is essential for enabling platform-independent 
playback and re-usability of scene elements by application authors 
and sound designers. Current standard interactive audio scene de-
scription models include high-level scripting languages such as the 
MPEG-4 Advanced Audio Binary Format for Scene description 
(AABIFS) [9] and low-level application programming interfaces 
used in the creation of video games, such as OpenAL, JSR 234 and 
OpenSL ES [10]-[12]. In this paper, we will consider a generic, 
low-level scene description model based on OpenAL [10] and its 
environmental extensions, I3DL2 [13] and EAX [14]-[15]. For 
applications that require higher-level world representations, a real-
time translation software layer can be implemented above the ren-
dering engine to convert the high-level representation to low-level 
description parameters [14]. 

In the first section of this paper, we discuss and compare digital 
signal processing methods for computationally efficient real-time 
spatialization of multiple sound sources over headphones or loud-
speakers. This includes discrete amplitude panning, Ambisonic and 
binaural or transaural techniques [16]-[25] and introduces a recently 
developed multi-channel binaural synthesis method based on dis-
crete spatial functions, previously introduced in [26]. The descrip-
tion model and rendering methods are then extended to include the 
acoustic effects of the listener’s immediate environment. This in-
cludes the effects of acoustic obstacles and room boundaries or 
partitions on the perception of each sound source. Acoustic reflec-
tions and room reverberation are rendered by use of feedback delay 
networks [27]-[30]. A statistical reverberation model, previously 
introduced in [30], is included for modelling per-source distance 
and directivity effects. We further extend the model to account for 
the presence of acoustic environments or rooms adjacent to the 
listener’s environment. An efficient spatial reverberation and mix-
ing architecture, previously introduced in [26], is described for the 
spatialization of multiple sound sources around a virtual listener 
navigating across multiple connected virtual rooms. This processing 
architecture includes a novel cost-efficient method for simulating 
multiple spatially extended sound sources or sound events. 

The models and methods reviewed in this paper enable the re-
alization of comprehensive, computationally efficient, flexible and 
scalable high-quality interactive 3D audio rendering systems for 
deployment in a variety of consumer appliances (ranging from per-
sonal computers to home theater and mobile entertainment systems) 
and services (including multi-user comunication and telepresence). 
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ABSTRACT

The aim of this research is to provide a solution for listening to
the acoustics of Digital Waveguide Mesh (DWM) modelled virtual
acoustic spaces. The DWM is a numerical simulation technique
that has shown to be appropriate for modelling the propogation of
sound through air. Recent work has explored methods for spatially
capturing a soundfield within a virtual acoustic space using spa-
tially distributed receivers based on sound intensity probe theory.
This technique is now extended to facilitate spatial encoding us-
ing second-order spherical harmonics. This is achieved through
an array of pressure sensitive receivers arranged around a central
reference point, with appropriate processing applied to obtain the
second-order harmonic signals associated with Ambisonic encod-
ing/decoding. The processed signals are tested using novel tech-
niques in order to objectively assess their integrity for reproducing
a faithful impression of the virtual soundfield over a multi-channel
sound system.

1. INTRODUCTION

By providing a solution for the auralization of physically modelled
enclosed acoustic spaces, this research aims to provide a means of
synthesising both spatially and psychoacoustically realistic room
impulse responses (RIR). In the longer term the Digital Waveg-
uide Mesh (DWM) modelled RIR’s may help measure some of
the well documented limits of the DWM and provide information
about any resulting psychoacoustical artefacts. Other common ap-
proaches of room acoustics modelling include the image-source
method [1] and ray-tracing as used by ODEON [2] and pyramid
tracing as in RAMSETE [3]. This research particularly focuses
on providing spatial auralization of the modelled acoustic space,
ideally in a manner that reproduces a pyschoacoustically faithful
soundfield at the listener’s ears. Previous work has explored the
capture and decoding of a DWM simulated virtual 2D soundfield
[4]. An orthogonal arrangement of 5 omni-directional receivers (7
for 3D), called a crux of receivers, has been shown to be a suit-
able technique for capturing a first-order B-Format Room Impulse
Response (RIR) in a DWM. This paper proposes to extend this
method by encoding the DWM synthesised soundfield to audio
channels corresponding to the second-order channels associated
with the Ambisonic multi-channel system.

The remainder of this paper is arranged as follows. In sec-
tion 2 the digital waveguide is introduced and its role discussed

in forming a DWM used to spatially measure RIRs. Section 3 re-
views Ambisonics and B-Format theory, both briefly in terms of
the encoding and decoding/rendering stage. In section 4 there is
a review of previous techniques and results followed by an expla-
nation of the proposed encoding techniques to be applied to the
DWM model. Section 5 details the various testing techniques used
to assess the success of the process from different perspectives,
with results presented and analysed in section 6. Finally section 7
concludes the paper and suggests future points for consideration.

2. THE DIGITAL WAVEGUIDE

Digital waveguide synthesis was first introduced by J.O. Smith
as a 1D computational physical modelling technique which found
application in musical instrument synthesis, speech synthesis and
acoustics [5]. Briefly the theory states that a travelling wave through
a 1D system may be considered as the summation of two waves
travelling in opposite directions. Mathematically this is expressed
using d’Alembert’s solution to the 1D wave equation which may
be used to model a tube or vibrating string.

y(t, x) = yr

(
t− x

c

)
+ yl

(
t +

x

c

)
(1)

Where c is the speed of sound, t is the current point in time
(seconds), x is the position along the string (metres) and yr & yl

are the right and left going waves. The digital waveguide is a dis-
crete implementation of (1) that in practice is represented using a
bi-directional digital delay line as shown in Figure 1.

N Sample Digital Delay

N Sample Digital Delay

y(tn,xn)

Figure 1: The bi-directional digital delay line that forms the basic
1D digital waveguide.

The discrete time implementation of (1) is given by (2) which
mathematically expresses the use of the bi-drectional delay lines
in Figure 1 forming the basic digital waveguide [6].

y(tn, xm) = y+(n−m) + y−(n + m) (2)

DAFX-1

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

DAFX-07 101



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

Where y(tn, xm) is the physical amplitude output at time sam-
ple tn at position xm along the bi-directional delay line and n =
nT and m = mT when T is sampling interval in seconds. y+ and
y− are digital equivalent of the continuous time domain signals yr

and yl.

2.1. The Digital Waveguide Mesh

The DWM is comprised of multiple digital waveguides which may
extend the system to 2D, 3D or higher dimensions. The extension
of the digital waveguide to the 2D case has previously been dis-
cussed as a means of modelling membranes, e.g. [7]. In Figure
2 it may be observed that the nodes are connected by the same
bi-directional delay lines shown in Figure 1. The delay between
each node is 1 sample and it has been shown that these systems
are capable of modelling a range of resonant objects with different
degrees of dimensionality [8].

Figure 2: The rectilinear and triangular DWM topologies

This work has been conducted using a research tool called
RoomWeaver which is a result of previous work at the University
of York [9]. This software may be used to design virtual geometric
representations of acoustic environments and then properly calcu-
late the associated RIR. Recent work has shown how to synthesise
B-Format RIRs from the DWM model in RoomWeaver [4] [10].

3. AMBISONICS ENCODING AND DECODING

Ambisonics describes a method of capturing/encoding a 3D sound-
field by means of its spherical harmonic decompostion to the nth

order around a spatial reference point [11]. These signals may then
be decoded to a loudspeaker arrangment, although the exact decod-
ing equations will change primarily depending on the loudspeaker
positions and many decoding schemes have been discussed previ-
ously e.g. [12] [13] [14]. Figure 3 shows the 3D polar responses
associated with each channel of a 2nd order system. W is an omni-
directional pressure signal, and XYZ correspond to 3 velocity sig-
nals arranged orthogonally along the cartesian axes. Collectively
these 1st order system signals WXYZ are known as B-Format. A
full 2nd order system consists of the 1st order WXYZ channels and
the channels RSTUV. The polar responses shown in Figure 3 are
described in (3) using the appropriate corresponding ambisonic en-
coding equations [15].

W = 0.707107

X = cos(θA) · cos(θE )

Y = sin(θA) · cos(θE )

Z = sin(θE )

R = 1.5 sin2(θE )− 0.5

S = cos(θA) · sin(2θE )

T = sin(θA) · sin(2θE )

U = cos(2θA) · cos2(θE )

V = sin(2θA) · cos2(θE ) (3)

Where θA and θE are the sound source azimuth and elevation
respectively. Note that it is also possible to consider ambisonics for
the horizontal plane only. In this case all expressions containing
θE may be omitted as they all become equal to one when θE = 0.
Therefore the horizontal 1st order case only requires WXY chan-
nels. WXYUV channels are required for 2nd order horizontal am-
bisonics and therefore these are the channels that will be encoded
from the DWM in this work.

Figure 3: Spherical harmonics upto 2nd order

4. ENCODING TECHNIQUES

Two different approaches for encoding the DWM into B-Format
have been considered previously. The first consisted of a circle of
receivers with the second using an arrangement based on a crux
of receivers, both of which are shown in Figure 4. Receivers are
defined as pressure sensors that form the fundamental sampling
method in the DWM. In [10] it was shown that the circle of re-
ceivers method does not perform reliably, primarily due to fact that
it does not discrimate between wavefronts entering and leaving the
circle.

Only the crux method will be considered here as this research
focuses on extending the current technique to capture the 2nd order
spherical harmonics. However a more comprehensive measure-
ment method using a circle of 1st order receivers has been pre-
sented previously for real rooms in [16].
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Figure 4: The circle and 2D crux of receivers

4.1. Capturing 1st Order Components

Previous work has shown that the 1st order spherical harmonics or
B-Format signal may be obtained from the DWM [4] [10]. The
fundamental technique on which this is based is a process more
commonly associated with p-p sound intensity probes for the cal-
culation of velocity at a point. Equation 4 expresses the velocity
component in terms of two closely spaced pressure sensors [17].

u(t) ≈
(

1

ρ0 · d
) ∫ ∞

0

[p1(t)− p2(t)] δt (4)

Where ρ0 is the density of air, d is the distance between pres-
sure sensors and p1(t) and p2(t) are the pressure at time t at each
sensor. For a more detailed account of using this technique for
capturing the X and Y velocity components see [10]. However
we will briefly include a preliminary study in order to demonstrate
this technique with a view to extending the test to the 2nd order
case. The test involves placing two closely spaced receivers into
a simulated acoustic free field and then rotating the position of an
impulse sound source at a fixed radius of 1 metre every 22.5◦. Fig-
ure 5(a) illustrates the setup for the test. At each source position
the two receivers are processed appropriately according to (4) and
the sample value of the main peak is plotted against its angle with
the results shown in Figure 5(b).
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Figure 5: Preliminary test for capturing ambisonic velocity com-
ponents

Therefore Figure 5(b) clearly illustrates that (4) provides di-
rectional discrimination which results in the corresponding veloc-
ity pattern.

4.2. Capturing 2nd Order Components

Horizontal 2nd order ambisonics comprises signals WXYUV. The
method for obtaining X and Y has been described above, while W
is simply captured by placing a receiver at the central reference
position. The U and V channels are therefore required to complete
the signal, a method is proposed in the following.

Prior to this paper, the TKK microphone arrangement has been
shown to be capable of forming highly directional beams from a
spaced array of omnidirectional capsules [18]. The microphone is

described as being suitable for capturing 1st order B-Format sig-
nals [19]. For capturing 2nd order components it is presented that
the microphone array is able to form the associated polar pickup
patterns but for a reduced frequency band [18] [19]. More gener-
ally the process of using lower order microphone capsules to pro-
vide higher order directional responses has been termed the Blum-
lein Difference Technique and various cases are discussed in [20]
[21].

Equations (5) and (6) describe U and V respectively in terms
of the X and Y signals according to [18].

U = X2 − Y 2 (5)

V = X · Y (6)

Therefore in order to obtain the X and Y velocity components
the arrangment of receivers shown in Figure 6(a) is used. Captur-
ing the 1st order pressure gradient from two pressure sensors was
discussed in section 4.1, while capturing the 2nd order pressure
gradient may be achieved from (5) and (6).
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Figure 6: Proposed arrangment of receivers for 2nd order encoding
along with a basic encoding strategy

Figures 6(a) & (b) break down the calculation of the UV chan-
nels from the 4 receivers labelled Crux A and Crux B. An alterna-
tive yet similar approach for processing the 2nd order components
may be employed by extending the technique presented in [20] to
obtain the receiver arrangement in Figure 6(a). Another prelimi-
nary test is presented which aims to initially verify the worth of the
proposed 2nd order encoding technique. The test is carried out in
the same manner as shown in Figure 5(a) however the difference
being that the four receivers labeled Crux B are used as arranged
in Figure 6(a). The processing carried out is used to obtain the
polar pattern associated with the U channel, which is given in (3)
and plotted in Figure 7(a). Figure 7(b) is the resulting polar pickup
pattern of the array in Figure 6 after processing. For clarity Figure
7(c) is provided so that a direct comparison of the desired theoret-
ical response and actual response can be made after normalising
the amplitude values. Equations (5) & (6) may describe how to
obtain the UV channels from using Crux A, however (5) requires
two multiplies with the associated potential for a loss of accuracy,
hence resulting in greater numerical error. Consequently Crux B
is used to minimize this effect.

This preliminary test has confirmed that it is possible to obtain
the necessary gain response for the U channel using the X and Y
velocity signals. However the test tells us nothing about the di-
rectionally dependent frequency response or the reliability of this
technique for facilitating higher resolution spatial rendering of vir-
tual acoustic spaces.
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Figure 7: Preliminary test results for 2nd order encoding

5. TESTING TECHNIQUES

Numerous testing strategies are employed for evaluating the per-
formance of the 2nd order channels and are as follows:

• AmbiMeter (Polar Plot)

• AmbiMeter (Time Vs. Angle of Arrival)

• Directionally dependent frequency response analysis

5.1. The AmbiMeter Measures

The AmbiMeter measures were previously presented for 1st order
signal evaluation in [10]. The term AmbiMeter decribes the name
given to a specifically designed software application used for gen-
erating the resultant polar plots. For this work, in each case, the
input signal must be a 2nd order B-Format RIR. The polar plot may
only be used to assess the direct sound portion of the RIR while the
Time Versus Angle (TVA) plot has been shown to be appropriate
for inspecting the arrival of early reflections. The software oper-
ates by ambisonically decoding the signal to 144 equally spaced
virtual loudspeaker directions on a circle using (7).

Si =0.5 · ((2− d) ·W · 1.4142) + d · (cos θi ·X+

sin θi · Y + cos 2θi · U + sin 2θi · V ) (7)

Where Si is the ith speaker, θi is the angular position of that
speaker and d is a directivity factor, varying between 0 and 1, as

discussed in [12] [13]. The amplitude of the loudspeaker signals
is then plotted and used to identify the direction from which the
direct and early reflected sounds will arrive. For the polar plots
the ampltude of the direct sound peak is plotted against the loud-
speaker signal azimuth whereas in the TVA plots the amplitude
at each time sample and loudspeaker angle is indicated using the
gray scale plot. The results of the TVA plots are confirmed by us-
ing the ray tracing technique to accurately estimate the time and
angle of arrival of wavefronts. Figure 8 illustrates the setup of the
TVA tests and the associated early reflection predictions.
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Figure 8: Scaled images of the TVA test setup and resulting rays

A 4m by 4m room and a 2D DWM are used to model the
propogation of sound on the horizontal plane. Table 1 provides
the estimated time and angle of arrival of the 1st order reflections
labelled R1 to R4 in chronological order when the source and re-
ceiver is placed respectively at [0.5,2.5] and [3,3.2] for TVA test
1 and at [3,2] and [2,2] for TVA test 2. This is used as a measure
for assessing that the receiver array encoding scheme in Figure 6
is correctly capturing the DWM modelled soundfield to the 2nd or-
der. This is acheived by comparing the actual wavefront time and
angle of arrival to the estimated one.

Test 1 D R1 R2 R3 R4
Angle 196 137 191 350 246

Time(s) 0.0076 0.0099 0.0104 0.0133 0.0183
Test 2
Angle 0/360 0/360 76 284 180

Time(s) 0.0029 0.0088 0.0121 0.0121 0.0147

Table 1: Estimated times and angles of arrival of the first four
reflections in Tests 1 and 2

5.2. The Directionally Dependent Frequency Response

Directionally dependant frequency response analysis is used to as-
sess how well the encoding technique matches the theoretical/ideal
polar response as shown in Figure 7(a) for specific frequencies.
The source signal is moved around the array of receivers at a con-
stant distance and the U and V channels are calculated according
to Figure 6(b). For a specific frequency the magnitude is plotted
against the angle of the impulse sound source to provide a fre-
quency dependent polar plot.

6. RESULTS ANALYSIS

The results for the AmbiMeter polar plot tests are presented in Fig-
ure 9. The 2nd order lobes point towards the direction of the sound
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source which was placed at 0◦, 90◦, 180◦ and 270◦ in (a) and at
45◦, 135◦, 225◦ and 315◦ in (b) at 1 metre. This suggests that if
the 2nd order B-Format signal was decoded to an appropriate loud-
speaker array rather than a polar plot, the direct sound would be
loudest at the desired angle.
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Figure 9: AmbiMeter polar plot results for a sound source at 1m
every 45◦

In Figure 10 the results are presented for the first TVA test.
The estimated time and angle of arrival for direct and reflected
wavefronts are denoted by D and R1-R4. It may be observed that
there are other reflections that are not predicted by the ray trac-
ing technique in Table 1. Some of these occur before all of the
1st order reflections have arrived. Table 1 only estimates the 1st

order reflections and these will not necessarily be the first four re-
flections to arrive at the microphone position. Therefore the other
unlabelled wavefronts are 2nd order reflections and above, this will
be demonstrated using Figure 11.
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Figure 10: Result for the first Time vs Angle AmbiMeter test

Figure 11 is the second AmbiMeter TVA test result and in this
case no 2nd order reflections arrive before R2 and R3. However R4
appears to arrive from all directions rather than 180◦. This is due to
the fact that two other 2nd order reflections arrive at approximately
the same time from different angles. This demonstrates how 2nd

order reflections can seemingly obscure the estimated 1st order re-
flections. For clarity the time and angle of arrival values for the two
suspected 2nd order reflections are calculated. Figure 12 illustrates
the suspected movement of the 2nd order wavefronts. It is possible
to easily evaluate the boundary location co-ordinates B1 - B2 for
R5 and R6 in this simple room, and these are provided in Table 2.
As the source and receiver positions are also known it is possible

to use simple trigonometry to calculate the path length and angle
of arrival for reflections 5 and 6. These are also presented in Table

Angle (Degrees)
0 50 100 150 200 250 300 350

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Ti
m

e 
(s

) R1

R2R3

R4

D

Figure 11: Result for the second Time vs Angle AmbiMeter test
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Figure 12: Illustration of the path of two 2nd order reflections

Dist(m) Arrival Time(s) Angle B1 [x,y] B2 [x,y]
R5 5.2 0.0155 53 [4, 3.5] [3.5, 4]
R6 5.2 0.0155 306 [4, 0.5] [3.5, 0]

Table 2: Path distance along with estimated time and angle of ar-
rival for R5 and R6

2 and are placed onto the TVA test axis for completeness in Figure
13. In both cases it is clear that the predicted reflections arrive at
the microphone position at the estimated time and angle of arrival.
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Figure 13: Identification of the two 2nd order reflections
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Figure 14: U channel frequency dependent polar plots

An indication of the actual sound pressure level is not neces-
sary at this stage as the performance of the virtual microphone is
not under test here. Rather the TVA tests help to provide a proof
of concept in this work.

6.1. Directionally Dependent Frequency Response Results

The frequency dependent polar plots are presented for the both the
U and V channels at four different frequencies chosen to sample
the directional response across the usable range upto, but below,
the spatial aliasing frequency. The spatial aliasing frequency is
defined as the frequency whose wavelength is half the distance be-
tween the sampling points. Frequencies with smaller wavelengths
are not supported and therefore must be filtered out in order to
avoid ambiguity. The spatial aliasing frequency is defined in (8) as
in [20] [22].

fsp =
c

2 ·∆transducer
(8)

Where fsp is the spatial alisaing frequency in Hertz, c is the speed
of sound in air and ∆transducer is the distance between the two
pressure sensors/receivers in metres. For these tests a spacing of d
= 0.04m was used (see Figure 6(a)) and so from (8) fsp = 4.25kHz.
The DWM model used a sampling frequency of 176.4kHz which
corresponds to an internodal distance of 0.0027m. It should be
noted that this sampling rate will support a smaller receiver spac-
ing and hence a higher fsp than that chosen. However issues arise
as receiver positions can only exist at node positions which may or
may not be at the numerically exact spatial co-ordinates associated
with the virtual microphone array.

Figure 14 presents the frequency dependent polar plots for the
U channel with Figure 15 showing the V channel response. Note
that the radial axis is in dBs however the scale is not logarithmic
for convenience. Figures 14 & 15 both indicate that the en-
coding techniques are approximately directionaly discriminating
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Figure 15: V channel frequency dependent polar plots

the incoming wavefronts at the correct azimuths in order to pro-
duce the desired polar response described by U and V in (3). It
may be observed that theoretically the polar patterns for U and V
should be identical but with a 45◦ rotation. Comparing the actual
response for any pair of frequencies reveals that while the 45◦ ro-
tation holds, the actual polar responses are not identical. The cause
of this is the same reason that a smaller receiver spacing has not
been chosen, the DWM is a discrete representation of a continu-
ous medium. For example, when positioning two receivers with a
distance of 0.02m apart in the DWM it is almost certain that these
will not be exactly 0.02m apart. This is because the receiver po-
sition is ’snapped’ to the closest DWM node position resulting in
the apparent discrepancy. With relation to the proposed receiver
arrangement, it is reasonable to assume that Crux A and B will in-
troduce differing amounts of this discrepancy as they are orientated
differently in the DWM. Therefore this issue may be improved if
the DWM sampling frequency increases to infinity, which ensures
that the distance between adjacent DWM nodes becomes infinitely
small or alternatively the sound pressure between DWM nodes is
accurately interpolated.

It is also apparent that the results are not consistent across
the frequency spectrum, even when considering the few cases pre-
sented above. In addition, it might also be concluded that the polar
response pattern worsens as frequency increases which is expected
as the frequency wavelength reaches twice the receiver spacing
[20] [23]. The relative gains of the virtual microphone also de-
creases as frequency increases. This apparent decrease may be at-
tributed to two factors. The first being that as the frequency under
test approaches the spatial aliasing frequency the anti-spatial alias-
ing filter will begin to reduce the gain. Secondly low frequencies
are boosted for closer sound sources according to the proximity ef-
fect which is accentuated more as microphone order increases [23]
[24]. Nevertheless the results are very encouraging and suggest
that the proposed technique is working, although with some reser-
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vations as to its performance with respect to frequency response.
It should be pointed out that similar effects will occur with real
microphone arrays as their sensitivities will not be identical [20].

7. CONCLUSIONS

This paper has proposed an encoding technique for the capture of
2nd order spherical harmonics in the horizontal plane for virtual
acoustic models based on the digital waveguide mesh. The results
have indicated that this initial encoding process is capable of ef-
fectivley sampling the virtual soundfield, although at this point the
frequency response is still not ideal. The directionally dependent
frequency response in conjunction with the AmbiMeter tests sug-
gest that the calculated UV channels are able to provide an end
listener with the directional characteristics of a DWM modelled
acoustic space based on spherical harmonics to 2nd order. The fre-
quency dependent polar plots also indicate that post-capture cali-
bration must be carried out in order smooth out the main opera-
tional frequency band and this will be addressed in future work.
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ABSTRACT

Characteristics of digitalwaveguide meshes with more than three
physical dimensions are studied. Especially, the properties of a
4-D mesh are analyzed and compared towaveguide structures of
lower dimensionalities. The hypermesh produces a response with
a dense and irregular modal pattern at high frequencies, which is
beneficial in modeling the reverberation of rooms or musical in-
strument bodies. In addition, it offers a high degree of decorre-
lation between output points selected at different locations, which
is advantageous for multi-channel reverberation. The frequency-
dependent decay of the hypermesh response can be controlled us-
ing boundary filters introduced recently by one of the authors. Sev-
eral hypermeshes can be effectively combined in a multirate sys-
tem, in which each mesh produces reverberation on a finite fre-
quency band. The paper presents two hypermesh application ex-
amples: the modeling of the impulse response of a lecture hall and
the simulation of the response of a clavichord soundbox.

1. INTRODUCTION

The hyperdimensional digitalwaveguide (DWG) mesh is a 4-D
version of the algorithm introduced by Van Duyne and Smith [1,
2]. There have been plenty of applications of the DWG mesh tech-
nique, but they have been limited to maximally three dimensions.
1-D digitalwaveguides are mostly used for simulatingwavepropa-
gation in strings and tubes [3, 4, 5], 2-D meshes are applied in plate
or membrane simulations [6, 7, 8, 9, 10], while rooms and reso-
nant bodies of musical instruments are modeled with 3-D meshes
[11, 12, 13, 9, 14, 15, 16]. Researchers have also modeled resonant
objects and spaces with meshes having the number of dimensions
different from that of the modeled object. For example, 2-D DWG
meshes have been employed in room acoustic modeling [17, 18].
Recently, Mullen et al. have shown that a 2-Dwaveguide is an ef-
fective tool for simulating narrow acoustic tubes, which essentially
contain a 1-D acoustic field [19].

∗ This work was funded by the Academy of Finland (project no.
201050) and the Nokia Foundation. The authors would like to extend their
thanks to Dr. Tapio Lokki for the room impulse response measurement
data, to Dr. Cumhur Erkut and Dr. Mikael Laurson for the clavichord
recordings, and to Mr. Seppo Paulin for Fig. 4.

The idea of the hyperdimensional mesh was mentioned al-
ready in the original 2-D DWG mesh paper by Van Duyne and
Smith [1], and later suggested again, for example, by Savioja et
al. [11] and Rocchesso and Smith [20]. We recently published the
first study about a 4-D DWG mesh [26]. In this paper, we inves-
tigate the properties of the 4-D mesh and possibilites opened by it
through practical examples. Special emphasis is on employing the
technique on reverberation modeling.

Artificial reverberation is widely used in musical performances
and recordings. In addition to its use as an effect or in room acous-
tic simulation, reverberation modeling is needed in the synthesis of
musical instruments with a resonating body, such as the soundbox
or soundboard of stringed keyboard instruments.

This paper is organized as follows. Section 2 discusses the
normal modes of vibration in enclosed spaces. In Section 3, the
hyperdimensional DWG mesh, or the hypermesh for short, is dis-
cussed as an extension to the previously knownwaveguide mesh
methods. Section 4 describes the application of the hypermesh in
two cases of artificial reverberation: simulation of a lecture hall’s
impulse response and simulation of the soundbox of a musical key-
board instrument.

2. NORMAL MODES IN ENCLOSURES WITH RIGID
BOUNDARIES

Sound pressurewavesreflect from boundaries, such as walls and
furniture in a room. When the time interval between successively
received reflected sounds is short, they are perceived as reverber-
ation instead of individual echoes. In any closed space, sound is
reflected along multiple closed propagation paths, and thus stand-
ing wavesoccur. The standingwavesdetermine the modal struc-
ture in the frequency response of the acoustic system. At low fre-
quencies, the modes are sparsely spaced in frequency, but at fre-
quencies above a critical frequency, often called the Schroeder fre-
quency, the modal peaks are not distinguished individually by the
ear [21, 22]. If the modal density created by an artificial reverbera-
tion algorithm is too low in this high frequency region, tonality or
a metallic timbre is perceived.

Sound pressure between two rigid boundaries located atx = 0
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andx = L must fulfill the boundary condition

dp

dx
= 0. (1)

The sound pressure value at a certain modal frequency at any point
is given by a solution for (1) that can be written as

p(x) = Acos(knx), (2)

whereA is an arbitrary coefficient,kn = nπ/L, andn = 0, 1, 2, . . .
is the integer index of the current mode along dimensionx having
corresponding lengthL [22].

The 1-D solution can be extended toN dimensions, where
the sound pressure value at point (x1, x2, . . . , xN ) inside theN -
dimensional rectangular space at a certain modal frequency is

pn1n2...nN (x1, x2, . . . , xN) = B
N�

i=1

cos(knixi), (3)

whereB is an arbitrary coefficient andni are the mode index num-
bers for each dimension. The modes appear at frequencies

fn1n2...nN =
c

2π
kn1n2...nN , (4)

wherec is the sound velocity. The constantkn1n2...nN is a com-
bination of allkni :

kn1n2...nN = π

�
N�

i=1

�
ni

Li

�2
�1/2

, (5)

whereLi is the spatial length alongith dimension.
The first axial standingwavealong each dimension withni =

1 has a frequency whose correspondingwavelength is equal to
twice the trajectory length. Other standingwaves on thesame tra-
jectory are created at multiples of this base frequency. In addition
to these 1-D modes occurring between parallel boundaries, multi-
dimensional standingwaves aresupported as closed propagation
paths are created between multiple boundaries. For these diagonal
and oblique modes, two or more indices have values above zero,
respectively.

The modal frequencies are inversely proportional to the tra-
jectory length, so, for example in large halls the modes start from
lower frequencies than in small rooms. The modal density also in-
creases with frequency, as suggested by (4) and (5). Actual rooms
and halls are not perfectly rectangular and have furniture and other
objects affecting sound propagation. So the trajectory lengths are
not equal at all frequencies. More propagation trajectories are sup-
ported, especially at high frequencies, resulting in an even denser
and inharmonic modal structure. In more complex shapes, such
as fan-shaped rooms or bodies of musical instruments, the modal
structure is too complex to be managed in closed form expres-
sions. Instead, numerical approximations of thewavepropagation
are needed.

3. DIGITAL WAVEGUIDE MESH METHOD

The DWG mesh provides a computational model for multi-dimensional
wavepropagation. It was created as an extension of 1-D digital
waveguides popular in the physical modeling-based sound synthe-
sis applications [1, 23]. A 1-D DWG consists of two delay lines
passing signals into opposite directions and scattering junctions

p1

p

p

pk2 4

3

p

Figure 1:A two-dimensional rectilinear DWG mesh structure.pk

is the junction currently calculated andpl, wherel = 1, 2, 3, or 4,
are its axial neighbors as in (8).

between the delay lines. The input signal to a junction can be
passed through, partially transmitted, or reflected back.

The mesh can be constructed in various ways. The choice can
be made between two different variable types and multiple topolo-
gies. Common to all DWG mesh schemes is the regular discretiza-
tion, both in time and in space.

3.1. The digital waveguide mesh updating functions

A DWG mesh consists of bidirectional delay lines and scattering
junctions connecting them at regular nodal points. For example, a
2-D DWG mesh structure is shown in Fig. 1. In a homogeneous
N -dimensional mesh each junction has2N neighbors, and all in-
terconnections have equal impedances. If the delays are located
at the interconnections of the nodes, the updating function of each
junction is written as

pk(n) =
2

N

�
l

p+
l (n), (6)

wherep+
l (n) are the incomingwave variable values of each inter-

connectionl of the current junction at time instantn. The outgoing
values are then updated using the current junction valuepk:

p−l (n) = pk(n)− p+
l (n). (7)

The outgoing values are transformed into ingoing values of neigh-
boring junctions when they are passed by the unit delays in the
interconnections during the next computational time step. This
formulation of the mesh is called thewave variable formulation,
or W mesh.

Another formulation of the same functionality uses physically
measurable variables instead of their travelingwavedecomposi-
tion, as used in (6) and (7). In the so-called Kirchhoff formulation,
or K mesh, the delays are located at the nodal points of the mesh,
and the updating function of each junction is written as

pk(n) =

�
l pl(n− 1)

N
− pk(n− 2), (8)

wherepl are now the values of the neighboring junctions. While
being numerically less robust, in multi-dimensional models this
formulation requires considerably less main system memory than
an equivalent W mesh [24].
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The sampling frequency is related to the dimensionalityN of
the mesh by

fs =
c
√

N

∆x
, (9)

wherec is the wavepropagation speed in the mesh and∆x is the
spatial sampling interval corresponding to the distance between
two neighboring junctions [13]. The practical frequency band-
width for the mesh depends on its geometric topology [25]. For
example, a triangular mesh cannot produce resonances abovefs/3
and a rectilinear mesh has a spectrum that mirrors itself atfs/4.
Due to the mirroring of resonances around half the Nyquist limit,
the output of a rectilinear mesh is usually lowpass filtered in or-
der to retain only the “unique” modes belowfs/4. However, this
filtering is not required if the user is only interested in having an
output with a maximal number of modes instead of an exact phys-
ical model of a resonating structure.

In a DWG mesh, the number of degrees of freedom of the
model is equal to the number of delay elements. So in a homoge-
neous and freely resonating rectilinear K mesh the maximum num-
ber of modes below the mirroring frequency is equal to the num-
ber of junctions. The highest mode index numberni is equal to
the number of junctions along the corresponding dimension. If the
phase of the reflectedwave ispreserved at the boundary,ni ≥ 0.
In the case of phase reversing reflection, the lowest modes are can-
celed, and only modes withni ≥ 1 are supported.

3.2. Hyperdimensional DWG mesh structure

The mesh dimensionalityN is not restricted to the limits of our
physical world. Instead, hyperdimensional meshes are easy to
construct by adding more interconnections between the scattering
junctions [20, 13, 26].

As seen in Fig. 2, the modes are distributed equally in a 1-
D DWG structure. In rectilinear meshes with higher dimension-
alities, the modes are densest nearfs/4 and sparsest at frequen-
cies close to DC andfs/2. As the number of junctions is kept
constant with increasing dimensionality, the number of junctions
along each dimension is diminished. This packs the modes closer
aroundfs/4. At the same time, the modal frequencies become
higher because the sampling frequency increases with dimension-
ality, as seen from (9). The number of independent indicesni in
(5) is equal to the number of dimensions. Maximizing the number
of dimensions and choosing theLi values close together from a
prime number series minimizes the harmonicity of the mode dis-
tribution, which is beneficial for simulating reverberation over a
wide frequency bandwidth [27]. The inharmonicity is further aug-
mented by perturbation in mode frequencies caused by the numer-
ical dispersion inherent in thewaveguide mesh structure [2, 8].

3.3. Boundary conditions

For realistic reverberation modeling, frequency-dependent losses
have to be implemented. In real rooms, high frequencies usu-
ally decay faster than low frequencies due to absorption of en-
ergy by air and wall materials. Another important feature is the
strong modal frequencies with long decay times characterizing
some spaces, especially musical instrument bodies.

In a DWG mesh, the frequency-dependent losses can be com-
bined and implemented with boundary filters. In this way the inner
mesh structure is kept lossless and homogeneous. As discussed
earlier, the inner mesh was implemented using K formulation. As
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Figure 2:Frequency responses of rectilinear meshes with 420 scat-
tering junctions, organized in four different dimensionalities. The
reflection coefficient of all boundaries wasR = −1. The mesh
was initialized at a corner junction, and the output was read at the
same location.
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Figure 3:The boundary junction with KW-conversion and second-
order FIR filter [28].

boundary filters are easier to design for travelingwave variables,
a boundary junction structure including a variable-type converter
and a second-order FIR filter was used, as depicted in Fig. 3 [28].

The boundary reflection characteristics are determined with
coefficientsR1, R2, and R3. This kind of low-order filter can
model simple lowpass behavior and is effective enough for nonex-
act simulation of impulse responses.

4. APPLICATION TO ARTIFICIAL REVERBERATION

The frequency response of a reverberant structure can be coarsely
divided into two bands. At low frequencies, the modes can be
individually heard. Their frequencies and decay times are psy-
choacoustically important, so recreating them exactly is needed
for convincingly simulating the response. At higher frequencies,
the modal frequencies are not heard individually, and thus an ex-
act physical model is not needed. For natural sounding simulation
of high-frequency reverberation, the key issues are the density and
the irregularity of the modal structure [27].

In the presented examples, the hypermesh structure is used
to generate the high-frequency portion of the impulse responses
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Figure 4:Dimensions of the lecture hall T3 at the Helsinki Univer-
sity of Technology.

of a lecture hall and a clavichord soundbox. In both cases, the
high-frequency hypermesh response is combined with the output
of other resonator models providing the low-frequency modes at
physically correct frequencies. This is similar to hybrid models
which have been used for simulating bodies of musical instru-
ments, in which a reverberation algorithm is combined with a res-
onator bank in parallel [14, 29].

Sound samples of the studied cases are available at
http://www.acoustics.hut.fi/∼vpv/publications/hypermesh/.

4.1. Case: Lecture hall

In the first example, the hypermesh is applied to the simulation
of room reverberation. The impulse response of lecture hall T3 at
the Helsinki University of Technology was measured and used as
a reference. The dimensions of the lecture hall are shown in Fig.
4. The ceiling area is smaller than the floor area, as the left-side
wall and the back wall are sloping. A soft absorbent plate is hung
at 0.40 m below the ceiling, covering the full area from the back
wall to 3.0 m from the front wall.

The room impulse response was measured 5.5 m from the left
wall and 10.0 m from the front wall at a height of 1.7 m. The
speaker used as a sound source was located 2.7 m away from both
the left and the front wall equally, at a height of 1.2 m. The five
most prominent frequency modes and their corresponding 60 dB
decay times are listed in Table 1. They were evaluated from the
measured signal and then removed from it.

A two-pole, two-zero inverse filter was designed for mode re-
moval after determining the frequencies and decay times. TheT60s
were estimated by fitting a straight line to the time-domain values
of the response’s energy decay relief (EDR) [30] at the frequency
bin associated with a particular mode. The slope of the line was
then inverted and scaled to obtain theT60 value. The zeros of each
inverse filter are complex conjugates whose angles are the posi-
tive and negative radian frequency of the mode to be removed and
whose radiusR is matched to theT60 of the same mode by the re-

lationshipR = e
ln(0.001)

T60fs . The two poles are identical to the zeros
except that the radius is slightly contracted by a factor very close
to 1, in order to isolate the effect of the zeros to the target mode
[31]. 0.9999 was used when neighboring modes are very close to
each other, but a factor of 0.999 was sufficient in most cases. The
reverberation time of the remaining signal was evaluated on octave

Frequency (Hz) T60 (sec) Magnitude (dB)
75.96 0.8134 -25.90
102.52 1.3244 -30.58
122.02 1.4195 -29.31
138.08 0.9622 -31.85
148.02 1.3221 -29.02

Table 1: Analysis results for prominent modes of the lecture hall
impulse response, to be implemented with a resonator bank.

Boundary R1, R3 R2

3D hard walls 0.01958 0.84000
3D soft ceiling 0.00896 0.85918
4D mid frequencies 0.00440 0.67470
4D high frequencies 0.00200 0.91200

Table 2: Filter coefficients of the room impulse response simula-
tion.

bands, and theseT60 values were used as the optimization goal for
the 4-D meshes.

The five highest octave bands with central frequencies from
1 kHz to 16 kHz were simulated by a multirate system consist-
ing of two rectilinear 4-D meshes of7 × 8 × 10 × 13 junctions
each. The hypermesh dimensions were chosen to produce maxi-
mally dense and irregular modal pattern over a sufficiently wide
frequency band. A multirate system was utilized, as use of large
meshes and filter structures was thus avoided. This is essential,
as computational cost of a hyperdimensional mesh grows rapidly
with the number of junctions. The boundary filters shown in Fig.
3 were implemented at one end of the longest dimension, while
perfectly reflecting, phase inversing conditions were implemented
at other boundaries by fixing their values to zero. The simulation
was run for 48000 time steps for the first mesh, and for 12000 steps
for the second mesh, as its output was upsampled by a factor of 4.
A Nyquist filter was used for anti-aliasing. The coefficients of the
3-tap FIR filters at one7×8×10 junction boundary of each mesh
were optimized for minimizing the maximum error inT60-values
of the combined output. A Nelder-Mead optimization, provided
by Matlab, was used.

At lower frequencies, the exact frequencies of each mode are
perceptually important, and thus simulating only the decay times
would not provide an appropriate result. Instead, a 3-D triangu-
lar mesh, also known as a 3-D dodecahedral or hexagonal close
packed, was defined to model the low-frequency response. The
low-frequency mesh topology was chosen by the fact that the dense
triangular mesh exhibits minimal numerical errors. The mesh di-
mensions were designed to match the room dimensions as closely
as possible with junction spacing of0.2 m. Using (9), the sampling
frequency of the mesh is seen to befs ≈ 2.9 kHz and the highest
frequency modeled is thus about 950 Hz. Linear-phase FIR fil-
ters were designed for all boundaries of the mesh. Two different
sets of filter coefficients were optimized to match the reverbera-
tion times of the received signal to the measurement results. One
filter was used for the soft ceiling, another for other surfaces. The
coefficients used are listed in Table 2. The two hypermeshes were
excited at a corner junction with impulse responses of high-order
filters to match their frequency responses together at crossover
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Figure 5:Frequency responses of the input filters of the two hyper-
meshes used in the room impulse response simulation: above for
the mid frequencies and below for the highest frequencies.

Frequency (Hz) MeasuredT60 SimulatedT60

125 1.4640 0.5116
250 0.7403 0.6437
500 0.6503 0.4493
1000 0.5833 0.4277
2000 0.5640 0.5146
4000 0.5221 0.5212
8000 0.4739 0.4876
16000 0.3526 0.3388

Table 3:Reverberation times of the measured and simulated room
impulse responses of the lecture hall T3. Center-frequencies of the
octave bands are listed.

frequencies. The frequency responses of the filters are shown in
Fig. 5. The 3-D mesh was excited with a unit impulse at a location
closely matching the location of the sound source in the reference
measurement setup and the response was recorded from a point
representing the measurement location, respectively.

The measured and simulatedT60 values are shown in Table
3, and the time-frequency representations of the responses can be
seen in Figs. 6 and 7, respectively. The resulting responses can
be seen to be a good match in terms of reverberation times, espe-
cially at the frequencies above 1 kHz modeled specifically by the
hypermeshes. The initial shapes of the frequency responses are
significantly different, as the equalization of the relative magni-
tudes of the mesh outputs was set only by ear. This affects the first
0.1 seconds of the response. The difference in the latter part of the
signals is explained by the noise present in the measured response
in Fig. 6 and absent in the simulated response in Fig. 7. Also, for a
better match at frequencies below 1 kHz, the low-frequency model
could have been implemented more precisely especially in terms
of spatial resolution and boundary filter design. However, this was
not the focus of this paper.

Figure 6:Measured impulse response of the lecture hall.

Figure 7:Simulated impulse response combined from the outputs
of a 3-D triangular mesh for low frequencies and two 4-D hyper-
meshes for the frequencies above 700 Hz.
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4.2. Case: Clavichord soundbox

In the second example, the reverberant impulse response of a clavi-
chord soundbox was modeled using two hypermeshes and a res-
onator bank. The response used as the overall simulation target
was produced with an impulse hammer impact on the soundbox
while the strings of the clavichord were carefully damped. Figure
8 shows the time-frequency representation of the impulse response
of the clavichord soundbox. It contains many modes between
about 30 Hz and 3 kHz, but no significant energy at frequencies
higher than that.

The hypermeshes served to generate an approximation of the
dense high-frequency modes of the soundbox. The hypermesh
simulation target was the soundbox impulse response whose long-
ringing modes in the low-frequency range were removed by in-
verse filtering [31]. 28 biquadratic resonators were used to isolate
the prominent modes below 500 Hz. Fewer resonators can be used
in practice depending on the desired synthesis quality.

A multirate system was created, as in Section 4.1, to imple-
ment the soundbox reverberator in Fig. 9. Only two hypermeshes
of 8× 9× 11× 13 junctions were needed to generate sufficiently
dense reverberation within the reduced bandwidth. The output of
one of the meshes was upsampled by a factor of 3. The total
response was filtered with a sixth-order LPC filter, whose coef-
ficients were obtained from the measured soundbox impulse re-
sponse after extracting the most prominent modes. Boundary fil-
ters were designed to match the decay times which were analyzed
for each one third-octave band. The meshes were initialized with
a filter output signal having a frequency response as depicted in
Fig. 10 for flattening the overall shape of the mesh response seen
in Fig. 2. Responses were recorded at opposite corner locations
compared to the initialization points.

Figure 11 is the time-frequency representation of the hyper-
mesh model of the high-frequency response of the clavichord sound-
box. The low-frequency modes that have been extracted are not
included in this model. It is seen by comparing Figs. 8 and 11 that
the hypermesh model produces a similar, but not exactly identical,
response between about 100 Hz and 2 kHz. The low-frequency
modes need to be implemented with separate resonators to obtain
a full model of the soundbox.

The commuted synthesis [32, 33] clavichord model described
in an article by Välimäki et al. [34] can be enhanced by replac-
ing the sampled soundbox response triggered at each note with a
soundbox reverberation module, such as the one described above.
In a synthesis model using this scheme, the output of a string mod-
ule would be fed into a body/resonator module as shown in Fig. 9.
A similar solution has been used for sound synthesis of the harp-
sichord, where reverberation from the soundboard was simulated
with a feedback delay network reverberator [35].

A reverberator model with a spatial interpretation such as the
hypermesh supports multiple input locations and allows for subtle
differences in reverberation for each note. This would be analo-
gous to subtle differences in the soundbox response resulting from
each string’s unique driving point on the bridge. The contribution
of a hypermesh reverberator to a synthetic clavichord tone makes it
sound more realistic and lively than if it were only overlaid with a
sampled soundbox impulse response, which always adds the same
reverberation effect to the tone.
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Figure 8:Measured impulse response of the clavichord soundbox.
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Figure 9: Simplified clavichord synthesis model incorporating a
reverberation module to simulate the soundbox.
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Figure 10:Frequency response of the input filter of the hyperme-
shes used in the clavichord soundbox impulse response simulation.

DAFX-6

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

114 DAFX-07



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

0

1

2

10
1

10
2

10
3

10
4

−100

−80

−60

Time (s)

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 11: Combined response of the two hypermeshes used in
the simulation of the clavichord soundbox impulse response. The
low-frequency modes implemented with separate resonators are
not included.

5. CONCLUSIONS AND FUTURE WORK

The hyperdimensional digitalwaveguide mesh discussed in this
paper is a four-dimensional variation of the DWG mesh technique.
The main advantage of this structure is its ability to provide a much
more dense and irregular modal structure at high frequencies com-
pared to meshes of lower dimensionality. This encourages the uti-
lization of the presented technique, for example in the creation of
artificial reverberation as presented in our paper. The attenuation
characteristics of the mesh can be controlled by similar boundary
conditions as used with 2-D and 3-D meshes, thus enabling shap-
ing of the resulting magnitude response.

This paper has shown two applications: simulation of a lec-
ture hall and simulation of a clavichord soundbox. The quality
obtained in these simple examples encourages to study further the
uses of hyperdimensional meshes in the field of spatial audio. In
the future, the hypermesh should be compared with other methods
and listening tests should be performed to assess the sound quality.

6. REFERENCES

[1] S. A. Van Duyne and J. O. Smith III, “Physical modeling
with the 2-D digitalwaveguide mesh,” inProc. Int. Computer
Music Conf., Tokyo, Japan, Sept. 1993, pp. 40–47.

[2] S. A. Van Duyne and J. O. Smith III, “The 2-D digitalwaveg-
uide mesh,” inProc. IEEE WASPAA, New Paltz, NY, USA,
Oct. 1993, pp. 17–20.

[3] J. O. Smith and G. P. Scavone, “The one-filter Keefe clarinet
tonehole,” inProc. IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, New Paltz, NY, October
1997.

[4] M. Karjalainen, V. Välimäki, and T. Tolonen, “Plucked-
string models: from the Karplus-Strong algorithm to digital
waveguides and beyond,”Computer Music Journal, vol. 22,
no. 3, pp. 17–32, Fall 1998.

[5] J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. O. Smith,
“The simulation of piano string vibration: from physical
models to finite difference schemes and digitalwaveguides,”
J. Acoust. Soc. Am., vol. 114, no. 2, pp. 1095–1107, 2003.

[6] F. Fontana and D. Rocchesso, “Physical modeling of mem-
branes for percussion instruments,”Acustica united with acta
acustica, vol. 84, pp. 529–542, 1998.

[7] J. Laird, P. Masri, and C. N. Canagarajah, “Efficient and ac-
curate synthesis of circular membranes using digitalwaveg-
uides,” inProc. IEE Colloquium on Audio and Music Tech-
nology: The Challenge of Creative DSP, November 1998,
pp. 12/1–12/6.

[8] L. Savioja and V. Välimäki, “Reducing the dispersion er-
ror in the digitalwaveguide mesh using interpolation and
frequency-warping techniques,”IEEE Trans. Speech and Au-
dio Processing, vol. 8, no. 2, pp. 184–194, Mar. 2000.

[9] M. L. Aird, L. Laird, and J. ffitch, “Modelling a drum by
interfacing 2-D and 3-Dwaveguide meshes,” inProc. Int.
Computer Music Conf., Berlin, Germany, Aug. 2000, pp. 82–
85.

[10] S. Bilbao, “Sound synthesis for nonlinear plates,”
in Proc. Int. Conf. Digital Audio Effects (DAFx),
Madrid, Spain, September 2005, pp. 243–248,
http://dafx05.ssr.upm.es/Proc_DAFx05/P_243.pdf.

[11] L. Savioja, T. Rinne, and T. Takala, “Simulation of room
acoustics with a 3-D finite difference mesh,” inProc.
ICMC’94, Aarhus, Denmark, Sept. 1994, pp. 463–466.

[12] L. Savioja, J. Backman, A. Järvinen, and T. Takala, “Waveg-
uide mesh method for low-frequency simulation of room
acoustics,” inProc. 15th Int. Congr. Acoust. (ICA), Trond-
heim, Norway, June 1995, vol. 2, pp. 637–640.

[13] L. Savioja, J. Huopaniemi, T. Lokki, and R. Väänänen, “Cre-
ating interactive virtual acoustic environments,”J. Audio
Eng. Soc., vol. 47, no. 9, pp. 675–705, Sept. 1999.

[14] P. Huang, S. Serafin, and J. O. Smith, “A 3-Dwaveguide
mesh model of high-frequency violin body resonances,” in
Proc. Int. Computer Music Conf., Berlin, Germany, Aug.
2000, pp. 86–89.

[15] M. J. Beeson and D. T. Murphy, “Virtual room modelling
using hybrid digitalwaveguide mesh techniques,” inProc.
147th meeting of ASA, New York, USA, May 2004.

[16] G. R. Campos and D. M. Howard, “On the computational
efficiency of differentwaveguide mesh topologies for room
acoustic simulation,”IEEE Trans. Speech and Audio Pro-
cessing, vol. 13, no. 5, pp. 1063–1072, Sept. 2005.

[17] D. T. Murphy and D. M. Howard, “Modelling and direction-
ally encoding the acoustics of a room,”Electronics Letters,
vol. 34, no. 9, pp. 864–865, Apr. 1998.

[18] A. Kelloniemi, V. Välimäki, and L. Savioja, “Simulation of
room acoustics using 2-D digitalwaveguide meshes,”Proc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing,
Toulouse, France, May 2006, vol. 5, pp. 313–316.

[19] J. Mullen, D. M. Howard, and D. T. Murphy, “Waveguide
physical modeling of vocal tract acoustics: Flexible for-
mant bandwidth control from increased model dimensional-
ity,” IEEE Trans. Audio, Speech, and Language Processing,
vol. 14, no. 3, pp. 964–971, May 2006.

DAFX-7

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

DAFX-07 115



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

[20] D. Rocchesso and J. O. Smith, “Circulant andelliptic feed-
back delay networks for artificial reverberation,”IEEE Trans.
Speech and Audio Processing, 5(1), Jan. 1997, pp. 51–63.

[21] A. D. Pierce,Acoustics, 2nd ed.McGraw-Hill, New York,
1989, pp. 293–294.

[22] H. Kuttruff, Room Acoustics, 4th ed.Spon Press, London,
2000.

[23] V. Välimäki, J. Pakarinen, C. Erkut, and M. Karjalainen,
“Discrete-time modelling of musical instruments,”Reports
on Progress in Physics, vol. 69, no. 1, pp. 1–78, January
2006, http://www.iop.org/EJ/abstract/0034-4885/69/1/R01/.

[24] M. Karjalainen and C. Erkut, “Digitalwaveguides vs. fi-
nite difference schemes: Equivalence and mixed modeling,”
EURASIP J. Applied Signal Process., no. 7, pp. 978–989,
June 2004.

[25] F. Fontana, D. Rocchesso, “Signal-theoretic characteriza-
tion of waveguide mesh geometries for models of two-
dimensionalwavepropagation in elastic media,”IEEE Trans.
Speech and Audio Process., vol. 9, no. 2, pp. 152–161, Feb.
2001.

[26] A. Kelloniemi, V. Välimäki, P. Huang, and L. Savioja,
“Artificial reverberation using a hyper-dimensional FDTD
mesh,” in Proc. European Signal Processing Confer-
ence (EUSIPCO), Antalya, Turkey, September 2005,
http://signal.ee.bilkent.edu.tr/defevent/papers/cr1422.pdf.

[27] M. Karjalainen and H. Järveläinen, “More about this rever-
beration science: Perceptually good late reverberation,”AES
111th Convention, New York, NY, USA, Nov. 2001, preprint
no. 5415.

[28] A. Kelloniemi, “Frequency-dependent boundary condition
for the 3-D digitalwaveguide mesh,”Int. Conf. Digital Audio
Effects (DAFx), Montreal, Canada, Sept. 2006.

[29] H. Penttinen, M. Karjalainen, T. Paatero, and H. Järveläi-
nen, “New techniques to model reverberant instrumentbody
responses,” inProc. ICMC’01, Havana, Cuba, Sept. 2001,
pp. 182–185.

[30] J.-M. Jot, “An analysis/synthesis approach to real-time arti-
ficial reverberation,” inProc. ICASSP 1992, San Francisco,
California, U.S.A., Mar. 1992, vol. 2, pp. 221–224.

[31] J. O. Smith III, “Physical audio signal processing: for virtual
musical instruments and digital audio effects,” online book
at http://ccrma.stanford.edu/˜jos/pasp/, Center for Computer
Research in Music and Acoustics (CCRMA), Stanford Uni-
versity.

[32] J. O. Smith III, “Efficient synthesis of stringed musical in-
struments,” inProc. ICMC’93, Tokyo, Japan, Sept. 1993, pp.
64–71.

[33] M. Karjalainen and V. Välimäki, “Model-based analy-
sis/synthesis of the acoustic guitar,” inProc. Stockholm Mu-
sic Acoustics Conf., Stockholm, Sweden, Jul.-Aug., 1993,
pp. 443–447.

[34] V. Välimäki, M. Laurson, and C. Erkut, “Commuted Waveg-
uide Synthesis of the Clavichord,”Computer Music J., 27(1),
pp. 71–82, Spr. 2003.

[35] V. Välimäki, H. Penttinen, J. Knif, M. Laurson, and C. Erkut,
“Sound synthesis of the harpsichord using a computationally

efficient physical model,” EURASIP J. on Applied Signal
Processing, no. 7, pp. 934–948, June 2004. Special Issue on
Model-Based Sound Synthesis.

DAFX-8

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

116 DAFX-07



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

RAY ACOUSTICS USING COMPUTER GRAPHICS TECHNOLOGY

Niklas Röber, Ulrich Kaminski and Maic Masuch

Games Research Group
Department of Simulation and Graphics,

Otto-von-Guericke-University Magdeburg, Germany
niklas@isg.cs.uni-magdeburg.de

ABSTRACT
The modeling of room acoustics and simulation of sound wave
propagation remain a difficult and computationally expensive task.
Two main techniques have evolved, with one focusing on a real
physical - wave-oriented - sound propagation, while the other ap-
proximates sound waves as rays using raytracing techniques. Due
to many advances in computer science, and especially computer
graphics over the last decade, interactive 3D sound simulations for
complex and dynamic environments are within reach.

In this paper we analyze sound propagation in terms of acoustic
energy and explore the possibilities to map these concepts to ra-
diometry and graphics rendering equations. Although we concen-
trate on ray-based techniques, we also partially consider wave-
based sound propagation effects. The implemented system ex-
ploits modern graphics hardware and rendering techniques and is
able to efficiently simulate 3D room acoustics, as well as to mea-
sure simplified personal HRTFs through acoustic raytracing.

1. INTRODUCTION

Physically correct sound simulations of larger and more complex
environments remain a difficult, if not impossible task. This is
mainly due to the extensive nature of sound wave propagation,
along its complex interaction with scene objects. Unlike light,
the audible spectrum covers a large area of frequency bands (oc-
taves), and is additionally, due to a slow propagation, highly time-
dependent. Although, this introduces several complications, it also
allows, in certain situations, to discard some of the wave phenom-
ena, especially for the higher frequency bands. As a result, two
main approaches have evolved for the simulation of sound wave
propagation: The wave-based and the ray-oriented techniques, with
the first one concentrating on the lower and the last one on the mid-
dle and higher frequency ranges. Here Section 2 has a closer look
on both techniques and compares them in terms of efficiency and
applicability. Although several improvements have been reported
for both techniques, sound simulations are in general performed
offline and are valid only for certain frequency ranges. Due to ad-
vances in computational power, as well as in computer graphics
and acoustics, interactive and dynamic ray-based sound simula-
tions are feasible also for complex and more difficult scenes.

Accelerated and driven by computer games and the demand
for an even higher visual realism, computer graphics hardware
has evolved tremendously over the last decade and nowadays out-
performs the CPU in terms of computational capacity by several
magnitudes. As of the easy availability of this processing power,
graphics hardware has been exploited in a number of non-graphics
calculations, such as solving differential equations, as well as for
simulations and numerical analyses [1]. The GPU is, in general,

very well suited for the computation of parallel problems and was
also more recently employed as DSP for sound signal processing
[2, 3]. In the area of sound simulations, the GPU was used to solve
basic geometric room acoustics [4], as well as wave-based sound
propagation using waveguide meshes [5]. Besides some physi-
cal differences, the propagation of sound and light share several
similarities that make existing graphics rendering techniques ex-
ploitable to accommodate an acoustic energy propagation model.

The goal of this work is to build a foundation for ray-based
sound simulations using an acoustic energy propagation model,
and furthermore, to demonstrate its applicability and efficiency
using modern graphics hardware and rendering techniques. We
derive the acoustic rendering equations from global illumination
models and radiometry used in computer graphics [6], and extend
the existing model by time- and frequency dependencies. This par-
adigm is later employed in a GPU-based implementation to per-
form realtime sound simulations using ray-based techniques for
the applications of room acoustics and personalized HRTF simu-
lations. The audible spectrum is divided into 10 frequency bands,
which are interpreted individually with respect to their wavelength
and energy. The local energy contribution of each surface patch is
evaluated separately per frequency band using functions of reflec-
tion, transmission/refraction, absorption and diffraction. Finally,
the acoustic energy at the observers position is accumulated and
filtered regarding direction and distance using HRTFs. The sys-
tem allows us to simulate realtime interactive and dynamic envi-
ronments with varying acoustic materials, but also to approximate
individual HRTFs through ray-acoustic simulations.

The paper is organized as follows: After this introduction, we
review in Section 2 the existing approaches for sound simulations
and compare their advantages and drawbacks. Section 3 follows
up on the ray-based approach and develops a model for the prop-
agation of acoustic energy in enclosures. This model studies the
flow of acoustic energy from sound sources, its local interaction
with objects and materials, as well as the measurement using a
scene mounted listener. The following Section 4 maps the here
developed concepts onto graphics primitives and rendering tech-
niques, and discusses its implementation using modern program-
mable graphics hardware. Section 5 presents and discusses results
using examples from room acoustic simulations and personalized
HRTF measurements. The closing Section 6 summarizes the work
and discusses several ideas for future improvements.

2. ACOUSTIC SIMULATION TECHNIQUES

Auralization is defined as the simulation and reproduction of the
acoustic properties describing a virtual scene, which has applica-
tions in many areas, including architectural design, sound and mu-
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sic production and even audio-based computer games [7]. An ac-
curate and efficient simulation is thereby still a difficult and com-
putationally extensive task.

The most often employed approaches are waveguide meshes
and raytracing techniques, see also Figure 1. Figure 1(a) displays
here a visualization of the waveguide technique, a more physi-
cally correct wave-based sound propagation model, based on time-
domain finite difference meshes. The acoustic energy, eg. pres-
sure, is distributed along sampling points using difference equa-
tions. Figure 1(b) shows a visualization of the ray-based approach
that approximates sound waves through particles and acoustic en-
ergy, and were raytracing techniques are used to determine the vir-
tual soundfield. As both techniques have their own advantages and
limitations, the wave-oriented techniques are usually employed for
the lower frequency end, while the ray-based techniques are used
for the middle and higher frequency parts.

(a) Wave-based Approach.

(b) Ray-based Approach.

Figure 1: Acoustic Simulation Techniques.

2.1. Wave-based Acoustics

Wave-based room acoustics is concerned with the numerically eval-
uation of the wave equation in order to simulate sound wave prop-
agation. Often employed techniques are finite element methods
(FEM) and 3D waveguide meshes (time-domain difference mod-
els) [8, 9]. The 1-dimensional waveguide technique is a numer-
ical solution to the wave equation and was first applied to simu-
late string-based musical instruments [10]. The digital waveguide
mesh is an extension of the 1D technique and constructed by bi-
linear delay lines that are arranged in a mesh-like structure [8].
Higher dimensions are built by scattering junctions that are con-
nected to the delay lines and act as spatial and temporal sampling
points. The equations that govern the rectilinear waveguide mesh
are based on difference equations derived from the Helmholtz equa-
tion by discretizing time and space [11]. Depending on the mesh’s
resolution and the internodal sampling distance, the simulations
can be rather expensive. Due to advances in computing power, re-
altime wave-based room acoustics is feasible for smaller meshes.

Although, the simulations using waveguide meshes are very
accurate, there are some drawbacks as well. The two major prob-
lems are a direction dependent dispersion error, and a finite mesh
resolution to model a more complex boundary behavior [8]. Sev-
eral approaches have been discussed to overcome these limitations
and include higher tesselated meshes, different mesh topologies
and frequency warping techniques [12, 13]. Additionally, the sam-
pling frequency of the rooms impulse response needs to be over-
sampled, with previous research showing that a typical waveguide
mesh gives a valid bandwidth only as far as fupdate/4 [8]. There-
fore, this technique is only practical to the very lower frequency
end. However, recent research has shown that waveguide meshes
can easily and efficiently be implemented using graphics hardware.
Combined with a new sampling lattice, the performance increase
was measured by a factor of 25, and even more for finer mesh
resolutions [5].

2.2. Geometric Acoustics

Geometric acoustics is based on optical fundamentals and light
propagation and approximates sound waves through particles mov-
ing along directional rays [14, 15]. These rays are traced through
a virtual scene, starting at the sound source and towards a listen-
ers position, at which the accumulated energy is later evaluated.
As sound waves are now simplified as rays, wave phenomena and
differences in wavelength are usually discarded and ignored. This
method is therefore only applicable to frequencies whose wave-
length are much shorter than the dimensions of the enclosure, or
any object within, refer also to [16, 17].

Several articles have been published over the last years, which
discuss the realtime possibilities of ray-acoustic sound simulations
[18, 19]. The majority of implementations, however, employs
raytracing only to determine specular reflections using ray/beam-
tracing approaches and uses conventional 3D sound APIs for spa-
tialization and sound rendering [14, 15, 4]. As raytracing is a long
known area of research in computer graphics, several improve-
ments and advancements to the original approach have been pro-
posed, and were partially applied to ray-acoustics as well. Savioja
et.al. have designed the DIVA auralization system based on a ray-
acoustics approach, to examine modeling techniques for virtual
acoustics, as well as for physically-based auralizations [20, 21].

Some of the more recent geometric acoustic implementations
already utilize computer graphics hardware to increase the simula-
tions efficiency. Jedrzejewski uses the GPU for simple 2D geomet-
ric room acoustics using rays and specular reflections [4], while
Kapralos and Deines employ a particle-based system to adopt the
phonon mapping technique towards a phonon tracing approach
[22, 23, 24]. Although, this technique allows an accurate mod-
eling of acoustic materials and sound propagation, it only permits
static and non-changing environments. Interesting, from the per-
spective of a complete GPU-based sound simulation and rendering
approach, is also the work by Gallo and Whalen [3, 2], who em-
ploy the GPU as DSP for sound signal filtering and synthesis.

3. ACOUSTIC ENERGY PROPAGATION

Sound is the propagation of mechanical energy in the form of
pressure variations and can be described by attributes such as fre-
quency, wavelength, speed of propagation etc. Light on the other
hand is an electromagnetic radiation, which is described by simi-
lar, however, largely different quantities. The propagation of light
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fj frangej
(Hz) fcenterj (Hz) λcenterj (m)

f0 22 – 44 31.5 10.88
f1 44 – 88 63 5.44
f2 88 – 177 125 2.74
f3 177 – 354 250 1.37
f4 354 – 707 500 0.68
f5 707 – 1,414 1,000 0.343
f6 1,414 – 2,828 2,000 0.172
f7 2,828 – 5,657 4,000 0.086
f8 5,657 – 11,314 8,000 0.043
f9 11,314 – 22,627 16,000 0.021

Table 1: Frequency Bands fj .

energy and its interaction with objects can be measured and de-
scribed by using techniques of radiometry, from which global il-
lumination models used in computer graphics are derived [6]. The
concepts of radiometry, along its properties and equations, can be
mapped to the propagation of acoustic energy as well. This as-
sumes that the propagation of sound waves can be simplified to
a ray-based approach by largely neglecting characteristics such as
wavelength, diffraction and interference. For middle- and higher
frequencies, and depending on the rooms and enclosed objects
size, this assumption is true to a certain degree. Especially at the
lower frequency end wave-based effects become such prominent
that they prevail. Therefore, the here discussed model also ad-
dresses these issues and incorporates the wavelength to approxi-
mate diffraction and interference effects. The following sections
discuss the theories behind, and extend the concepts of radiometry
towards a ray/energy-based acoustic propagation model suitable
for sound wave simulations.

3.1. Emission and Radiation

In order to study and describe the propagation of sound waves us-
ing raytracing techniques, an adequate propagation model that in-
corporates time- and frequency dependencies needs to be defined.
This can be realized in analogy to the physics of light transporta-
tion and global illumination models [6], which now have to be
extended and adopted towards acoustic properties and an acoustic
energy propagation [25].

Whereas the wavelength of the visible spectrum ranges only
between 380 nm to 780 nm, the wavelength in acoustics spreads
from 17 mm at 20 kHz up to 17 m at a frequency of 20 Hz. The
frequencies in the audible spectrum are classified and described by
frequency bands (octaves) according to human psychoacoustics.
In the following sections fj describes a certain frequency band,
with j being the index number and j+1 the next higher octave. Ta-
ble 1 provides an overview of the different frequency bands, along
their index number, frequency range frangej

, center frequency
fcenterj and center wavelength λcenterj . The audible spectrum
Aspectrum is therefore defined as the sum of these 10 frequency
bands:

Aspectrum = As =

9X
j=0

fj . (1)

Similar to light, acoustic energy can be described as the amount
of pressure variations per unit volume and time, or more accu-
rately, by the changes in velocity of air particles contained in a vol-

ume element per unit time. The quantity for describing and mea-
suring acoustic energy is radiant power Φ, or flux, and measured
in Watt or Joule/sec [6]. The intensity is thereby described as
the amount of acoustic energy flowing from/to/through a surface
element per unit time:

I(t) =
dΦ

dA
dt. (2)

The transfer of acoustic energy using a participating media
(air) is characterized by the energy transport theory. The energy
density in the medium of propagation is hereby the sum of the
kinetic and potential energy per unit volume dV and time E(t) =
Ekin(t) + Epot(t) [25]. The kinetic energy density is defined as
the pressure of a sound wave as:

Ekin(t) =
1

2

Mv2

V0
dt =

1

2
ρ0v

2dt, (3)

with v being the average velocity of air particles, ρ0 the av-
erage media density and M

V0
its mass per unit volume V0. The

potential energy density can be derived from the gas law as:

Epot(t) =

R
pdp

c2ρ0
dt =

1

2

p2

c2ρ0
dt, (4)

with p as the pressure of the sound wave and c as the speed
of sound in this medium, and therefore defines the total amount of
acoustic energy density [25] as:

E(t) = Ekin(t) + Epot(t) =
1

2
(ρ0v

2 +
p2

c2ρ0
)dt. (5)

Equation 5 is valid at any position and time within the virtual
auditory environment and serves as basis to describe an acoustic
energy propagation model. In order to quantitatively measure flux
per unit projected surface area and per unit angle, radiance is in-
troduced with:

L(x, Θ) =
d2Φ

dωdAcosθ
, (6)

which varies with position x and the ray’s direction Θ. By
incorporating the wavelength λj of the frequency bands used (ref.
Table 1), Equation 6 is redefined to:

L(x, Θ, fj) =

Z
As

L(x, Θ, fj)dλ. (7)

The acoustic energy interacting with a surface element can
be further differentiated in incident Ei (incoming) and exitant Ee

(outgoing) energy, and is also measured in Watt/m2:

Ei =
dΦ

dA
, Ee = kEi. (8)

The scalar k is herby defined over [0, 1] and describes the re-
flectivity of the surface with Esurface = Ei − Ee and is affected
by the surface material definition. Using a lossless participating
media, the exitant radiance at one point L(x1 → Θ) is exactly
the same as the incident radiance at another point receiving this
amount of energy L(x2 ← Θ) [6]. Using a density function and
volume elements, p(x)dV defines the physical number of sound
particles carrying an acoustic energy quant. If moved in time dt
across a differential surface area dA, and by using the direction
ω and speed of propagation c; N = p(x, ω, fj)cdtdAcosθdωdλ
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describes the number of particles flowing through this surface ele-
ment. The radiance per unit volume is accordingly redefined to:

L(x, Θ, fj) =

Z
As

Z
p(x, ω, fj)h

c

λj
dλ. (9)

An energy/sound source emits acoustic energy that is propa-
gated through and by the participating media. The energy radiates
through an emittance pattern, which can be homogenous in any di-
rection, eg. spherically, or direction dependent, such as a cone. As
with light, also acoustic energy attenuates with distance using the
familiar inverse square law. Furthermore, atmospheric absorption
occurs, at which certain frequencies are absorbed by the propagat-
ing media. However, this factor is very small and can safely be
ignored for smaller enclosures, but becomes more prominent with
increasing distances.

An observer, or listener, can be placed anywhere within the
scene to record the acoustic energy present at this location. The
listener does not interfere or participate in the energy propagation,
but, if required, such as for binaural listening, an additional geom-
etry can be placed nearby to simulate head-shadowing effects. The
incoming rays are then weighted and filtered using HRTFs regard-
ing the ray’s direction and delay.

3.2. Local acoustic Energy Exchange

The most interesting part in a ray-based acoustic simulation is the
interaction and exchange of acoustic energy with objects and sur-
face elements. Depending on the objects size and the acoustic ma-
terial parameters specified, some of the incoming energy might get
absorbed, reflected, refracted or transmitted, with the total amount
of energy according to Equation 8 being constant.

Figure 2: Local acoustic Energy Exchange.

Figure 2 shows a schematic of the local acoustic energy ex-
change. The four effects of absorption, reflection, refraction and
transmission are described in more detail in the remainder of this
section. Every ray that is cast into the scene contains, depending
on the sound source emittance of course, the energy of all fre-
quency bands. The energy contribution of each ray is evaluated
at the point of intersection with the surface patch using the ray’s
length, as well as the surface material properties defined.

Some of the incident acoustic energy is thereby usually ab-
sorbed, converted into heat and dissipated back into the system.
The absorption is frequency dependent and characterized by a fre-
quency band coefficient αfj :

Leabsorbed(x← Θ) =

9X
j=0

Eij αfj . (10)

Transmission is defined as the energy that passes through an
object. We redefine this term to describe the frequency-weighted
amount of energy that passes through an object unaltered and with-
out refraction. In acoustics, objects smaller than the wavelength of
an incoming sound wave do not interfere, instead the wave simply
diffracts around the object and continues unchanged. An according
frequency dependent modeling of energy transmission can be real-
ized using an objects bounding box or sphere that simply transmits
all acoustic energy whose wavelength is equal or above the objects
size:

Letransmitted(x→ (π + Θ)) =

9X
j=0

Eij τfj . (11)

Here Letransmitted(x → (π + Θ)) describes the amount of
exitant energy per ray for all bands, which simply pass along the
direction opposite to the incoming ray, i.e. the ray’s original direc-
tion. The term τfj is used for a finer modeling and a frequency-
weighting of the transmission effects.

Reflection and diffuse scattering are probably the two most
important qualities in acoustic raytracing and can be very well de-
scribed using bidirectional reflection distribution functions (BRDF)
[6]. A BRDF is defined for a point x as the ratio of the differential
radiance reflected in an exitant direction Θe and the differential
irradiance incident through an incoming angle Θi:

brdfreflected(x, Θi → Θe) =
dL(x→ Θe)

dE(x← Θi)
. (12)

The BRDF is frequency dependent, but direction independent,
eg. fr(x, Θi → Θe) = fr(x, Θe → Θi) [6, 26]. Diffuse scat-
tering uniformly reflects the incoming acoustic energy in all di-
rections. In acoustics, this behavior is largely influenced by the
surface roughness, which can be used to determine a specular re-
flection coefficient that describes the ratio between specular and
diffuse reflections. Using a complete diffuse scattering, the ra-
diance is independent from the angle of exitance and the BRDF
defined as:

brdfreflected(x, Θi ↔ Θe) =
ρdiffuse

π
, (13)

in which the reflectance ρdiffuse represents the fraction of
incident energy reflected at the surface. Pure specular reflection
on the other hand diverts all incident energy in only one direction
R, which can be simply computed using the law of reflection and
the surface normal N : 2(N(π +Θe))N − (π +Θe). A frequency
dependent BRDF for acoustic raytracing can be modeled through:

Lereflected(x← Θi) =

9X
j=0

Eij υfj , (14)

in which υfj is a weighting factor per frequency band fj . The
majority of materials, however, exhibit a sort of glossy surface, a
combination of specular reflection and diffuse scattering.

Refraction occurs at the crossing of two different isotropic me-
dia and can be computed similar to the reflection term in Equa-
tion 12, except that the outgoing angle Φ of the refracted ray is
determined using Snell’s Law: sinΦ = η2

η2
. Here η1 and η2 are

the refraction indices of their respective media. A frequency band
weighted refraction can be defined similar to Equation 14 by using
νfj as weighting coefficient per frequency band.
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3.3. Diffraction and Interference

Edge diffraction and interference are acoustic phenomena that can
be modeled accurately using wave-based techniques, but do not fit
well into the concept of ray-acoustic simulations. However, both
are very important and prevail especially in the lower frequency
ranges. Therefore, and in order to obtain a more realistic simu-
lation, these effects have to be included, or at least approximated.
Generally, this is done by combining wave-based and ray-based
approaches and by choosing a certain threshold as boundary fre-
quency. But to a certain degree, these effects can also be approxi-
mated within ray-acoustics.

(a) Scene Rendering as seen from Listener’s Position.

(b) Combined Depth/Edge Map.

(c) Top View with original and diffracted Ray.

Figure 3: Ray Acoustic Diffraction Simulation.

Sound waves with larger wavelength simply bend around edges,
such as if an additional sound source was placed at the diffraction
edge. Diffraction effects are in ray/energy acoustics simply mod-
eled through ray-bending, according to the ray’s length and its as-
sociated frequency band fj . As diffraction is dependent on the
objects size and the ray’s wavelength, the amount of energy that is
diffracted is determined individually per frequency band fj . The
maximum possible diffraction angle was herby determined exper-
imentally using a wave-based sound propagation system [5]. Fig-
ure 3 visualizes the concept of the implemented diffraction sys-
tem. It shows a virtual scene from the listener’s perspective (Fig-
ure 3(a)), the constructed edge map (Figure 3(b)) and the by angle
α diffracted ray from a listener to a sound source (Figure 3(c)). For
each edge in Figure 3(b), additional rays are cast into the scene for
diffraction simulation.

Interference describes the superposition of two or more sound
waves and the resulting changes in amplitude. Using a ray-acoustic
sound simulation, interference effects can only be approximated
roughly using the ray’s length and the center wavelength λcenterj

of the current frequency band fj . By using an additional scalar as-
sociated with each ray, also the modeling of phase-preserving and
phase-reversing reflections are possible. The next section focusses
after these theoretical discussions on the implementation of the
here described acoustic energy propagation model using efficient
computer graphics hardware.

4. GRAPHICS-BASED RAY ACOUSTIC SIMULATIONS

While the last section discussed the propagation of acoustic energy
and its interaction with objects and materials, this section maps
the there developed concepts onto computer graphics primitives
and rendering equations. The presented framework implements a
ray-based acoustic simulation system that exploits modern com-
puter graphics hardware. The system is designed along current
GPU-based raytracing systems [27, 28, 29], which were extended
towards the acoustic energy propagation model as discussed in the
last section. The advantages and applicabilities of such an imple-
mentation can be summarized as:

• Efficient ray-based acoustic simulation system that incor-
porates wave phenomena,

• Realtime implementation that exploits graphics hardware,

• Built-in visualization of sound wave propagation,

• An eclectic modeling and design of acoustic materials, with

• Applications for impulse response measurements and gen-
eral room acoustics, as well as to

• Approximate individualized HRIRs.

The system takes any 3D polygonal mesh as input, which is
pre-processed into a more efficient accessible structure. It allows
an interactive sound simulation for meshes of up to 15,000 poly-
gons. Using a short pulse as sound signal, room impulse response
(RIR), as well as head-related impulse response (HRIR) measure-
ments are possible. Alternatively, a monaural sound file can be
used as input signal, resulting in a spatialized binaural representa-
tion with the virtual rooms imprint. The sound source/listener po-
sitions, as well as the acoustic material definitions can be changed
and adjusted interactively. All sound signal processing, including
HRTF convolution and delay filtering, is realized using fragment
shaders onboard the graphics hardware.

4.1. Auralization Pipeline

The auralization pipeline employed in our system stretches over
the CPU and GPU systems, but the majority of computations is
carried out in graphics hardware. Figure 4 shows an overview of
the pipeline, along its partition in CPU and GPU related tasks. As
initialization, 3D scene data, as well as sounds and frequency band
decomposed HRTFs are loaded into texture memory. The sound
data is also decomposed into 10 bands and assigned a position and
emittance pattern within the virtual room. Rays are now cast into
the scene starting at the listeners position, and the per frequency
band received acoustic energy is accumulated and stored within so
called cubemaps. This cubemap is later evaluated and the sound
data is filtered and delayed using HRTFs according to their po-
sition and the ray’s length. The binaural mixdown is performed
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Figure 4: Auralization Pipeline.

using a two-channel floating point texture, which is streamed back
to the CPU and fills a native OpenAL stereo buffer for sound play-
back.

4.1.1. Uniform Grid Structure

In a pre-processing step, the 3D scene is converted into a uniform
grid structure that subdivides 3D space and groups neighboring
triangles together in a voxel-based topology. These voxels are of
uniform size and axis aligned. This space subdivision is necessary
in order to efficiently determine ray/object intersections, as now
only the triangles grouped in one voxel element have to be tested
[27, 28, 29]. Care has to be taken in defining the voxel’s size,
as with very detailed objects the number of polygons can easily
exceed the number of possible shader instructions.

4.1.2. Frequency Decomposition and Synthesis

A frequency-based acoustic raytracing has many advantages, as
now some of the wave-based propagation effects can be approx-
imated, as well as it allows a more realistic frequency-dependent
definition of acoustic materials. Currently we employ 10 frequency
bands, grouped into octaves as known from psychoacoustics, see
Table 1. For the frequency decomposition of sound data and HRTFs,
we employ a time-based convolution using windowed sinc filters,
with their cutoff frequencies specified as the bands respective bor-
der frequencies. These 10 bands are loaded as floating point tex-
tures into graphics hardware. To remain data precision, we cur-
rently employ 3 RGBA textures to hold the sound data, although,
using data compression, two should be sufficient for 16 bit sound
data. Ray/object interactions are evaluated per frequency band and
the contributions from each ray are accumulated and also stored
individually. The final auralization is a binaural sound signal that
is generated by filtering the original sound texture using HRTFs
according to the simulations result.

4.2. Acoustic Raytracing and Diffraction Simulation

The authoring of 3D scenes can be conveniently performed using
3D Studio MAX, where a custom-built plugin is used to assign
acoustic material definitions to each object. This acoustic material
defines the wavelength specific energy exchanges for each surface

patch. Although, all materials are assigned per vertex, no interpo-
lation of neighboring material attributes is performed yet.

The raycasting and acoustic energy accumulation is carried out
using so called cubemaps. One cubemap is hereby centered around
the observers position and a ray is cast into the scene per cubemap
texel. Figure 5 shows a visualization of this cubemap raycasting
approach. Each ray cast is traced through the virtual scene and
its acoustic energy accumulated and stored per frequency band.
At points of ray/object intersection, the local surface acoustic en-
ergy exchange is evaluated according to Section 3.2. Newly gener-
ated rays from refraction, transmission and/or reflection are further
traced, until their possible energy contribution falls below a certain
threshold ε. The cubemap not only stores all incoming acoustic
energy per frequency band, but also the ray’s direction and length.
This information is later used for the final binaural sound signal
synthesis.

Figure 5: Ray Energy Accumulation Buffer.

4.2.1. Diffraction Simulation

The ray acoustic simulation also incorporate diffraction effects on
edges and object borders. To find possible diffraction locations,
a depth/edge map is employed, which highlights these edges, see
also Figure 3(b). These maps are created by using the scenes depth
buffer and an image-based edge detection algorithm. If a ray is cast
close to a diffraction edge, the ray is bend according to the diffrac-
tion of sound waves [16, 17]. Here the ray’s energy is attenuated,
depending on the angle and the ray’s wavelength. Another wave-
based phenomena is interference, which can be roughly approx-
imated by using the ray’s length and the frequency bands center
wavelength λcenterj , see Table 1. Although, this is a very sim-
ple approximation, it would also allow the modeling of phase-
reversing and -preserving boundary reflections, as well as to use
this information for interference effects of the same and/or differ-
ent frequency bands.

4.3. Implementation

Today’s graphics hardware, and especially the new generation with
its unified shader architecture, can be seen as powerful parallel
processing machines, which can very efficiently execute small pro-
grams - so called shaders - in parallel. Shaders are freely program-
mable using high level shading languages such as GLSL and Cg.
As graphics applications typically require the processing of huge
amounts of data, graphics hardware has been optimized to support
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this with a highly parallel design. Combined with a fast and op-
timized memory architecture for accessing and storing the data,
this makes this hardware very interesting for any computationally
intensive and parallelizable task.

All convolutions and sound synthesis are carried out using
fragment shaders on graphics hardware, with a single shader for
each task. The data, eg. sounds, geometry and material definitions
are stored within textures and accessed during the rendering task
from within the shaders. The results of the simulation are again
stored as textures, from which they are read back to the CPU for
sound playback.

5. RESULTS AND DISCUSSION

This section discusses some results of the ray-acoustics simula-
tion system. The implementation is based on nvidia type graphics
hardware and uses Cg as shading language. The current experi-
ments were performed with three different graphics hardware gen-
erations, showing that only the newest one (GeForce8800GTX)
was also able to additionally perform a realtime auralization of the
results besides the sound simulation. Frame rates of up to 25 fps
could be achieved using a detailed model of a living room ( 1,500
polygons) including a binaural auralization of the scene, ref. Fig-
ure 7(b).

(a) Transmission and Refraction. (b) Diffraction around Pillars.

Figure 6: Evaluation of Sound Propagation Effects.

Figure 6 shows two visualizations of sound propagation ef-
fects. Here Figure 6(a) displays the transmission and refraction
parts of the simulation, whereas Figure 6(b) shows diffraction ef-
fects of several pillars. In both cases the sound source is hidden
and the simulation results are visible in the unfolded cubemaps
below. Both cubemaps show a red/braun shifting of the color, de-
noting a stronger transmission/diffraction in the lower frequencies.

5.1. Example 1: Room Acoustics

The first example shows two different rooms along their echograms.
Figure 7(a) displays thereby a small church, while Figure 7(b)
shows an average living room. The echogram of the church, ref.
Figure 7(c) shows strong and late echoes, while the echogram in
Figure 7(d) shows that nearly all acoustic energy, except the direct
line, was absorbed by walls and furniture. Both echograms clearly
visualize the rooms acoustic properties. Each room has been mod-
eled using 3D Studio MAX, in which for each surface a differ-
ent materials has been specified. The properties for the acoustic
material definitions were taken from the CARA database1. The

1http://www.cara.de
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(d) Echogram Living Room.

Figure 7: Room Acoustic Example Scenarios.

echograms show the early reflections, as well as late reverberation
and diffraction effects.

5.2. Example 2: Personalized HRTF

The second example shows an HRIR simulation of the horizontal
plane using our ray-acoustics approach. The simulation was per-
formed using 72 sound sources, each 1.2 m apart from the head
at a 5 degree interval. Although, the simulation does not exhibit
all effects of a regular measured HRIR, it shows the most promi-
nent features. The simulation was performed using a 3D model
of the KEMAR mannequin. Figure 8 shows two different simula-
tion results, along the original 3D model used. Here Figure 8(a)
displays an HRIR simulation of the system from [30], while Fig-
ure 8(b) show the results of the here presented ray-acoustics sys-
tem. Thereby roughly 18 million rays were traced per sound source,
resulting in a simulation time of 22 seconds per sound source. Al-
though the most important features are clearly present, several ef-
fects are still missing. This is partially due to the fact that we only
consider one diffraction per ray. Also, a more detailed fine tuning
of parameters along the material definitions for the head, torso and
ear will yield better results. The goal is to combine an individu-
alized HRTF simulation with room acoustics, to yield a realtime
personalized binaural room simulation. Better results with geo-
metric models have been achieved by [31], but, however, also with
a much longer simulation time.

6. CONCLUSIONS AND FUTURE WORK

We have presented a realtime graphics-based implementation of a
ray acoustic simulation system that is based on an acoustic en-
ergy propagation model. This underlying model is founded on
sound propagation, as well as global illumination models, and the
ray/energy approach used therefore valid and its implementation
using graphics hardware and techniques viable. The current re-
sults clearly show the possibilities of this system and motivate a
further research in this area.
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(a) HRIR 1. (b) HRIR 2. (c) KEMAR Model.

Figure 8: HRIR Simulation and 3D Model.

The current implementation already exhibits good and very
promising results, yet some ideas are left for future improvements.
One extension would be an enhanced space partitioning structure,
such as kD-Trees that allow a non-uniform subdivision of 3D space.
Future work also includes more and finer partitioned frequency
bands for a more accurate studying and modeling of wave-based
propagation effects. Another beneficial extension would be a higher
incorporation of radiosity techniques, although one has to be care-
ful to not impede here with realtime simulations and dynamic en-
vironments. Additionally, ambisonics and their implementation
using spherical harmonics in realtime computer graphics might be
an interesting path to explore.
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ABSTRACT

Digital realtime audio effects as of today are realized in
software in almost all cases. The hardware platforms used
for this purpose reach from multi purpose processors like
the Intel Pentium class over embedded processors (e.g. the
ARM family) to specialized DSP.

The upcoming technology of complete systems on a sin-
gle programmable chip contrasts such a software centric so-
lution, because it combines software and hardware via some
co-design methodology and makes for a promising alterna-
tive for the future of realtime audio. Such systems are able
to combine the vast amount of computing power provided
by dedicated hardware with the flexibility offered by soft-
ware in a way the designer is free to influence.

While the main realization vehicles for these systems –
FPGAs – were already promising but unfortunately offered
limited possibilities a decade ago [1] they have made rapid
progress over the years being one of the product classes that
drive the silicon technology of tomorrow.

We describe an example for such a realtime digital ef-
fects system which was developed using a hardware/soft-
ware co-design method. While digital realtime audio pro-
cessing takes place in low latency dedicated hardware units
the control and routing of audio streams is done by software
running on a 32 bit NIOS II softcore processor. Implemen-
tation of the hardware units is done using a DSP centric
methodology for raising the abstraction level of VHDL de-
scriptions while still making use of standard of the shelf
FPGA synthesis tools. The physical implementation of the
complete system uses a rapid prototyping board tailored for
communications and audio applications based on an Altera
Cyclone II FPGA.

1. INTRODUCTION

Software running on a DSP or a common CPU is the preva-
lent vehicle of digital real-time audio effects implementa-
tion today. Realization of such effects in dedicated hard-
ware has some appealing advantages especially in low la-
tency and high reliability applications [2]. Little flexibility
and a much more complicated design process than software
does offer are the other side of the coin. These severe draw-

backs have prevented dedicated hardware design from gain-
ing ground in the digital audio effects realm at least in its
consumer and semiprofessional floors.

Using the arithmetic package described in [3] which pro-
vides a fractional data type for fixed point digital data pro-
cessing the abstraction level in terms of data handling and
arithmetic expressions raised a lot over what is possible us-
ing the integer types typically encountered in such descrip-
tions: signed and unsigned. The work described in [4] gave
proof of concept for the general usefulness of the fractional
package for digital signal processing as it is done in ap-
plications typically found in the communications industry.
Such applications seldom make use of the large amount of
dynamic parameters that many audio applications demand.
Flexibility of a description simply is no issue in this case.

The desire to broaden the application area of our ap-
proach led to the decision to implement effects from the
audio domain in hardware using a rapid prototyping board.
The project DAFX [5] was launched at the University of Ap-
plied Sciences of Upper Austria at Hagenberg in October
2006 which aimed the evaluation the feasibility of a com-
bined hardware/software approach for targeting the audio
effects application field. Parameterization of the hardware
audio effect modules is done through software running on
a 32 bit softcore processor which is implemented together
with the effects on an FPGA as a re-programmable System-
on-Chip. Hardware and software subsystems together built
a complete hardware/software co-design. The software con-
trolled processor core also controls the data streams con-
necting the different hardware effect units.

We will point out advantages as well as disadvantages
found while realizing a digital audio system this way. We
start by describing the rapid prototyping system used as the
realization platform. The second part of the paper deals with
the used components and the basic setup for effect develop-
ment followed by the description of the implementation and
design funcional simulation based verification of effects.

2. RAPID PROTOTYPING BOARD SANDBOXX

The platform chosen for the realization of the system de-
scribed in this paper is the rapid prototyping board Sand-
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boxX which has been developed at the University of Ap-
plied Sciences of Upper Austria at Hagenberg and is used
for educational and research purpose.

The board shown in Fig. 2 is built around an Altera Cy-
clone II FPGA (EP2C35F). Peripherals (see Fig. 1) of the
FPGA are 16 megabytes of SDRAM, a Texas Instruments
audio codec (TLV320AIC23B), a MIDI Interface, a PS/2 in-
terface and a programmable clock IC (ICS307). Further
hardware units such as a PCI Bus connector are available on
the board, but were not used in the project. The board pow-

Figure 1: Hardware for the audio effects

Figure 2: Silkscreen of the rapid prototyping board Sand-
boxX.

ers up with a default clock frequency of 25 MHz. Because
the system uses a clock frequency of 48 MHz, we needed
to reprogram the clock frequency. This is done on startup
by software on the NIOS II processor. For configuration an
SPI interface is used.

The audio codec can be configured and is capable of
transferring audio data in several different ways. For our ap-
plication we used the I2S interface to transfer audio data and
the SPI interface to configure the codec. The audio codec
is used in slave mode, so that the clock for the codec has
to be generated with a hardware frequency divider imple-
mented on the FPGA. This makes it easier to keep the sys-
tem synchronous. The serial I2S audio data is converted to
a 24 bit parallel signal by a hardware unit. A valid bit in-
dicates when new data arrives. Sending audio data to the

audio codec works the other way round making use of a
parallel to serial converter unit.

The analog audio data is pre-amplified and routed to
audio connectors, so that the SandboxX can be used stan-
dalone for creating audio effects. A disadvantage of the
prototyping board with regard to the analog signal quality
is the low-cost power supply by an USB port. This keeps
cost down, but results in a higher noise floor of the supply
creeping into the audio signal domain.

The SDRAM is connected via an address / data bus with
32 data lines. Because the SDRAM is placed beside the
FPGA and we use a relatively high clock frequency for the
memory (48 MHz system clock), we had to shift the clock’s
phase with an integrated PLL of the FPGA to meet timing
requirements.

The MIDI and PS/2 interfaces are connected to the FPGA
via appropriate level conversion and an opto-coupler. The
MIDI interface is used to connect the MIDI foot controller
described in section 3.5. A PS2-compatible mouse was used
during the debugging phase to change the bandpass center-
frequency of the WahWah effect (see section 4.5).

The configuration data for the FPGA is automatically
loaded from an SPI Flash ROM on the board by a program-
mer implemented in a separate CPLD.

3. SYSTEM DESIGN

The aim of our work is to implement audio effects as dedi-
cated hardware units without losing system flexibility. The
system had to have the capability to be configured and pa-
rameterized easily. Our proposed solution is the use of a
softcore processor leading to a hardware/software co-design
as proposed in [6] which is implemented on a single chip.
We used the NIOS II softcore processor supplied by the
FPGA vendor Altera to run the software part of the system.
The effects are implemented as dedicated hardware units to
do the signal processing while the processor core and thus
the software controls signal routing.

The used prototyping platform SandboxX offers only a
single SDRAM chip with direct interconnect to the FPGA.
This kind of memory needs a special controller in order to
be accessed in a correct way. In our system the SDRAM
is connected to the bus system of the softcore processor via
the SDRAM controller provided by the Altera NIOS II de-
velopment system. While the SDRAM cannot be directly
accessed by the audio effect units which might use quite
large amounts of memory (especially delay based effects)
the use of software to control the audio data streams through
the SDRAM posed no performance problems. The proces-
sor just has to forward data so that little processing power is
needed.

For communication between the NIOS II processor and
the audio effects we used general purpose IOs instead of

DAFX-2

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

126 DAFX-07



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

Figure 3: Hardware/Software system

integration with the processor system bus (Fig. 5). This
has the advantage that the softcore processor could be eas-
ily exchanged and the interface needs less implementation
effort. This approach also offers an easy access of inter-
rupt sources. The drawback with respect to a direct system
bus connection is the smaller peak performance that can
be gained. In our system the throughput was by far high
enough to prevent dropping of audio date in any case. In fu-
ture applications the processor’s system bus (Altera Avalon
Bus) could be used together with some kind of audio stream
switching matrix implemented as a dedicated hardware unit
to make the system even more independent of software per-
formance irregularities.

The software manages and controls the system to keep
the trade-off between performance and flexibility. A MIDI
control unit (e.g. foot switch) can be connected to the sys-
tem. With such a device one can choose and control differ-
ent effects in realtime.

The processor is the only instance that has access to the
SDRAM. An effect can give the processor a request of writ-
ing data to it’s effect memory or read data from it. The used
hardware-software interaction scheme is depicted in Fig. 4.

The measurement of the processor usage at the mem-
ory intensive delay effect results in 33% usage for the data
transport (audio codec, SDRAM) and 66% usage for the
main loop.

Figure 4: Hardware-software interaction scheme.

3.1. Field-Programmable Gate Arrays

Field-programmable gate arrays (FPGAs) are on the verge
of revolutionizing digital signal processing in the manner
that programmable digital processors (PDSPs) did nearly
two decades ago [7, 8]. Many front-end digital processing
algorithms, such as FFTs, FIR or IIR filters, to name just
a few, previously built with ASICs or PDSPs, can now be
replaced by FPGAs. Modern FPGA families provide DSP
support with multipliers and fast-carry chains that are used
to implement DSP algorithms at high speed, with low over-
head and low costs [2].

3.2. Embedded Processor

The reason why we used the NIOS II softcore processor is
the good support for custom processor system design of-
fered by the Altera Quartus II tool set. We were able to
build a specific system exactly tailored to our purpose with
all the peripherals needed. They can be configured to adopt
specific user needs. An example are the ports used for audio
data, because they can be generated with the exact bit width
delivered by the audio codec. Further, we can add as many
SPI and UART interface units as we need for our periph-
erals (MIDI, programmable clock generator, audio codec).
Detailed information concerning functionality of NIOS II
peripherals is contained in [9].

The processor core was generated with the "standard"
settings (NIOS II/s), featured with instruction cache, branch
prediction, a hardware multiplier as well as a hardware di-
vider. The debugging interface was generated with configu-
ration "level 2". This means that two hardware breakpoints
and data triggers are supported and debugging of the sys-
tem via JTAG-interface is possible. For the hardware MIDI
interface an UART module from the Altera SOPC Builder
development tool was integrated into the processor system.

The system clock of the processor and all peripherals is
set to 48 MHz and the internal RAM size implemented in
FPGA internal RAM blocks is set to 15 KByte.

3.3. Software Development

The software for the NIOS II is written in C. It’s main tasks
are the parameterization of the hardware effects in reaction
to the incoming MIDI data. Besides that the software is
controlling the audio data flow from one effect to an other
effectively acting as an audio routing matrix and also con-
figures and initializes the audio codec. Altera offers a soft-
ware development environment based on Eclipse for the
NIOS II family. This environment includes a (fee free) GCC
compiler optimized for the NIOS II instruction set. The
SOPC Builder tool also generates processor specified li-
braries. Such libraries can be included into the develop-
ment environment and provide the function of a hardware
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abstraction layer.
Although possible, an operating system is currently not

used.

3.4. Interface of Effects Units

The interface between the control unit and a single hardware
effect unit plays an important role in the overall system de-
sign. The user should be provided with maximum flexibil-
ity when using the audio effects, which of course includes
the way in which audio signal is routed through the effects.
There are several implementation strategies, which fall into
consideration:

• Static effects-line: This attempt leans against the tech-
nique used with the common guitar gadget boxes. It
means, that there is a fixed order how the effects are
joined together and the user just can switch on or off.

• Multiplexing structure: An expanded structure of
the static effects-line could be a huge multiplexing
matrix, so that the effects order is more flexible.

• PIO: In order to gain flexibility some software may
be required. This branch stands for the easy way of
connecting hardware effects to the softcore processor,
namely through simple PIOs (Parallel Input/Output).

• Avalon Bus: This method is the advanced strategy of
PIOs. We used the NIOS II softcore, which main bus
system is an Avalon Bus. Each hardware effect may
provide an Avalon Bus-connection, which is faster
than PIOs.

In a software DSP system the routing of the data stream
is done in a similar way the data processing is done. Be-
cause dedicated hardware units are used for audio process-
ing the routing has to be done by a special unit that acts as
a central switch node connecting all processing nodes.

Here the flexibility of the embedded NIOS II softcore
comes into play. SOPC-Builder allows any number of port
peripheral units needed. Consequentially each individual
effect got it’s own data and control ports which are directly
connected to the NIOS II giving software full control of the
routing of audio data. Audio inputs as well as outputs of
all processing units are also connected directly to the soft-
core so that the user is able to pass the audio data through
different effects in different order (see Fig. 3).

Some effects may require buffer memory also. Unfor-
tunately it’s neither affordable to spend each effect it’s own
SD-RAM nor was it possible to do so on our prototyping
board. The single external SD-RAM (16 MB) is managed
by the NIOS II via a SD-RAM controller peripheral. If an
effect needs to buffer data, it can use the RAM-ports as
shown in Fig. 5. The RAM address is a relative one, the

softcore converts it and forwards the data physically to the
SD-RAM.

Nios-II
embedded processor Audio effect

Clock, Reset

AudioData dry             24

AudioData dry valid

AudioData wet            24

AudioData wet valid

Parameter settings

RamWriteAddress       X

RamWriteData           24

RamWriteValid

RamReadAddress       X

RamReadData           24

RamReadValid

Figure 5: Interface between NIOS-II softcore and effects.

3.5. MIDI Control Interface

The human control interface is a MIDI foot controller. There
are two different types of pedals on the foot controller: ten
foot switches, which are used to switch through effects and
two expression pedals, which are used to parameterize the
active effect. The software on the NIOS II is sensitive on
the used MIDI control sequences. If a valid command is re-
ceived, the parameters for the chosen effect are calculated
and transmitted from the processor to the hardware effects
block. Changing effects disposes a recalculation of the pa-
rameters.

4. EFFECTS

4.1. Chorus

The Chorus effect simulates playing various instruments si-
multaneously. When more musicians play instruments si-
multaneously, they will not play exactly synchronously. A
fixed and a variable time difference between the instruments
exists. The chorus effect does the same thing. It adds an au-
dio signal several times to itself where each instance of the
audio signal (i.e. the summands) is delayed by some amount
in time. The delayed signal is generated by adding a fixed
delay in the range of 15 – 20 milliseconds and a sweeping
delay of 4 – 8 milliseconds (see Fig. 6). In our implementa-
tion, the sweeping delay has the waveform of a triangle and
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Figure 6: Delay of Chorus

a frequency of 1 – 5 Hz. Another common used waveform
for the sweeping delay in the chorus effect is a sine wave.
The advantage of a sine wave is that it is a very smooth func-
tion and creates a harmonic sound. The sweeping frequency
is a parameter which can be changed while the system is in
use. As an option there could be also used a logarithmic
or sine waveform for the low frequency oscillator to change
the variable delay.

4.2. Delay

Depending on delay time the effect has different names be-
cause of the particular character of the resulting sound. If
the delay is in the range between 10 and 25 ms, we will hear
a quick repetition named slapback or doubling. If the delay
is greater than 50 ms we will hear an echo [10]. One can use
a single hardware unit for both of these delay based effects
while the splitting into two different effects can be done in
software.

Address calculation for the RAM used as audio buffer is
implemented in hardware in the manner of a ringbuffer. Via
the parameter delaytime the size of this ringbuffer can be
controlled. The output is calculated in a feedback loop. This
means the output is computed by the input sample and a
former output value read from the buffer. The output values
are scaled with the parameter level and written to the buffer
memory.

4.3. Echo Cancellation

An emerging topic in audio signal processing is echo can-
cellation. Especially the extensive use of Voice over IP,
hands-free kits and conference calls enhanced the public-
ity and the technology of canceling interfering reflections.
This problem occurs due to the fact that the spherical radia-
tion of loudspeakers is reflected by objects. Since acoustic
waves are expanding at an almost fixed speed, different time
shifted reflections, depending on the place where they are
measured, are created. Consequently, rooms have different
acoustic characteristics, which means that e.g. a small room

with reflecting walls is totally different to a big room with
walls that are reflecting hardly anything.

The major problem in conjunction with these reflections
arises due to the use of acoustic transmission. Because data
is sent in packages there has to be a buffering at first, addi-
tionally time delays occur during the transmission. Such a
delay could be a packet loss or a busy resource. Fig. 7 il-
lustrates the problem. At first participant A is sending data,
so there is a delay caused by buffering at point A as well
as the transmission delay to point B. Accordingly the data
is played at point B, reflected, recorded, buffered again and
sent back to point A. Consequently the sender gets the in-
terfering reflections with the sum of all delays, which is just
annoying in the slightest case but can also render the phone
useless.

A

B

Signal 1

Signal 2

Figure 7: Delayed audio transmission.

A solution of this problem can be filtering of the reflec-
tions which are created on the side of each participant. The
basic solution of this problem was already solved 50 years
ago by Norbert Wiener. He found a way to calculate the co-
efficients of a filter for filtering just a specific signal. There-
fore the inverse autocorrelation of the received signal, as
well as the cross correlation between the received signal and
the sent signal is needed:

hopt = R−1
xx r(λ)

xs (1)

Now it would basically be possible to measure the auto-
correlation and the cross correlation in advance, for calcu-
lating the optimal impulse response to create an echo can-
celer. But since the reflections are different for every place
and even differ when moving an object, the calculations
have to be done during filtering. This requires the use of
an adaptive filter.

Adaptive filters (see Fig. 8) are calculating the impulse
response iteratively by minimizing the error signal. They
start with an assumption for the impulse response. With
this assumption the first convolution is calculated, then the
result is used for generating an error signal that can be used
to update the filters coefficients again. Thus, the impulse re-
sponse is converging to the optimum Wiener solution with
each iteration. An algorithm which is commonly used for
this purpose is the NLMS, the normalized least mean square
algorithm. Therefore the variable µ is used for the step-size
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parameter to control the attended adaptation time as well
as the residual error. The normalization of this equation is
done by the use of the squared Euclidean norm. Haykin
[11] describes the effect as lowering the adaption for large
signals and increasing the adaptation for small signals. This
produces a lower noise which stabilizes the calculation and
increases the adaptation time. Since for our simulations and
implementations we are using a range of values between -1
and +1, the division has to be exchanged with a multipli-
cation to achieve the same effect. Consequently it can be

Adaptive weight-
control mechanism +

u(n)

Input signal

e(n) d(n)

d'(n)

Output signal

Transversal filter

Figure 8: Adaptive filter

summarized that the calculation effort takes about M mul-
tiplications and M additions for the convolution of the FIR
filter and additionally 3M multiplications and M additions
for the recursive algorithm.

ŵ(n + 1) = ŵ(n) +
µ̃

||u(n)||2 u(n)e∗(n) (2)

To achieve a good performance it should be considered
that the length of the filter has to be at least as long as the
reflection takes to be recorded. Assuming a delay path of
10 meters it takes about 30 ms until the delay will be recog-
nized. This leads to a minimal order of

M = 30 ms × 44117
Values

s
= 1300

for using audio quality sample rates. Such a high or-
der goes along with very high demands for the processing
speed, since it takes about 6M=7800 calculations per value,
or 340M calculations per second, for using CD quality sam-
ple rate. Based on the fact that the used IC is working with
a clock of 48 MHz it can be assumed that

steps =
48MHz

44117Hz
= 1088

steps are needed to calculate the adaptive filter between
two arriving audio values. This already shows that the im-
plementation could be a challenge, because the proportion
between calculations and time is 7:1. So in order to solve
this problem the parallel advantages of the FPGA have to
be used. This can be done by dividing the filter into sev-
eral parts, calculating them separately at the same time and

combining them finally together. This possible realization
differs from a digital signal processor in that way, that the
maximum number of fragmentation is much higher and that
the unused hardware parts are not affected at all. The used
IC offers for example 35 embedded 18 bit multiplier. Fur-
thermore a VHDL simulation shows that in order to realize
350M calculations in a second, the filter has to be divided in
5 different parts which would just just 15% of the available
multiplier. And while the resources of a DSP would have
been depleted by this filter, the implementation on a FPGA
would still have a lot of calculation power left.

4.4. Flanger

The flanger is a delay based effect like the echo, so the ar-
chitecture of the delay effect can be used as a starting point.
The difference is that in the echo effect a linear addressing
scheme is used while the flanger effect uses a delay time
that varies at a low frequency. The various frequencies dif-
fer with steps by 1

44,1kHz , thus no fractional interpolation is
needed. We create a sinusoidal oscillation via a direct digi-
tal synthesis (DDS) unit. DDS is a technique using a look-
up table to store the values of a function which should be
generated. This oscillation is added to the linear addressing
used for the ringbuffer as shown in Fig. 9. The frequency
can be controlled by a parameter.

Figure 9: Flanger effect architecture.

4.5. WahWah

The WahWah effect describes a time-varying bandpass fil-
ter. In this case the concept "second-order allpass" as found
in [10, p. 41] was realized. The idea is to create an allpass
filter with phase shifting by 360. The filtered signal has to
be subtracted from the original signal. When this elemen-
tary operation is done an allpass behavior results instead of
a bandpass (BP) behavior. Analogue to this fact, we can add
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the original signal to the filtered signal so that the result is a
band reject (BR) filter as seen in Fig. 10.

Figure 10: Blockdiagram of the allpass method

4.5.1. System Behavior

The cut-off frequency is the frequency at which the phase
is shifted by 180. When we consider the complete system
including subtraction, exactly the same point represents the
currently center frequency of the bandpass. The frequency
band for the complete phaseshift (-360) is the bandwidth of
the bandpass (see Fig. 11).
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Figure 11: Demonstration of the allpass-method

Because the used filter is an IIR type of second order,
there are just 6 filter-coefficients. In addition there is the
special character of an allpass, which means that the infi-
nite filtercoefficients are mirrored to the finite filtercoeffi-
cients (equation 5). Also the first infinite filtercoefficient
has always the value 1. Accordingly we just need to cal-
culate 2 coefficients. Parameter c describes the bandwidth
of the bandpass, whereas parameter d describes the center
frequency.

c =
tan(πfb/fs) − 1
tan(πfb/fs) + 1

(3)

d = −cos

(
2π

fc

fs

)
(4)

hAllpass(z) =
−c + d(1 − c) · z−1 + z−2

1 + d(1 − c) · z−1 − c · z−2
(5)

One last problem which needs to be handled is the time-
variance. The user of the effects-processor should be able
to change the center frequency of the WahWah bandpass in
realtime. The filter coefficients therefore need to be cal-
culated depending on the desired center frequency. This
operation would require the calculation of the cosine (see
equation 4). A compromise was to pre-calculate a few pos-
sible coefficients and store them in a lookup table. Because
these lookup tables don’t need to be changed during system
uptime, we used the FPGA’s Block-RAM as ROM for this
matter.

4.5.2. Hardware Effort

The WahWah effect requires the implementation of a second-
order IIR filter. Therefore each order is represented by a
VHDL process including forward and recursive branch. 4
filter coefficients out of 6 are not equal to one, therefore the
filter needs 4 multiplications per sample. The Cyclone II
FPGA includes 35 multipliers with a bitwidth of 18 bits. In
order to gain maximum speed the multiplications are done
in parallel which means, that 4 multipliers are used.

As said above the pre-calculated filter coefficients need
to be saved. For this matter the FPGA’s internal memory
blocks are used. Considering the fact, that allpass-filter co-
efficients are mirrored (see [10]) and that the bandwidth is
a constant there is just one filter coefficient left, which need
to be saved. This single coefficient represents the center
frequency and was pre-calculated for a frequency range of
200Hz to 2kHz considering, that in the end 1024 24-Bit
values are ready to use. This results in 18432 bits of re-
quired memory space. The hardware unit itself uses about
400 logic elements containing 250 registers. The maximum
achievable clock frequency is 60 MHz.

5. ADVANTAGES, DISADVANTAGES TO A
DIGITAL SIGNAL PROCESSOR

The main advantage in implementing audio effects with as
dedicated hardware is the very high throughput and low la-
tency. Dedicated hardware also avoids the sometimes un-
predictable behavior of a software based implementation.
Because all the hardware blocks are working in parallel,
we can implement complex designs and as long as we have
enough free space on the chip, computing power is guaran-
teed. This offers us the possibility to have a huge range of
effects working in parallel, because each effect works in-
dependently from the others. If we want to implement our
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effects "the traditional way" by using a digital signal pro-
cessor, we sooner or later will reach the calculation power
limit.

Some applications can be implemented easier in soft-
ware. In our case it was the control of the effects with the
MIDI pedal. Therefore we decided to use also a softcore
processor for managing the effects. Managing in this point
means to parameterize them. Implementing also the audio
effects in software (e.g. on a DSP) would have been eas-
ier than in hardware. There are currently more example-
implementations available and the design process is faster
in software. Also testing would have been easier, because it
takes a lot of time to build a test environment in VHDL for
hardware effects.

One large disadvantage of FPGAs is left to be men-
tioned. The point is the multiplication. Common FPGAs
seldom provide DSP elements with more than 20 bits width.
But digital signal processors mainly calculate with an accu-
racy of 32 bits. Some DSPs (e.g. SHARC from Analog
Devices) even provides a 40 bit accuracy when multiplica-
tion is done. For high-end audio the bitwidth is crucial and
must not be neglected. When we want to use the same broad
bitwidth on FPGAs it possible to cascade the DSP elements
which will in turn increase the propagation delays through
combinatorics and makes the system working slower.

Additionally there are a number of well established li-
braries for DSP processors available, which ease and fas-
ten the development. But on the contrary there are not that
many IPs available which serve our specific needs. Further-
more, the advantage of these libraries is that they are avail-
able for free and thus have been used, tested and improved
by a huge community.

6. CONCLUSIONS

The hardware/software co-design method described in this
paper provides a practical alternative to the software cen-
tric systems dominating the market today. While dedicated
hardware units used for audio realtime processing offer op-
timum performance in terms of latency and throughput the
use of an associated software unit can still take care of the
parameterization of the system and provides the flexibility a
user is accustomed to.

The hardware/software co-design approach we have cho-
sen has proved to be a practical way for the realization of
even complex audio realtime effects units. Still there’s lots
of work left to be done. Varying bit widths throughout the
course of the audio processing assembly line would be eas-
ily implementable using dedicated hardware. Among the
topics we would like to address in future work are the imple-
mentation of digital audio interface standards (e.g. MADI)
with special emphasis on an efficient solution for the all-
pervasive problem of synchronization and the implementa-

tion of audio compression algorithms such as FLAC in ded-
icated hardware.
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ABSTRACT

This paper proposes a framework for separating several speech
sources in non-ideal, reverberant environments. A movable human
dummy head residing in a normal office room is used to model
the conditions humans experience when listening to complex au-
ditory scenes. Before the source separation takes place the human
dummy head explores the auditory scene and extracts character-
istics the same way as humans would do, when entering a new
auditory scene. These extracted features are used to support sev-
eral source separation algorithms that are carried out in parallel.
Each of these algorithms estimates a binary time-frequency mask
to separate the sources. A combination stage infers a final estimate
of the binary mask to demix the source of interest. The presented
results show good separation capabilities in auditory scenes con-
sisting of several speech sources.

1. INTRODUCTION

Humans are masters in analyzing their auditory environment and
in separating different sound sources. Consider the classical cock-
tail party example, where several people are talking simultane-
ously in the same room. Humans have no difficulty to attend to
a single person while ignoring all the other people, additional ar-
tificial sources and background noise. Today’s computational ap-
proaches for source separation – especially in reverberant envi-
ronments – are far from achieving this extraordinary ability of the
human brain.

When humans enter an auditory scene they first look around
and estimate several features of the environment around. When
source separation is required – i.e. when starting a conversation
with another person – this knowledge is used to enhance the sepa-
ration process. The presented source separation framework tries to
model this human behavior to enhance the following source sepa-
ration. To imitate the human listening situation, a robotic human
dummy head, called Bob, is used. Bob resides in a normal office
room of size 10 × 6 m and a reverberation time RT60 = 0.4 s
and is able to move in three degrees of freedom to explore the
auditory scene around him. A conventional 7.1. loudspeaker in-
stallation is utilized to construct an auditory scene consisting of
several spatially separated sources by assigning each source to a
specific loudspeaker. The auditory scene around is recorded via
microphones in Bob’s ears.

2. TIME-FREQUENCY MASKS

Rickard et al. [1] showed that speech signals are sparsely dis-
tributed in high-resolution time-frequency (TF) representations.
TF representations of different speech signals overlap only in few

Figure 1: Bob – The robotic head.

points and so are approximately orthogonal to each other. This ap-
proximate orthogonality in the TF-domain justifies the use of TF-
masks that emphasize regions of the TF-spectrum that are dom-
inated by a specific source and attenuate regions dominated by
other sources or noise. Masking effects in the human auditory sys-
tem motivate the use of binary TF-masks: Within a critical band-
width humans don’t recognize sounds that are masked by louder
sounds.

Several researchers in computational source separation sug-
gest an ideal binary mask as final goal of computational source
separation algorithms (i.e.[2], [1]). Brungart et al. [3] support this
goal by noting that the intelligibility of separated sounds increases
if more and more energy of the ideal binary mask is reconstructed.

Assume si(t, f) denotes the energy of the target signali in TF-
bin at time t and frequency f and nj(t, f) denotes the energy of
the j-th interfering signal in this TF-bin. The ideal binary mask
Ωi(t, f) for target sourcei and a threshold of 0 dB is defined as
follows:

Ωi(t, f) =

(
1 si(t, f)− nj(t, f) > 0 ∀j
0 else

(1)

2.1. Short-Time-Fourier-Transform

A commonly used TF-representation is the lossless and computa-
tionally efficient Short-Time-Fourier-Transform (STFT). The dis-
crete STFT analyzes the time-domain signal in linearly spaced fre-
quency channels up to the Shannon frequency. For a general dis-
crete signal x(n) and an arbitrary discrete analysis window func-
tion w(n) the STFT is defined ∀q ∈ {0, 1, ..., N − 1} as

X(k, q) =
1√
N

·
N−1X
n=0

w(n)x(n + k)e−i2π qn
N . (2)
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Figure 2: Frequency Response of STFT using a Hamming window.

Figure 2 shows the positive frequency response of the STFT
for a Hamming window of length 32 using a sampling frequency
of 3.2 kHz. The shape of the linearly spaced filter channels and
the overlap between two consecutive channels is specified by the
shape of the analyis window function.

Yilmaz et al. [1] showed that the approximate orthogonality of
different speech sources in the discrete STFT representation with
Hamming windows of 64 ms length is satisfied and the STFT spec-
trum is a suitable and easy representation for assigning complete
time-frequency regions to specific sources.

Besides an amplitude and phase estimate for each bin in the
spectrum, the STFT provides no further low-level information about
this bin that could be used to infer the dominating source. Because
of the limited time and frequency resolution the estimates are only
coarse and averaged over the complete analysis window. If a spe-
cific bin is dominated by one source, there may also be energy of
other sources in this bin which severely forge the amplitude and
phase estimates.

Almost all energy of speech signals is distributed in frequen-
cies up to 8 kHz. For analysing speech signals, a finer frequency
resolution in the low frequency range is favorable, whereas in higher
frequencies a coarse resolution is sufficient. Because the STFT
analyses linearly up to the Shannon frequency, the frequency reso-
lution in the low frequencies cannot be enhanced by increasing the
sampling rate.

A source separation algorithm should use all information about
a specific time-frequency region to increase the possibility of cor-
rect assignment. Using only an amplitude and a phase estimate for
the assignment decision of a complete STFT-bin is quite limited
and is not very reliable in reverberant mixtures. To enhance the
decision process more information about each STFT-bin must be
examined.

2.2. Cochleagram

Many source separation architectures try to imitate the frequency
analysis of the human auditory system. The frequency analysis of
the human cochlea can be approximated using a bank of gamma-
tone filters. The impulse response of a gammatone filter is defined
as the product of a gamma function and a tone [4]:

gfc(t) = tN−1e−2πb(fc) · cos(2πfct + φ) ∀t ≥ 0 (3)

where N denotes the order of the filter and fc denotes the
center frequency of the filter. The value b(f) determines the band-
width of the filter and is usually set to the equivalent rectangular
bandwidth (ERB) of human auditory filters. A bank of such gam-
matone filters gives a good fit to experimentally derived estimates
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Figure 3: Frequency Response of Gammatone Filterbank.

of the frequency analysis of the human cochlea and for such the
TF-representation of a gammatone filter bank is commonly called
cochleagram.

Figure 3 illustrates the frequency response of a bank of 16
gammatone filters in the frequency range from 100 - 1600 Hz.
Consecutive filters are spaced logarithmically on the frequency
scale. Filter channels in the low frequencies have fine frequency
resolution, but coarse time resolution. Conversely the high fre-
quency channels have coarse frequency resolution, but fine time
resolution. The coarse time-resolution in the low frequencies is
acceptable as signals consisting of low frequencies change slowly,
whereas high-frequency signals need finer time-resolution to illus-
trate the rapid changes.

The inversion of a given cochleagram to a time-domain signal
is non-trivial and lossy. There exist some approaches that yield
quite good invertion results (i.e. [4], [5]), but these are complex
to compute and only approximately orthogonal, which results in
non-perfect reconstruction.

3. OVERALL ARCHITECTURE

The STFT is easy and lossless to compute, but the filter channels
are positioned linear on the frequency scale which yields only a
coarse frequency resolution in the important low frequencies. Also
the amplitude and phase information are averaged over the com-
plete analysis window and so not really reliable in reverberant en-
vironments.

The cochleagram on the other hand analyses the signal with
logarithmically spaced filter channels and allows a finer frequency
resolution in the low frequencies, but the invertion of a given coch-
leagram to a time-domain signal is quite complex.

The source separation framework presented in this paper com-
bines the positive features of the STFT with the positive features
of the cochleagram while eliminating some of the negative fea-
tures. The overall goal of the source separation is to find the ideal
STFT-mask. The core source separation process however is based
on the analysis of the corresponding region in an additionally com-
puted cochleagram. This way the macroscopic STFT-transform is
used to define the demixing masks and to finally demix the orig-
inal sources. The core assignment of each STFT-bin to a specific
source is based on the corresponding region in the microscopic
cochleagram and is only supported by the information gained from
the STFT-spectrum.

This proceeding is analog to the approaches used in MPEG
audio coders. For example MPEG Audio Layer 3 uses a FFT of
1024 samples to analyse the input signal and to apply the psychoa-
coustic models. The critical subsampling however is realized using
only 32 subbands [6].
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Figure 4: Overall architecture for source separation framework.

Figure 4 illustrates the system architecture of the source sep-
aration framework. The incoming signals of the left and right ear
are STF-transformed and the respective cochleagram of each ear
signal is computed. The mask estimation process computes for
each source a binary STFT-mask based on the information gath-
ered from the detailed cochleagram and supported by coarse in-
formation of the STFT spectrum. Finally the STFT spectrum is
multiplied by each binary STFT mask and is transformed back to
the time-domain, yielding the demixed time-domain signals.

The mask estimation stage tries to make use of all informa-
tion that could be established using standard or sophisticated sig-
nal processing methods. In a first step Bob, the movable human
dummy head, analyses the auditory scene and identifies the posi-
tion of the preferred speaker in the room. In further steps this in-
formation is used to enhance the source separation, that uses both
interaural and monaural cues to distinguish the TF-bins. Because
of reverberation many of the cues used to separate bins are dis-
torted and can only be used to some extent. To face the reflections
and reverberations several algorithms compute independent esti-
mates of the binary masks. In a final stage the estimated masks of
each algorithm are combined to find a best estimate.

4. AUDITORY SCENE EXPLORATION

When humans enter an auditory scene such as a cocktail party, they
automatically analyse the environment around them. Humans rec-
ognize the number of possible sound emanating sources, classify
them according to speech or artificial sounds and estimate or re-
call from memory several expected features of each source. When
a communication between the human and one of the sources be-
gins, much information is already known to human cognition and
is used to support and enhance the separation process.

The source separation architecture presented in this paper tries
to mimic these cognitive abilities of the human brain. So prior to
separating the speech sources, Bob analyses the auditory scene and
estimates several parameters that can be used to enhance or enable
later separation approaches. The following separation algorithms
expect as input the position of the source to be enhanced in the az-
imuth plane. Furthermore some of the separation schemes require
an estimate of the fundamental frequency of the desired speech
source.

4.1. Source Localization

In the following sections and the source separation algorithms pre-
sented later the source of interest is assumed to be the – in some
sense – strongest source in the auditory scene. The localization
of the desired source is realized using an adaptive estimate of the
interaural time differences between the two ears.

The interaural time difference (ITD) – the arrival time differ-
ence between the left and right ear signal – is used as localization
cue and is estimated based on the correlation between the two sig-
nals. Assume xL and xR denote the time domain signal of the left
and the right ear. The correlation function is defined as

RxLxR(l) =

teX
t=ts

xL(t + l) · xR(t). (4)

Each source in the auditory scene contributes a peak in the cor-
relation function. Further peaks can be introduced by reflections
and reverberations. Detecting the highest peak in RxLxR yields
a first estimate of the incidence direction of the strongest source,
so the movable human dummy head Bob turns to this estimated
position.

Because of the reverberation and interference Bob cannot rely
on the validity of the estimated position. Therefore a further cor-
relation at the new position is computed that should in the ideal
case have its highest peak at the position of zero degree. To ac-
count to the reverberant environment the position is regarded to
be confirmed if one of the highest peaks is located near zero de-
gree. If this peak deviates from zero with only some degrees, Bob
enhances the located position. This procedure is iterated until a
stable position is reached and the regarded peak of the correlation
function appears at approximately zero degree. Then Bob directly
faces the source of interest which is now centered around 0◦ rela-
tive to Bob’s facing direction.

Because the specific resonances of the human ear and head are
not used yet, Bob cannot distinguish between front and back only
from analysing the ear signals. Possible front-back confusions are
resolved by slightly moving the head to one side at the final posi-
tion and measuring the direction of change of the ITD between the
two ears. If it turns out that Bob has mistaken the direction, Bob
turns 180◦ around and faces the correct source.

For a detailed description of the design, implementation and
results of the source localization scheme consider the work of Ha-
schke [7].

4.2. Fundamental Frequency Estimation

Humans tend to emit frequencies that are an integer multiple of
their own fundamental frequency (F0). Especially voiced parts of
speech contain most of the energy in the harmonics of F0. Source
separation approaches can use the F0 to determine those frequen-
cies that are mainly used by a speaker.

The used fundamental frequency estimation relies on an algo-
rithm known as "Robust Algorithm for Pitch Tracking" (RAPT)
[8] and determines the F0 of spoken utterances as a function of
time. The time-domain signal is split in time-frames of length 5
ms and for each frame a F0-estimate is computed based on the
autocorrelation of the corresponding signal.

RAPT is originally designed to work in anechoic, single source
recordings and computes reliably an estimate of the F0-track and
the first harmonics. In reverberant multi source recordings – such
as the recordings of Bob’s ears – the estimation process severely
degrades and the result forms a mixture of each F0-track and addi-
tional noise.

Assuming the source of interest is directly in front of Bob and
the interfering sources are distributed at other positions, the pre-
ferred signal can be enhanced by applying simple beamforming:
The right and the left ear signal are summed and divided by two.
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Figure 5: Original F0-track and reconstructed F0-track for a mix-
ture of two speech sources.

This way the resulting signal emphasizes the preferred source and
further smears the interfering sources.

The enhanced signal is used as input to the RAPT to get an es-
timate of the F0-track of the preferred source. For each time-frame
the F0-estimate produced by RAPT is considered valid, if corre-
sponding estimates are found in several higher harmonics. The
final F0-track is constructed by linear interpolation of the valid
F0s.

Figure 5 shows the result of the F0-track reconstruction for
an auditory scene consisting of two speech sources at positions
0◦ (Bob has already geared towards the source) and an interfering
source at position 45◦ to the right.

5. SEPARATION ALGORITHMS

Existing source separation approaches can be broadly classified
into two categories:

• Separation algorithms based on Interaural Cues use in-
teraural time and level differences to separate the sources.
In ideal anechoic mixtures the direction of each TF-bin can
be estimated and the bin is easily assigned to the correct
source. Unfortunately echoic recordings blur and distort
these interaural cues, so separation capabilities decrease.

• Separation algorithms based on Monaural Cues use only
characteristics that are specific to a single signal and do
not rely on the differences between the left and right ear.
These algorithms mostly use the fundamental frequency of
the speaker as a main feature to separate the sources.

The following algorithms assume that Bob has already an-
alyzed the auditory scene and has turned towards the preferred
source. Furthermore he has estimated the F0-track of the source
of interest as described before. Imitating the human behavior, Bob
automatically aligns his head to the source of interest. The goal of
the following source separation algorithms is to enhance a specific
source of interest, not to separate all sources.

5.1. Separation based on Interaural Time Differences

Interaural Time Differences between the left and right ear sig-
nal are used to examine the position of the respective source of
each STFT-bin. Because the STFT phase value is not necessar-
ily reliable as discussed previously, the ITD is estimated using the
cochleagram. Let XLstft and XRstft denote the STFT-representation
of the left and right ear signal and XLco and XRco the correspond-
ing cochleagram representations. For each STFT-bin the corre-
sponding left and right TF-windows WLco and WRco are cut out of

the cochleagram. The ITD estimates of WLco and WRco are com-
puted using a running cross-correlation across the time-dimension
of the time-frequency regions: ∀l ∈ {−maxLag, maxLag}

RWLco WRco
(l) =

teX
t=ts

feX
f=fs

WLco(t + l, f) ·WRco(t, f) (5)

The highest peak of RWLco WRco
yields the best estimates of

the ITD for this bin. Because of reverberation and reflections there
could be further peaks in the correlation function that could refer
to the correct ITD and therefore should be considered. According
to Faller and Merimaa [9], the height of the peak in the correlation
function is a measure of reliability: The higher the peak, the more
reliable the ITD estimation.

Knowing that the preferred source is at azimuth zero degree,
the ITD computations offer the following three algorithms to esti-
mate the ideal binary masks:

Algorithm 1 Assign to the source of interest all TF-bins where
the estimated ITD of the highest peak of the correlation
function yields an angle of incidence that deviates not more
than δ◦ from 0◦ and the height of the peak is greater than
h.

Algorithm 2 Assign to the source of interest all TF-bins where
the estimated ITD of an existent second highest peak of the
correlation function yields an angle of incidence that devi-
ates not more than δ◦ from 0◦ and the height of the peak is
greater than h.

Algorithm 3 Assign to the source of interest all TF-bins where
the estimated phase of the STFT bin yields an angle of in-
cidence that deviates not more than δ◦ from 0◦.

Each algorithm regards only these STFT-bins that contain more
energy than a specific threshold. To compare the results of each
algorithm, the estimated masks are compared with an ideal mask,
which is estimated from recordings of the single sources under
reverberant conditions. Because reverberation differs slightly be-
tween recordings with only one source and recordings with several
sources, this ideal mask is only an approximation of the real ideal
mask. Using this estimated ideal mask as ground-truth there are
three evaluation criteria for each algorithm:

1. The percentage of recovered energy of the ideal mask. The
higher this percentage, the more energy of the original sig-
nal is recovered and the speech intelligibility of the desired
source increases.

2. The percentage of false estimated bins denotes the relative
number of bins that are wrongly assigned to the preferred
source. According to the ideal masks, these bins should be
assigned to one of the other sources of the auditory scene,
as the absolute value of energy contribution to this bin of
another source is larger than the energy contribution of the
desired source. The lower this value, the less artifacts from
other speech sources are contained in the estimated mask.

3. The percentage of correct estimated bins clarifies how much
of the estimated bins are correctly assigned to the source of
interest. The gap between this value and the percentage of
false estimated bins indicates the number of those TF-bins
that happen to have high energy in the recorded mixture,
but none of the ideal masks of the single sources exhibit
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Figure 6: Percentage of recovered energy of ideal mask, false esti-
mated bins and correct estimated bins for the separation algorithm
based on ITD and highest peak (Algorithm 1).

high energy in this TF-region. So these bins are likely to
occur from reverberations and cannot be assigned to a spe-
cific source.

Figure 6 shows the results of algorithm 1 for different δ and
h for an auditory scene consisting of two speech sources. Speech
source one is located directly before the head at 0◦ as Bob has al-
ready geared to the source and the second source is located at 45◦

to the right. One can clearly see that the percentage of recovered
energy increases if the deviation from zero increases. The ITDs of
most of the correct TF-bins deviate considerably from the real po-
sition at 0◦. In contrast to the percentage of reconstructed energy
and the number of false estimated TF-bins, the percentage of cor-
rect estimated bins increases according to the peak height. TF-bins
with high energy – which mostly result in high correlation peaks
– are more likely to yield a correct ITD estimation as opposed to
low energy bins. To achieve a good tradeoff a δ between 8 and 12
degree and high peak height h is favorable.

The same results for algorithm 2 are illustrated in figure 7. The
percentage of reconstructed energy is much lower than in the case
of algorithm 1. This low percentage is due to the fact that a sec-
ond peak in the correlation function in most cases only exists for
TF-bins at high frequencies where the correlation analysis window
becomes bigger than the period of this bin. Those high frequency
bins naturally include lower energy than low frequency bins, so the
overall recovery is quite low.

Figure 8 plots the results for algorithm 3. The number of
false estimated bins is approximately constant and the percentage
of correct estimated bins decreases very slowly. As also seen in
algorithm 1, the phase values of the bins deviate quite a lot from
the ideal position due to reflections and interference from the other
sources.

5.2. Separation based on Fundamental Frequency

If two persons speaking have a considerable different F0, their har-
monics do not overlap in many frequencies. If the F0 of the pre-
ferred speaker is known in advance, this information can be used to
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Figure 7: Percentage of recovered energy of ideal mask, false esti-
mated bins and correct estimated bins for the separation algorithm
based on ITD and second highest peak (Algorithm 2).

assign the TF-bins. Each bin with a frequency value near a multi-
ple of the fundamental frequency is more probable to belong to the
preferred source, than it is to belong to one of the other sources. If
additionally the F0s of the other speakers are known, the distances
of the harmonics of the preferred speaker to the nearest harmonics
of the other speaker can be computed and used to find the frequen-
cies at which only the preferred speaker is present. The following
F0-based algorithms are examined in the source separation archi-
tecture:

Algorithm 4 Assign to the source of interest all TF-bins where
the frequency of the current STFT-bin deviates by no more
than ∆f Hz from the nearest harmonic of the preferred
source’s mean F0. If the F0 of the interfering sources is
known, also the distance from the nearest interfering har-
monic is used to segregate the TF-bins.

Algorithm 5 Assign to the source of interest all TF-bins where
the frequency of the current STFT-bin deviates by no more
than ∆f Hz from the nearest harmonic of the preferred
source’s mean F0 and the energy in the cochleagram at the
corresponding TF-unit is larger than a threshold E.

Algorithm 6 Assign to the source of interest all TF-bins where
the frequency of the current STFT-bin deviates by no more
than ∆f Hz from the nearest harmonic of the preferred
source’s current F0 estimate. If the F0 of the interfering
sources is known, also the distance from the nearest inter-
fering harmonic is used to segregate the TF-bins.

Algorithm 7 Assign to the source of interest all TF-bins where
the frequency of the current STFT-bin deviates by no more
than ∆f Hz from the nearest harmonic of the preferred
source’s current F0 estimate and the energy in the cochlea-
gram at the corresponding TF-unit is larger than a threshold
E.

Figure 9 displays the results of algorithm 4. The percentage
of recovered energy grows as the maximal distance of the nearest
harmonic of the preferred speaker grows as more and more bins
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Figure 8: Percentage of recovered energy of ideal mask, false esti-
mated bins and correct estimated bins for the separation algorithm
based on the STFT phase (Algorithm 3).

are considered. Knowing the mean F0 of the interfering source
has only minor effects that could be neglected. The rate of the
correct estimated bins is constantly very low. The bad results of
this algorithm arise from the fact that during a spoken word, the
F0 of a human is not constant and varies about several Hz. So
if the source separation relies only on the mean F0, higher order
harmonics are computed incorrectly and the source separation ca-
pabilities decrease. If the complete track of the fundamental fre-
quency is known, the separation algorithms discussed above can
be enhanced.

If the absolute energy value of the regarded harmonic in the
corresponding cochleagram window is used, the number of false
bins and the percentage of correct bins can be slightly enhanced.
Figure 10 illustrates the evaluation of algorithm 5. The higher the
energy in the corresponding frequency, the higher the probability
that the considered bin belongs to the preferred source. These re-
sults contribute to the reverberant environment: TF-bins with high
energy and corresponding F0-characteristics are likely to originate
from the main incidence direction and not from a disturbing reflec-
tion.

Figure 11 and 12 show the same results for algorithms 6 and
7, but using a complete F0 track instead of a mean value. The rate
of the false estimated bins is about 10% lower than in the mean
F0 case. Also the percentage of correct estimated bins is higher
compared to using only an average F0. Assuming that the directly
incident TF-bins have high energy, a minimum energy threshold
can enhance the percentage of correct estimated bins by up to 30%.
Optimal values can be achieved by using quite large maximum
distances of 20 to 30 Hz.

6. COMBINING OF ALGORITHMS

Each of the introduced algorithms yields a reconstructed preferred
speech source with a low to intermediate intelligibility. To en-
hance the separation capabilities, the algorithms work together to
combine their information regarding each TF-bin. In a first stage
each discussed algorithm separately estimates a STFT-demixing
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Figure 9: Performance of the separation algorithm based on
known mean F0 and the distance from the harmonic to the mean
frequency of the current STFT bin (Algorithm 4). Shown are sev-
eral curves for different frequency distances of the nearest inter-
fering harmonic of the interfering speaker.
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Figure 10: Performance of separation algorithm based on known
mean F0 and the distance from the harmonic to the mean frequency
of the current STFT bin (Algorithm 5). Shown are several curves
for different cochleagram energy levels E.
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Figure 11: Performance of the separation algorithm based on
known complete F0-track and the distance from the harmonic to
the mean frequency of the current STFT bin (Algorithm 6). Shown
are several curves for different frequency distances of the nearest
interfering harmonic of the interfering speaker.
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Figure 12: Performance of separation algorithm based on known
complete F0 track and the distance from the harmonic to the mean
frequency of the current STFT bin (Algorithm 7). Shown are sev-
eral curves for different cochleagram energy levels E.

Algorithm Order Recovered En-
ergy of ideal
mask [%]

Energy of esti-
mated mask be-
longing to Inter-
ferer [%]

2 ∩ 6 ∪ 4 ∪ 3 79.89 7.99
6∩ 5∪ 7 ∪ 3 ∪ 2 83.90 9.39
1 ∪ 6 ∪ 7 ∪ 5 89.09 10.98
4∪ 1∪ 7 ∪ 2 ∪ 6 89.82 10.95

Table 1: A selection of the best evaluation results of the sequential
and parallel combining of algorithms 1-7 regarding the percentage
of reconstructed energy for an auditory scene consisting of two
sources.

mask for the source of interest. A second central combining stage
combines the single masks resulting in a final estimate of the ideal
binary mask which is then used to demix the preferred source from
the mixture.

A first separation approach combines the estimated masks in a
sequential way similar to a chain of responsibility. The first algo-
rithm in the chain assigns all bins according to its specification and
passes the remainder of the bins to the second algorithm which in
turn assigns those bins that match its specifications and passes the
rest to the next algorithm and so on. This sequential combining
of the algorithms is equivalent to computing the logical ’or’ of the
estimated single masks.

To further enhance the final estimated mask, a second approach
additionally uses parallel combining to enhance the estimated masks.
If several of the algorithms have assigned a specific bin to the pre-
ferred source, then this bin is more probable to belong to the source
of interest than bins that are only assigned by a single mask. This
parallel combining is realized using the logical ’and’ of the single
estimated masks.

Some results of the evaluation of the combining are summa-
rized in table 1 and 2. The values are obtained by averaging over
several recorded mixtures consisting of a female and male speaker
positioned at 0◦ and 45◦ to the right. The English speech record-
ings are taken from the CMU speech database [10] and played
back at the corresponding directions in a normal office room of
size 10 × 6 m and RT60 = 0.4 s. The maximum allowed devia-
tion in degree from zero for algorithm 1 and 2 is set to 8◦ with a
minimum correlation peak height of 0.001. The deviation of the
STFT phase values used in algorithm 3 is bounded by 11◦. Algo-
rithms 5 and 7 use only TF-bins with energy higher than 0.01.

The resulting estimated masks are evaluated by noting mainly
two values: The percentage of recovered energy of the preferred
source declares how much of the total energy of the ideal mask of
the preferred source is reconstructed. A value of 100% states that
the estimated mask fully contains the ideal mask. The percentage
of interference energy indicates how much energy of the estimated
mask belongs to the interfering sources and noise and so is falsely
assigned to the estimated mask.

The best estimated mask in terms of percentage of recovered
energy is – amongst other combinations not shown for purposes of
clarity – calculated using the sequential combination of algorithms
4,1,7,2 and 6. The estimated mask recovers 89.82% of the energy
of the preferred source. On the other hand 10.95% of the energy
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Algorithm Order Recovered En-
ergy of ideal
mask [%]

Energy of esti-
mated mask be-
longing to Inter-
ferer [%]

3 ∪ 2 ∩ 1 ∪ 6 24.48 0.24
2 ∩ 3 ∪ 6 ∩ 7 ∪ 5 39.36 1.48
2 ∩ 3 ∪ 6 ∩ 5 ∪ 1 39.83 1.63
3 ∪ 4 ∩ 6 40.23 2.79

Table 2: A selection of the best evaluation results of the sequential
and parallel combining of algorithms 1-7 regarding the percent-
age of interfering energy for an auditory scene consisting of two
sources.

Figure 13: The ideal mask for the source of interest and the best
estimated mask regarding percentage of recovered energy. The re-
covered energy is 89.82% and 10.95% of the total energy belongs
to the interferers.

of the estimated mask belongs to the interfering source, yielding
a value of 89.05% correct estimated energy. Listening tests result
in a very good intelligibility of the source of interest, but the inter-
fering source can be recognized as additional, but very quiet and
unintelligible voice in the background.

Table 2 shows a selection of the best estimated masks regard-
ing a minimum energy of interfering sources. Using for example
the combination of algorithms 3∪2∩1∪6 yields estimated masks
that recover 24.48% of the total energy of the preferred source
while only 0.24% of the total energy of the estimated mask belong
to the other source. The intelligibility of the separated speech is
quite good and no interfering sources are audible. But compared
to the demixed sources of table 1 the reconstructed speech is not
so rich and authentic.

The strategy used for combining the masks estimated by the
algorithms is dependent on the purpose of the separation infras-
tructure. If the source of interest is to be enhanced for better in-
telligibility by humans, sequential strategies should be applied. If
however the framework is used as input to an automatic speech
recognizer – which in most cases is very sensitive to interfering
speech sources – hybrid schemes combining the parallel and se-
quential strategies are adequate. Other purposes could choose a
combination which balances the percentage of recovered and in-
terfering energy to gain an intermediate quality.

7. CONCLUSIONS AND FUTURE WORK

The binaural source separation architecture presented in this paper
works well in non-ideal reverberant environments. Prior informa-
tion regarding the auditory scene are useful to enhance the separa-
tion process. Parallel processing paths ensure that the assignment
process is optimized regarding the available information at the de-
cision process. By this means the introduced framework achieves
quite good separation of speech sources.

Future work especially includes further exploration of the au-
ditory scene. If the source separation algorithms know more char-
acteristics such as the positions of the interfering sources and the
respective fundamental frequencies in case of speech sources, the
separation could be further enhanced. Additionally in mixed audi-
tory scenes consisting of speech and artificial sources a classifica-
tion and characterization of each source could assist the separation
process.

On the other hand the combining of the masks is currently
very rudimentary. Applying higher order inference to the esti-
mated masks will probably further increase the source separation
capabilities. Fuzzy logic systems for example can model human
reasoning strategies very well and could be applied to infer the
dedicated source of each STFT-bin based on all available informa-
tion.

8. REFERENCES

[1] Ö. Yilmaz and S. Rickard, “Blind separation of speech mix-
tures via time-frequency masking,” IEEE Transactions on
Signal Processing, vol. 52, no. 7, pp. 1830 – 1847, July 2004.

[2] D. L. Wang, “On ideal binary masks as the computational
goal of auditory scene analysis,” In Divenyi P. (ed.), Speech
Separation by Humans and Machines, pp. 181 – 197, 2005.

[3] D. S. Brungart, P. S. Chang, B. D. Simpson, and D.L.
Wang, “Isolating the energetic component of speech-on-
speech masking with ideal time-frequency segregation,” The
Journal of the Acoustical Society of America, vol. 120, pp.
4007 – 4018, 2006.

[4] D. L. Wang and Guy J. Brown, Computational Auditory
Scene Analysis - Principles, Algorithms, Applications, IEEE
Press, Wiley Interscience, 2006.

[5] G.J Brown and M. P. Cooke, “Computational auditory scene
analysis,” Computer speech and language, vol. 8, pp. 297 –
336, 1994.

[6] Ulrich Reimers, Digital Video Broadcasting - The Family
of International Standards for Digital Video Broadcasting,
Springer, 2005.

[7] Eric Haschke, “Sound source localization using a mov-
able human dummy head,” M.S. thesis, Saarland University,
2007.

[8] David Talkin, “A robust algorithm for pitch tracking,” Speech
Coding and Synthesis, pp. 495 – 518, 1995.

[9] Christof Faller and Juha Merimaa, “Source localization
in complex listening situations: Selection of binaural cues
based on interaural coherence,” The Journal of the Acousti-
cal Society of America, vol. 116, no. 5, pp. 3075–3089, 2004.

[10] John Kominek and Alan W Black, “CMU ARCTIC
databases for speech synthesis,” 2003.

DAFX-8

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

140 DAFX-07



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

SPATIAL TRACK TRANSITION EFFECTS FOR HEADPHONE LISTENING

Aki Härmä and Steven van de Par

Philips Research, Eindhoven, The Netherlands
aki.harma@philips.com

ABSTRACT

In this paper we study the use of different spatial processing tech-
niques to create audio effects for forced transitions between music
tracks in headphone listening. The audio effect encompasses a
movement of the initially playing track to the side of the listener
while the next track to be played moves into a central position si-
multaneously. We compare seven different methods for creating
this effect in a listening test where the task of the user is to char-
acterize the span of the spatial movement of audio play list items
around the listener’s head. The methods used range from ampli-
tude panning up to full Head Related Transfer Function (HRTF)
rendering. It is found that a computationally efficient method us-
ing time-varying interaural time differences is equally effective in
creating a large spatial span as the full HRTF rendering method.

1. INTRODUCTION

What users commonly do when listening to an audio play list or
CD is to jump from one item to another item by pressing the
’Next’, or ’Previous’ button of the player. This may be performed
anywhere between the start and the end of an item and it is im-
plemented in basically all audio players is that the current item is
muted and the new track starts playing.

In this paper we study a class of spatial transition effects for
headphone listening. The goal is to produce the impression that
one track goes physically away and another track comes in. For
example, the current music track moves far away to the right and
another track slides in from the left hand side. This type of effect
has earlier been proposed for surround audio playback with loud-
speakers [1] but, to our knowledge, not for headphone listening.

The approach is to position the audio source into a simulated
loudspeaker-listener scenario where the virtual loudspeaker, and
the listener’s ears have well-defined geometric positions. Once
this is done, we can move the virtual loudspeaker to arbitrary po-
sitions resulting in a perceived movement of the audio sources. In
swapping from one audio item to another, the simulation can be
performed such that a virtual loudspeaker playing Item 1 is moved
far to the left from the user’s ears and another loudspeaker playing
Item 2 is carried in from the right to the desired playback posi-
tion. For simplicity, we consider only monophonic audio material
in this paper, but the same approach can be used also for stereo or
multichannel material by creating multiple virtual loudspeakers.

These effects can be created combining many different meth-
ods such as amplitude, or phase panning, HRTF filtering, or room
simulation. In the current paper we introduce seven different com-
binations of algorithms for spatial track transition which differ in
computational complexity. Using a new type of listening test,
where the subject indicates the movement trajectories of the au-
dio items, we evaluate the effectiveness of each of the methods in
creating a large span of perceived auditory movement.

HRTF MEASUREMENT SPHERE

DIREC
T SO

U
ND

HRTF

DIFFUSE
REVERBERATION

EARLY REFLECTION

 

Figure 1: A simulation for a loudspeaker-listener system.

2. THE ACOUSTIC MODEL

The generic model is based on the source-medium-receiver model
of binaural simulation [2]. Here, the source is represented by a vir-
tual loudspeaker, the medium is a model of room acoustics, and the
receiver is a pair of virtual microphones representing the listener’s
ears in the room. The model for the medium contains the sound
propagation in the room, and the receiver model takes into account
the orientation of the listeners head and the Head Related Transfer
Functions (HRTFs). This signal processing model is illustrated in
Fig. 1 and is similar to those presented by many authors earlier for
binaural or transaural listening, see e.g., [3, 2, 4].

The directionality of the source has not been incorporated into
the current model, but we assume that the source is an ideal omni-
directional loudspeaker.

In reality, the head-related transfer functions (HRTF) repre-
sent impulse responses measured from a limited number of source
positions on a sphere with the center position in the center of the
listener’s head. For example, in the CIPIC data used in the cur-
rent paper, the radius of the measurement sphere (a hoop where
the speakers were fixed) was one meter [5]. The HRTF measure-
ment sphere is shown in Fig. 1. Consequently, the model for a
direct sound from a source is a cascade of a direct path filter from
the source location to the surface of that sphere, and a HRTF filter
from the sphere to the listener’s ears. In the room model a limited
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Figure 2: A simulation for a loudspeaker-listener system.

number of early reflections from the room surfaces are often added
and they are convolved using HRTFs representing the angles of ar-
rival for each individual reflection, see, e.g, [6]. Finally, the diffuse
reverberation is modelled using a filter representing the reverber-
ation and a pair of HRTFs representing the diffuse-field responses
to the two ears, that is, means of HRTFs in the horizontal plane.

In this paper, we consider a simplified model consisting only
of the direct path and the diffuse reverberation path. The block
diagram is illustrated in Fig. 2.

The simulation of a moving sound source can be directly im-
plemented using the system of Fig. 2. For example, the Doppler
effect results automatically from changing the delay of the direct
path propagation filter as a function of the simulated location of
the source. In models for moving sources where the propagation
delay has not been implemented, the Doppler effect is sometimes
implemented as a separate computational operation, such as fre-
quency modulation in [7] or pitch shifting, to allow better control
over the effect.

A signal x(t) played from a virtual loudspeaker is captured
using a virtual microphone on the HRTF sphere. The direct sound
signal before HRTF filtering is then given by:

y0(t) = x(t, d) ∗ δ(t− T )

d
, (1)

where the asterisk denotes convolution,δ is the Dirac’s function,
T = d/c, wherec is the speed of sound,d is the distance between
the source and its nearest point on the HRTF surface.

For notational convenience we move to the frequency-domain
representation of (1):

Y0(ω) = X(ω, d)F (ω, d), (2)

where the capital letters denote the Fourier transforms of the parts
of (1) andF (ω, d) = e−iωT d−1.

Combining all paths from Fig. 2 we may write the synthesis
formula (1) in the following form:[

Yl(ω)
Yr(ω)

]
= X(ω, d)

(
F (ω, d)

∣∣∣∣ Hl(ω, α)
Hr(ω, α)

∣∣∣∣ +

∣∣∣∣ Rl(ω)
Rr(ω)

∣∣∣∣) ,

(3)
whereRl(ω) andRr(ω) are the HRTFs to the left and right ear of
the listener, respectively, and which depend only on the angle of
arrival of the soundα. The model of the reverberation has been in-
tegrated with the diffuse field HRTFs into filtersRl(ω) andRr(ω),
which are then independent of the source position. In a compact
matrix notation we may write this in the following form:

Y(ω) = X(ω, d)G(ω, α). (4)

HEAD
PHONES

LISTE
NER

ITEM 1 ITEM 2 ITEM 3

Figure 3: A simulation of a spatial track transition.

3. TRACK TRANSITION EFFECTS

The basic track transition effect studied in the current paper is il-
lustrated in Fig. 3, where virtual loudspeakers representing differ-
ent audio items that flow past the user. The simulation produces
typical spatial audio cues and additionally, due to the direct path
delay operatord, a Doppler effect, which is expected to contribute
to the perceived illusion of the movement of a source.

4. EXPERIMENTAL SETTINGS

The model of Fig. 2 is computationally expensive mostly due to
the HRTF filtering. In a dynamic transition effect, the filter coef-
ficients need to be continuously updated to follow the angleα of
the sound source. In practice this requires continuous interpola-
tion of the responses to reduce artifacts related to switching filters.
The model of the reverberation is another expensive part because
it typically requires implementation of a high-order FIR filter.

In this paper, we study seven different systems that differ in
the degree to which simplifications have been made to the signal
processing model. They are all studied in the configuration illus-
trated in Fig. 3, where the monophonic sources move along a line
from the left to the right such that, when allowed by the method,
sources pass the listener at a constant speed atα = 0o at the dis-
tance ofr = 2 meters from the listener. The block diagrams of the
methods are shown in Fig. 4.

In the pure amplitude panning method (a) the gains for the two
ear signals are given by:

Ga(ω) =

∣∣∣∣ gn

g0gn

∣∣∣∣ , (5)

where:

g0 = 10
14
40π

atan(p(n)/r) and gn =
1√

1 + g2
0

, (6)

wherep(n) is position of the sound source as a function of the
sampling numbern. The equation approximates the listening test
data on binaural lateralization of a source in dichotic listening with
only level differences between the two ears [4].
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Figure 4: The models for spatial track transition studied in this
paper.

The second model (b) combines the amplitude panning with a
single direct path model. It can be written in the following form:

Gb(ω, n) = F (ω,
√

r2 + p2(n))

∣∣∣∣ gn

g0gn

∣∣∣∣ , (7)

where the only difference to (5) is the direct path modelF (·),
which in the case wherex(n) changes over time produces a Doppler
effect. The fractional delays were implemented in the time domain
using the sixth-order Lagrange FIR interpolator. The third model
(c) is essentially a free-field model for a listener with an acousti-
cally transparent head. The synthesis formula is given by:

Gc(ω, n) =

∣∣∣∣ F (ω,
√

r2 + (p(n) + h/2)2)

F (ω,
√

r2 + (p(n)− h/2)2)

∣∣∣∣ , (8)

whereh is the distance between the two ears of the listener. In our
simulations we usedh = 0.2 m, which is somewhat larger than
the human average.

The next model (d) is obtained by including a very simple
model for the head shadowing to model (c). In fact, the head-
shadowing model is exactly the same as the binaural amplitude
panning used in (a)-(b), and it yields:

Gd(ω, n) =

∣∣∣∣ gnF (ω,
√

r2 + (p(n) + h/2)2)

g0gnF (ω,
√

r2 + (p(n)− h/2)2)

∣∣∣∣ . (9)

Note, that this model implements an approximative HRTF model,
producing the same ITD and ILD cues at all frequencies with one
delay and one gain coefficient per channel.

In model (e) we use the HRTF data from the CIPIC database
(subject 31) [5]. The azimuthal set of HRTFs at the frontal area
was augmented by a number of interpolated HRTF impulse re-
sponses. The interpolation was performed linearly in the frequency
domain separately for magnitude and unwrapped phase responses.
The synthesis equation is given by:

Ge(ω, n) =

∣∣∣∣ Hl(ω, atan(p(n)/r))
Hr(ω, atan(p(n)/r))

∣∣∣∣ , (10)

and the convolutions were implemented efficiently using the FFT
overlap-add techniques.

The next model (f) incorporates the direct path model to the
HRTF model:

Gf (ω, n) = F (ω,
√

p2(n) + r2 − rhrtf)Ge(ω, n), (11)

whererhrtf = 2 m is the radius of the HRTF measurement sphere
of Fig. 2.

Finally, model (g) includes a model of the diffuse reverbera-
tion:

Gg(ω, n) = Gf (ω, n) +

∣∣∣∣ Rl(ω)
Rr(ω)

∣∣∣∣ , (12)

where the filtersRl(ω) and Rr(ω) are synthetic pink noise se-
quences with the temporal envelope from a real room impulse re-
sponse with the reverberation time ofT60 = 1.0 s.

5. LISTENING TEST

The purpose of the algorithms introduced above is to provide a
spatial experience of a movement of an audio source in headphone
listening. Generally, the hearing mechanism does not seem to be
sensitive to the movement itself [8]. It is often suggested that the
percept of the movement is a consequence of observing the source
first at one position, and then at another position. However, there is
evidence on brain areas that are actually sensitive to the movement
of sound sources [9].

The just noticeable difference for the velocity of a source is
typically in the range of 4-9 degrees per second [9] or 1.5 to 4.6
m/s [10] for a source moving a linear trajectory 5 meters in front of
the listener. In most studied on just-noticeable differences (jnds) of
velocity perception [11, 10] it has been found that the most impor-
tant cues for the velocity are the Doppler effect and the changes in
the overall loudness. The binaural cues including interaural time
(ILD) and level differences (ILD) are weaker cues in the velocity
discrimination. However, in another experiment where the listen-
ers’ task was to indicate the point where a moving source is closest
to the listener suggested overall loudness to be the most important
cue, followed by dynamic ITD cue, and only then the Doppler
effect [12]. In the current article, the primary goal is to create
an illusion of a large movement with a low-complexity algorithm,
therefore the velocity or the temporal position of a source are not
necessarily as important as the perceived distance the source has
travelled, that is, the range of the movement.

In this paper, we developed a listening test that aims at depict-
ing the subjective experience of a movement of a source in the case
where the user isscanningover a sequence of three consecutive
samples in a playlist of audio items. A similar movement pattern
where the sound source moves along a linear horizontal trajectory
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1.5 meters in front of the listener was used in all methods. The
movement pattern was such that each new source appeared at the
distance of 20 meters to the right of the listener moving to the front
of the listener in two seconds, stopping at the front for one second,
and then moving in two seconds 20 meters to the left. In meth-
ods where the rendering depends only on the angle of the source,
such as amplitude panning and pure HRTF rendering, only the an-
gle derived from the position of the source was used. Since the
overall loudness has been found to be a dominating cue in listen-
ing experiments with moving sources [12, 11, 9, 10] an identical
amplitude weighting as a function of the position was used with
all the methods.

The test was performed in a sound insulated booth using Bey-
erdynamic DT990 headphones. Ten subjects participated in the
experiment. The test material consisted of five playlists of three
audio items each. Three of the playlists represented three-second
excerpts from samples of different music genres (rock, pop, rap),
one playlist consisted of uncorrelated pink noise sequences, and
finally one playlist had rich harmonic tone complexes at three dif-
ferent fundamental frequencies. In the listening test, subjects were
asked to listen to a sequence and then draw, using the computer
mouse, their subjective impression of the path of the sequence of
three audio items on a chart illustrated in Fig. 5X). We projected
each drawing to a bitmap of 40× 40 pixels for analysis.

6. RESULTS

To compare the span of path assessments in the different meth-
ods we computed pixel-wise 2D histograms over all listeners and
play lists. The 2D histograms for the seven methods are shown
in Figs. 5a-g. The figures show that there are differences between
the subjective assessments of the transition paths in the methods
discussed in this paper. In Method (a), the path is mainly judged
inside the listener’s head, while in other methods the span of the
effect appears larger. The marginal histogram plotted at the bottom
of each panel also suggests that the histograms are tilted towards
the right, even if the movement path was symmetrical from the left
to the right. This is an interesting finding.

It was found that there are significant differences between in-
dividual listeners. The differences are probably largely due to the
differences in the ways how individual subjects mapped the audi-
tory experience to a visual geometric form.

In order not to be influenced by these individual differences
we decided to convert the results to a relative scale with a pair-
wise comparison of the individual path drawings for the different
rendering methods. Table 1 gives the percentage for the probability
that a rightmost point in a path in method X (row) is farther to
the right than the corresponding point in the path for method Y
(column) in one listener. Comparing methods (a) and (b) in Table
1, we see that the percentages are almost 50%, which means that
the methods are essentially similar in the span to the right hand
side. The percentages that the path spans farther to the right in
methods c-g is 78-94% over the methods a-b. The method (c) gives
a higher percentage over method a) than method (b) does. Both
methods (b) and (c) contain the distance model. In method (b)
the effect causes only the Doppler effect, while method (c) creates
an interaural time difference which changes dynamically over the
transition path.

It is interesting to note that a computationally light method
(d) combining dynamic interaural time difference (with a transpar-
ent head model) and amplitude panning gets very similar rankings

A/B| a b c d e f g
a 0 48 78 82 96 88 82
b 52 0 82 78 84 92 84
c 16 18 0 56 78 72 56
d 14 22 40 0 78 68 48
e 4 14 22 22 0 30 28
f 10 8 28 32 66 0 40
g 18 16 42 50 72 58 0

Table 1: Probability that path produced using transition A has a
larger span to theright than transition B.

with the most complex method (g). The results suggest that the
pure HRTF rendering (method e) gives systematically the largest
spatial span to the right. In fact, methods (f) and (g), which add
the dynamic distance model, and diffuse reverberation to the pure
HRTF model get lower gradings than model (e).

Table 2 gives the percentages for the leftmost point in the path.
The results support the observation that the span of the path in the
amplitude panning models (a-b) is smaller than in the other meth-
ods with interaural time difference cues. However, the percentages
are now lower. Comparing the method (a) to method (b), and (e)
to (f) suggests that the use of the one-channel distance effect in the
form of a Doppler effect in fact decreases the span of the path to
the left.

A/B| a b c d e f g
a 0 40 58 72 74 66 58
b 58 0 72 74 72 72 60
c 40 24 0 68 68 68 60
d 26 26 32 0 62 54 46
e 24 20 30 34 0 44 40
f 32 20 28 44 54 0 42
g 38 30 40 50 52 54 0

Table 2: Probability that path produced using transition A has a
larger span to theleft than transition B.

In the frontal area, see Table 3, it seems that the pure HRTF
rendering again gives the largest span to the front. The low score
of method (d) in the frontal area is an unexpected result because it
gives a large range in right-left direction.

A/B| a b c d e f g
a 0 60 62 46 66 62 60
b 32 0 56 44 60 44 70
c 34 38 0 38 54 40 58
d 38 52 56 0 60 54 64
e 28 38 36 28 0 42 48
f 34 46 42 34 52 0 60
g 26 26 36 30 40 38 0

Table 3: Probability that path produced using transition A has a
larger span to thefront than transition B.

The intended path passed the users face 1.5 meters at the front
of the listener. However, several listeners papered a path behind
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the head, too. The comparison in Table 4 suggests that the local-
ization at the back of the head, or behind the head was strongest in
amplitude panning methods (a-b), and somewhat increase also in
method (d). For example, in 66% of the cases the path drawn for
the method (d) span to the back more than the path for the same
playlist in method (e).

A/B| a b c d e f g
a 0 48 30 34 24 24 30
b 46 0 22 28 16 26 22
c 62 72 0 60 32 44 46
d 58 68 40 0 28 40 38
e 64 76 62 66 0 50 56
f 66 66 46 50 38 0 44
g 66 70 46 54 32 48 0

Table 4: Probability that path produced using transition A has a
larger span to thebackthan transition B.

7. CONCLUSIONS

In this paper we have studied seven different techniques for the
dynamic rendering of sound sources in spatial track transition. In
particular, we have focused on a track transition effect where one
song comes from the left hand side of the user and disappears to the
right. The techniques represent different levels of computational
complexity. The simplest techniques are based on dynamic ampli-
tude panning, that is, multiplication of the signal with a scalar co-
efficient. The most complicated reference method combines HRTF
filtering, the Doppler effect, and room reverberation.

The listening tests suggest that the amplitude panning tech-
niques give generally a narrow range of the effect and the image is
often inside the head. The plain HRTF processing gives the largest
span in the lateral direction. However, a simple method combin-
ing delay panning and amplitude panning appears almost equally
powerful for the creation of left-right transition effects. However,
the HRTF method appears giving a slightly larger span in the front
left direction and possibly better externalization.

The addition of room reverberation produced an interesting
effect but the benefits are not obvious in the current results. It ap-
pears that for most listeners the method combining HRTF filtering
and reverberation gave smaller left-right span that the pure HRTF
filtering.

In the listening tests the goal was to compare the different
methods by the perceived spatial span of the transition effect. This
is a different task from the subjective evaluation of the velocity of
a source [11, 9, 10] or the closest point in the movement trajec-
tory [12]. In velocity discrimination studies the Doppler effect and
the overall loudness have been found to be more important than the
binaural cues such as ILD or ITD. The spatial delay panning meth-
ods aim at creating a distance cue. In all cases the transition effect
was tuned in such a way that it created an audible Doppler effect
during the transition of an audio playlist item from left to the right.
The Doppler effect was audible in five out of the seven methods.
If was found that when the Doppler effect appeared without asso-
ciated binaural time difference cues, it had almost no influence on
the perceived left-right span. In particular, the difference between
amplitude panning with and without the Doppler effect was small
but the difference between the amplitude panning with the Doppler

effect, and the method where amplitude panning was combined
with time-varying interaural time-differences was significant. The
results seem to suggest that the interaural time-differences actually
play a more important role in the perceived span of a transition
than the Doppler effect.

From the results of the current listening test we may conclude
that the dynamics of interaural time-differences are important in
producing a large spatial span for the track transition effects. In
addition, a very simple method based on a computationally very
efficient simplified sound propagation model to the two ears of a
listener gives almost equally good results in the span of the move-
ment effect as a more complicated method based on the measured
head-related transfer functions.
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Figure 5: X) An example of a drawing of a user for one playlist and rendering method. a)-g) Histograms of subjective path assessments
over all subjects and play lists for all the seven methods. A dark color indicate that the path is often drawn through the pixel.
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ABSTRACT

The transfer of multichannel spatialization schemes from the stu-
dio to the concert hall presents numerous challenges to the con-
temporary spatial music composer or engineer. The presence of a
reverberant listening environment coupled with a distributed audi-
ence are significant factors in the presentation of multichannel spa-
tial music. This paper presents a review of the existing research on
the localization performance of various spatialization techniques
and their ability to cater for a distributed audience. As the first-
step in a major comparative study of such techniques, the results of
listening tests for monophonic source localization for a distributed
audience in a reverberant space are presented. These results pro-
vide a measure of the best possible performance that can be ex-
pected from any spatialization technique under similar conditions.

Keywords: Sound localization, distributed audience, spatial music.

1. INTRODUCTION

Much of the existing research into the localization performance
of spatialization techniques has been carried out under anechoic
conditions for a single listener. While this approach is suitable
for evaluating the optimal performance of a particular system, it
does not define the capability of these systems in real reverber-
ant concert hall environments. This is particularly relevant in the
area of spatial music composition, where the process of transfer-
ring spatial locations and trajectories from the studio to the concert
hall presents significant challenges. The two main factors which
are particularly relevant to this issue are, early reflections and re-
verberation, and an extended listening area. Research is required
to gauge the performance of different spatialization schemes for a
distributed audience and in reverberant concert halls.

However, before any assessment of multichannel spatializa-
tion techniques can be made, it is necessary to examine the per-
formance of monophonic sources under the same conditions. In
this paper we present the results of listening tests carried out in a
small sized concert hall for a distributed audience of nine people.
The tests were conducted using a monophonic loudspeaker array
with various stimuli and illustrate the impact of reverberation on
the localization performance of a distributed audience for single
sources. This will provide a base measure of the best possible per-
formance one could expect from a spatialization technique in terms
of localization accuracy, under similar conditions. We will begin
this study with a brief overview of the auditory localization mech-
anisms, and a summary of the existing research and experimental
data on source localization.

2. AUDITORY LOCALIZATION OF MONOPHONIC
SOURCES

The localization of sound sources can be divided into three spatial
categories, namely directional hearing in the horizontal plane, di-
rectional hearing in the vertical plane and “distance hearing” [1].
In this study we will limit our discussion to the horizontal plane,
as this is particularly relevant for most spatial music presentations.
The ability to localize auditory events in this plane depends on
several key factors. These include the nature of the source signal,
the acoustical environment and the diffraction effects of the up-
per torso and head. Of these factors, head shadowing gives rise to
interaural level differences (ILD) and ear positioning gives inter-
aural time differences (ITD) which aid our horizontal localization
[2]. The implications (and limitations) of these cues in the free
field have been well documented in [1, 3, 4, 5] in terms of the na-
ture of the source. There is a strong weighting for ITDs with low
frequency signals and poor weighting of ITDs with high frequency
signals. The converse is true for the ILD. For wideband stimuli, the
ITD is found to dominate [3].

It has been shown under ideal conditions, for various source
stimuli, that the region of most precise spatial hearing lies in the
forward direction with frontal hearing having an accuracy of be-
tween 4.4◦ and 10◦ for most signal types [1]. Localization ability
decreases as the source azimuth moves to the sides, with the local-
ization blur at ±90◦ being between three to ten times its value for
the forward direction. For sources to the rear of the listener, lo-
calization blur improves somewhat but is still approximately twice
that for frontal sources. It is expected therefore that the localiza-
tion performance of spatialization systems will follow a similar
trend.

A thorough study on the effect of reverberant conditions on
localization accuracy for various stimuli was presented by Hart-
mann [6, 7, 8]. It was shown that impulsive sounds with strong
attack transients are localized independently of the room reverber-
ation time, but may depend on the room geometry. Conversely, for
sounds without attack transients, localization improves monotoni-
cally with the spectral density of the source. However, localization
of continuous broadband noise is dependent on room reverberation
time.

The source must also include significant onsets if the ‘prece-
dence effect’ is to operate as an aid to localization. However,
even with transients the precedence effect does not entirely elim-
inate the effect of early reflections [7]. In fact, the early reflec-
tions from room sides impact negatively on horizontal localiza-
tion, while early reflections from the floor and ceiling help to rein-
force localization. It should be noted that this is the opposite of the
preferred arrangement for acoustic music in concert halls, which
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emphasizes lateral reflections.

3. LOCALIZATION OF PHANTOM SOURCES

In assessing which systems are most applicable to the presentation
of spatial music, it is relevant to discuss the development of com-
mercial sound reinforcement and spatialization systems that are
applicable to localization of phantom sources. The first of these is
stereophonic reproduction, which refers to the creation of virtual
acoustic images localized at a desired position. The original patent
by Blumlein [9] in 1931 outlines two-channel stereophony around
a single listener position and remains the main commercial system
of sound reproduction to this day. However, presentations using
this system are designed to provide accurate imaging for a single
listener position only. Off-centre listening leads to inaccurate lo-
calization information since the intensity information presented to
the ears becomes compromised. Three channel stereophony at-
tempts to overcome this, but again, it does not cater for large devi-
ations from the acoustic ‘sweet spot’ and does not provide any ac-
curate localization information for anything other than the frontal
plane.

Ville Pulkki [10] created a vector-based reformulation of the
amplitude panning method (VBAP) which extends the basic stereo-
phonic principle to an arbitrary number of loudspeakers. A num-
ber of experiments were undertaken using this system to investi-
gate the perceptual cues used in source localization, both for real
and phantom sources. In [11] the localization of amplitude panned
phantom sources in a standard stereophonic system was investi-
gated. Of particular interest is his use of a binaural auditory model
to calculate the localization cues for the audio signals used in the
listening tests. These data simulations were compared with the
results of the perceptual listening tests in order to verify the ex-
perimental results. It should be noted, however, that this model
does not take into account the precedence effect and only gives re-
liable results if the sound signal arrives at the ears within a 1-ms
window. The experiment was therefore carried out under anechoic
conditions and a modified model would be required for tests un-
der reverberant conditions. The results of this experiment correlate
well with Blauert [1] for the following points:

• The localization of amplitude panned phantom sources is
based on ITD cues at low frequencies and on ILD cues at
high frequencies.

• ILD cues at high frequencies generally coincide with low-
frequency ITD cues.

• Between 1100 and 2600 Hz both cues become ambiguous.

These results explain why broadband phantom sources are gener-
ally well localized while narrowband signals, particularly in the
region of 1.7kHz, are inconsistently localized.

Ambisonics is another system which surpasses the limits im-
posed by two channel stereophony and is a very complete set of
techniques for recording, manipulating and synthesizing artificial
sound fields [12]. Real soundfields can be recorded using a spe-
cialized Soundfield microphone, while numerous software imple-
mentations allow for the synthesis of artificial sound fields. Am-
bisonics has been widely discussed and excellent overviews can be
found in [13, 12]. One of the most lauded features of Ambisonics
is that the encoding and decoding functions are carried out sep-
arately. This capability certainly gives Ambisonics an advantage

over systems based on amplitude panning which require a dedi-
cated channel per loudspeaker and a fixed arrangement of loud-
speakers. However, while the localization performance of Am-
bisonic systems has been evaluated in a number of experiments
[14, 15], there is a distinct lack of experimental data on its per-
formance under non-anechoic conditions and for a distributed au-
dience. Higher order Ambisonic systems will theoretically recre-
ate the soundfield over a wider listening area but again, additional
testing will be required to verify this claim. There is also a lack of
consensus amongst practitioners as to the most appropriate decod-
ing equations for different environments.

Benjamin et al. [15] carried out a series of listening tests to
verify the various theories behind different Ambisonics decoder
designs. The tests compared a number of different speaker ar-
rays and decoder designs, with the main variables being the num-
ber and arrangement of the loudspeakers, and the psychoacous-
tic models guiding the decoder design. The tests were designed
to evaluate these models, and the choice of crossover frequency.
Three decoders were designed, a velocity decoder in which the
original pressure and particle velocity are recovered exactly, an
energy decoder that maximizes the magnitude of the energy local-
ization vector, and a shelf decoder which optimizes the velocity
vector at low frequencies and the energy vector at mid frequen-
cies. These three configurations were then applied to the decoding
equations for square, rectangular and hexagonal arrays to generate
the test signals. The source signals used in the test consisted of
continuous bandpass filtered noise, voice recordings, various mu-
sic recordings, applause and fireworks. The listeners were free to
switch between the arrays and sources, move their heads and seat-
ing position and were asked to judge a number of attributes such
as the directional accuracy of localization, tonal balance and image
stability. The results of the test indicated that the hexagonal array
was preferred by all listeners. The rectangular and square arrays
were judged to exhibit poor lateral imaging although the rectangu-
lar array was comparable to the hexagonal array when the material
was limited to a frontal source with ambience. Of the four de-
coder types tested, the shelf filter decoder was preferred for most
sources as it produced the most focused sources with the least ar-
tifacts. One interesting conclusion drawn from this test was that
changes in layout make significantly more difference than changes
in decoder. Benjamin et al. also note that the choice of preferred
decoder was strongly dependent on the program material and the
size of the intended listening area. Finally, it should be noted that
this test was initially carried out in an ordinary room without any
acoustic treatment. It was reported that good localization was not
achieved and no experimental data was presented from these initial
tests.

It is felt by the authors that these reported studies show that
VBAP and Ambisonics are viable formats for the production of
spatial music in ideal listening environments. What is unclear,
however, is the true capability of such systems to cater for the lo-
calization requirements of a distributed audience in a concert hall
environment.

4. SOUND LOCALIZATION FOR A DISTRIBUTED
AUDIENCE

There are numerous challenges associated with the localization of
sources for distributed audiences. In particular, for systems based
on stereophonic principles, it is extremely difficult to present accu-
rate wavefronts for correct ITD/ILD cues at off-centre listening po-
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sitions. Even for Ambisonics, which has been used extensively in
theatre and electro-acoustic music concerts, there has been very lit-
tle published on the actual performance of the system under these
conditions. David Malham has worked on a number of large-area
Ambisonics systems and has published one of the few papers on
this topic [12]. The paper informally covers the experiences of the
author in implementing large scale Ambisonics systems in a num-
ber of different theatres. The main conclusions of the paper are as
follows:

• Informal tests demonstrated that Ambisonics worked effec-
tively with a hexagonal array of diameter 14.5m.

• Non-central listening positions produced distortions in the
sound field positions.

• Audience screening is a significant problem for periphonic,
three dimensional presentations.

• It is important to distinguish between imaging problems
caused by system faults and those resulting from system-
atic errors caused by the acoustics of the projection space
or the nature of the sound being projected

• Decoding based on the diametrically opposed pairs theorem
performs poorly for large arrays and should only be used for
small listening areas.

• Fast moving sounds were more easily localized.

• The system can work well even for listeners placed outside
the array, but not for listeners seated on the surface of the
notional sphere of the loudspeaker array.

• The acoustics of the venue strongly influence the effective-
ness of the system.

Another system worthy of mention for distributed audiences
is the Delta Stereophony System (DSS) as it prioritises delivery of
the correct wavefronts for accurate source localization and boasts
true perspective and depth [19]. DSS is largely based on the prece-
dence effect and is an approach which ensures that each listener in
an auditorium receives the direct sound from the original sound
source direction first, before that of reinforcement speakers placed
about the audience area [20]. In that it was intended for sound re-
inforcement system use in large auditoria, it employs a distributed
loudspeaker network, with loudspeakers typically positioned through-
out an auditorium. The main objective of DSS is to reinforce an
original sound event while also maintaining at least an approxi-
mately accurate sound source localization. This can be achieved
if the listener at any place in the room receives the first wavefront
from the direction of the sound event being reinforced, rather than
from any of the other loudspeaker positions [21]. Since the devel-
opment of DSS in 1975, it has been installed in concert halls in
Berlin, Prague, Munich, Stade, Stuttgart, Tokyo, and the Moscow
Kremlin Palace [22]. It has also been applied with great success
in open air theatres such as the Lake Festival Bregenz in Austria
(where it was used for reinforcement of moving sources), Trach-
selwald (Switzerland), and Waldbuhne, Berlin. Further examples
of DSS implementations can be found in [23, 24]. Ahnert gives an
excellent review of DSS design in [20], but the actual subjective
system performance in terms of localization accuracy in a rever-
berant environment for a distributed audience, and for differing
source material, still has to presented. It is felt by the authors that
since the DSS is designed for the accurate localization of sources,
it is worthy for inclusion in the assessment of systems applied to
spatial music presentations.

In recent years, another spatialization method has been devel-
oped by Berkhout et al [16], namely Wave Field Synthesis (WFS).
The theoretical background for this system originates in Huygen’s
principle in optics, where a wavefront can be reconstructed by an
infinite series of secondary wavefronts. In practice, the number
of secondary sources is limited and the spatial separation between
the loudspeakers determines the highest frequency that can be re-
constructed accurately. A series of experiments was set up by De
Vries et al [17] in an effort to gain experience of a sound enhance-
ment system based on Wave Front Synthesis. They constructed
three Wave Front Synthesis systems: a laboratory setup, a proto-
type system, and a full-sized sound enhancement system. De Vries
found that the spatial bandwidth of a single notional source can be
approximated by the dispersion angle of the source. Thus, increas-
ing the directivity of the notional source increases the spatial alias-
ing frequency fal. However, if the spatial bandwidth is reduced
too far, this can also cause localization problems for listeners lo-
cated at the far sides of the rooms. Listening tests in the auditorium
confirmed that when the wave front synthesis is aliasing-free up to
higher frequencies, the perceived source images are narrower and
more accurately localized and coloration effects are reduced.

5. TOWARDS ASSESSMENT OF SPATIAL
ENHANCEMENT SYSTEMS

In order to effectively gauge the subjective performance of any
spatial enhancement system in a reverberant environment, it is first
necessary to study the effect of room acoustics on localization ac-
curacy, in particular for distributed audiences. This can then be
considered as the ‘best case’ scenario for any sound system in the
same environment. In light of this, and as a precursor to studies by
the authors for testing the localization accuracy of various spatial
enhancement systems [25, 26], a series of experiments were set up
in a small sized concert hall in Trinity College Dublin. The hall,
shown in Figure 1, has a reverberation time (RT60) of 0.9 seconds
at 1kHz. A loudspeaker array consisting of 16 Genelec 1029A

Figure 1: Printing House Hall in Trinity College Dublin showing
listener/loudspeaker setup.

loudspeakers was arranged around a 9 listener audience area as
shown in Figure 2. A PC utilising a MOTU896 audio interface
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was used to route the audio to the loudspeakers. The loudspeakers
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Figure 2: Geometry of loudspeaker array and audience area for
monophonic listening tests.

were calibrated to 80dBA at 1m from the on-axis tweeter position
and their axis lines were coincident with the centre listener posi-
tion. The audience, which consisted primarily of students under 35
years of age, were screened before the tests for potential hearing
impairments. The participants were presented with monophonic
sound from pseudorandom positions located about the speaker ar-
ray and were then asked to identify the location of the sources via
a questionnaire running concurrently with the tests. This random-
ized method was used to negate any order effects during the tests.

In these tests, only the 8 black loudspeakers shown in Fig-
ure 2 were used for the monophonic presentations, and the other
‘dummy’ loudspeakers were used to increase the choice of angle
for the listeners. In order to assess the effect of various stimuli,
users were presented with 1 second unfiltered recordings of male
speech, female speech, Gaussian white noise and music with fast
transients. These samples have the spectral and temporal char-
acteristics shown in Figure 3. Each sample was presented twice,
followed by a short interval before the next presentation. Listen-
ers were asked to keep their heads in the forward direction and the
angular conventions employed in the analysis at each individual
listener position are also shown in Figure 2. Upon completion of
one iteration of the test each listener was asked to move to the next
seat for another randomised iteration.

Each of the listeners’ answers were weighted, depending on
the confidence level of the listener with their choice, with weight-
ings of 1/n, where n is the number (or range) of speakers that a
listener felt the sound originated from. From this, the histogram
{h(θi)}i∈[1:16] collecting all the listeners’ answers is computed
for each seat. The angular mean θ̄ and the unbiased standard devi-
ation σθ at each listener position are computed:

θ̄ =

∑16
i=1 h(θi) · θi∑16

i=1 h(θi)
(1)

σθ =

√∑16
i=1 h(θi)(θi − θ̄)2

(
∑16

i=1 h(θi))− 1
(2)

In some rare situations anomalous statistical outliers would oc-
cur with large deviations from the data set and actual loudspeaker

White Noise

Male Speech Female Speech

Music

Figure 3: Spectral and temporal characteristics of presented
sources.

angle θT . Such anomalies were attributed to inattentive listeners
or individual listener problems during the tests. These anoma-
lies were removed from the histogram. Consequently in these rare
cases, the term

∑16
i=1 h(θi) becomes less than the number of lis-

teners (i.e. < 9) but is never less than 8.
Figures 4, 5, 6 and 7 show the results of the measurements

taken. Each figure contains four graphs indicating the measured
localization data for each source signal. Note that the Y-axis lim-
its on each graph set is different to accommodate the resolution at
each listener position. The individual plots show the mean θ̄ (cir-
cle), twice the deviation 2σθ (whiskers) and presented localization
angle, or ground truth (square) from the perspective of each lis-
tener position. Figure 4 shows the results for a frontal presentation
from speaker 2. One can note the following:

1. The mean results for all source signals match the presented
source angle except for white noise at listening position 6.

2. All sources were localized to the presented location with
zero deviation except for white noise with a deviation of
±7.4◦ about the mean at listening position 6.

These results indicate that the localization accuracy of a distributed
audience for a frontal source is quite good, and is largely indepen-
dent of the type of source signal used.

Figure 6 shows the results of a rear presentation from speaker
10. One can note the following:

1. 6 of the 9 mean results for male speech match the presented
localization angle well. 4 of the 9 mean results were sim-
ilarly matched for white noise, while 3 and 1 of the mean
results matched for music and female speech sources, re-
spectively.

2. All source signals were well localized with zero deviation
at listening position 9, the closest to the presenting loud-
speaker.

3. All source signals were similarly accurately localized at
listener position 8. However the result for female speech
showed a deviation of ±13.6◦.

The mean results show that male speech was localized with the
highest degree of accuracy. As expected, localization blur is gen-
erally greater at the rear than for frontally positioned sources.
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Figure 4: Subjective localization of source stimuli presented at
loudspeaker 2 for all listener positions. © = θ̄, � = θT , `a = ±σθ

Figure 5: Subjective localization of source stimuli presented at
loudspeaker 6 for all listener positions. © = θ̄, � = θT , `a = ±σθ
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Figure 6: Subjective localization of source stimuli presented at
loudspeaker 10 for all listener positions. © = θ̄, � = θT , `a =
±σθ

Figure 7: Subjective localization of source stimuli presented at
loudspeaker 14 for all listener positions. © = θ̄, � = θT , `a =
±σθ
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Figure 5 shows the results of a lateral presentation from speaker
6 (right, front). The results indicate the following:

1. The mean results for male speech all match the presented
location angle with zero deviation, apart from listening po-
sition 1, which shows a deviation of ±12.94◦.

2. The highest number of results that matched the source posi-
tion with zero deviation occurred for male speech (8), while
5 similar results occurred for the other three source signals.

3. Good localization was again achieved at the listening posi-
tions closest to the presenting loudspeaker (positions 3 &
6) for all source signals.

The mean results for this presentation indicate that all sources were
reasonably well localized. Male speech again performed better
than the other source signals.

Figure 7 shows the results of a second lateral presentation from
speaker 14 (back, left). One can note the following:

1. 4 of the 9 mean results for each source signal match the
presented localization angle.

2. All sources were well localized at the listening positions (7
& 8) closest to the presenting loudspeaker.

3. The results at other listening positions show wide devia-
tions.

6. DISCUSSION

The above results indicate that monophonic sources can be rea-
sonably well localized by a distributed audience under reverberant
conditions. They also show that localization accuracy is greatest
for frontal sources with a frontally-biased lateral source providing
the next best results. The results for rear and rear-biased lateral
sources were largely comparable.

The results for music, white noise and female speech were
similar, while the best localization was achieved for male speech.
Informal discussions after the experiment revealed that the gen-
eral consensus among the test subjects was that white noise was
the most difficult signal to localize. These impressions support
the findings of other localization studies [1] which also indicate
that localization accuracy is greater for speech than for broadband
noise.

The subjects were tested using a forced-choice, speaker iden-
tification method which could explain the high degree of corre-
lation between the mean results and presented angle. The range
of deviation varies considerably for different listening and source
positions which is unsurprising considering the non-ideal listening
conditions. A number of studies [6, 27], have shown that local-
ization accuracy decreases with increasing levels of reverberation.
These findings were supported by our results which show wider
angular deviations than reported in similar studies carried out un-
der anechoic conditions [28].

In addition, one would expect the presence of early reflec-
tions and in particular, the lateral reflections typical of most con-
cert halls, to similarly reduce localization accuracy. The test room
contained a number of hard surfaces which presumably generated
significant reflections. An analysis was therefore carried out on
those test results where the mean significantly deviated from the
presented angle. Listening positions 1, 4, 5 & 7 for a source at
speaker 10 all display a negative angular bias. Likewise, the re-
sults at listening positions 6 and 9 for a source at speaker 14 all
display a positive angular bias. These biases, combined with the

close proximity of the loudspeakers to the walls seems to suggest
the influence of lateral reflections on localization.

However, the difficulties in correlating angular biases such as
these to specific reflections are well known and highly applica-
ble here. In a previous study, Hartmann et al. proposed that when
the azimuth of the reflection competes with the azimuth of a di-
rect sound, subject’s responses will be biased in the direction of
the reflections [7]. He then went on to show that the effect of
even a single reflection does not influence the perceived direction
in this linear way. Data simulations and specific impulse response
measurements could potentially reveal further information on the
precise effect of early reflections on source localization in this par-
ticular case.

Although significant deviations were found, the results are
nonetheless encouraging and seem to indicate a reasonable level of
localization accuracy even under such non-ideal conditions. The
angular deviation varied for different listening and source posi-
tions but never exceeded a maximum value of approximately 30◦.
An examination of the extreme situations, i. e. where the angle
from a listening position to a pair of speakers is at a minimum,
could help reveal the cause of these deviations. The results for
frontal sources were highly accurate and so will not be considered
here. The extreme condition for a source presented at speaker 6
occurs for listening position 9. The results indicate a deviation of
approximately ±6◦ for this position with the mean result being bi-
ased by approximately 6◦ towards speaker number 4. The extreme
condition for a source presented at speaker 14 occurs at listening
position 1. The results show zero deviation for all sources ex-
cept female speech (±10.93◦) while the mean results match the
presented angle for white noise and male speech, with the music
source displaying a bias of 10.6◦ toward speaker 12. The extreme
condition for a source presented at speaker 10 occurs at listening
position 3. The results show zero deviation and a matching mean
angle for white noise and male speech. The other sources display a
deviation of approximately ±8◦ and a mean bias of approximately
10◦ toward speaker 8.

These results suggest that for most combinations of listening
and source position, the localization blur is not sufficiently strong
to cause a listener to localize a monophonic source away from
the desired location when using an asymmetrical 8-speaker array.
However, for extreme cases such as a front-corner listening posi-
tion with a source positioned to the rear, accurate localization can-
not be guaranteed. This problem appears to depend on the nature
of the source signal.

7. CONCLUSION

The presented results for the given configuration and reverberant
environment show that the localization of monophonic sources can
be achieved well in a reverberant environment for a distributed au-
dience. For the monophonic sources presented, it was found that,
on average, the localization blur is not sufficient to cause localiza-
tion away from the desired source direction. It was noted, however,
that at extreme listener/source positions, the cues for accurate lo-
calization to the source angle may not be guaranteed with certain
source stimuli. Furthermore, it was shown that the best stimulus
for localization in a reverberant environment is male speech. Sim-
ulations and further empirical investigations to support the subjec-
tive tests of this research should also be undertaken.

These results also form a ‘best case’ scenario for any spatial-
ization technique, since the presented environment pertains to a
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real listening situation and not ideal anechoic conditions. Thus
the best possible performance that spatialization schemes such as
VBAP, DSS, Ambisonics and WFS can hope to achieve under
similar conditions is that of the monophonic presentations shown.
In light of this, the study undertaken provides a strong basis for
the comparative studies of the performance of spatialization tech-
niques in terms of localization accuracy and their technological
relevance for music performance situations undertaken by the au-
thors in [25, 26].
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ABSTRACT 

This paper is focused on synthesizing macro-sound structures with 
certain ecological attributes to obtain perceptually interesting and 
compositionally useful results. The system, which delivers the 
sonic result is designed as a self organizing system. Certain prin-
ciples of cybernetics are critically assessed in the paper in terms of 
interdependencies among system components, system dynamics 
and the system/environment coupling.  It is aiming towards a self 
evolution of an ecological kind, applying an interactive exchange 
with its external conditions. The macro-organization of the sonic 
material is a result of interactions of events at a meso and micro 
level but also this exchange with its environment. The goal is to 
formulate some new principles and present its sketches here by 
arriving to a network of concepts suggesting new ideas in sound 
synthesis. 

1. INTRODUCTION 

Generally human made acoustical instruments produce composi-
tionally meaningful sounds, which can be described by some in-
teractions such as excitation and resonance. In such a structure, the 
excitation consists of a temporal energy input, a sort of some dis-
turbance introduced to the system [1].When an acoustic resonant 
system is excited, it does attenuate some frequencies and empha-
size certain ones. The resonance produces a pattern of energy 
dissipation. Such resonant systems reach a final stable state be-
cause energy is not generated within the system but it is received 
from an external source. And since the external source comes as 
an event trigger mechanism with a temporal energy supply having 
a transient behavior, the response of the system is finite. The in-
teraction of such instruments with its environment happens at this 
excitation level. Although there might be involved chaotic dynam-
ics on the micro level components of these systems, the macro 
level output should have a distinctive character as a response to a 
certain input. The output of the system should be predictable as it 
makes sense for the performer who would like to control it pre-
cisely with the input parameters of his performance. The interac-
tion becomes in what ways the resonant system responds to its 
excitation system.  
 
Our system which we are going to introduce as a sound synthesis 
instrument has a much more complicated structure than the one 
explained above. It will have a control mechanism which serves to 
the user interaction, but also a self organizing system to deliver 
dynamic behavior of eco-systemic kind. All this will be exploited 
within the principles of cybernetics.   
 

2. SYSTEM STRUCTURE 

 
Ecological systems have generally a hierarchy of multiple levels 
of organization on multiple time-rate scales in order to be ecologi-
cally valid [2]. Compositionally meaningful sound objects are 
subjected to a temporal change, spectral variation and envelope, 
which results as a pattern of change. This pattern becomes a struc-
ture establishing a form of the sonic identity perceivable by our 
ears such as we could be able classify the character of the sound 
source. In the case of ecologically valid sound objects, the patterns 
of change are expected to form higher-order percepts. In other 
words, within the hierarchy of multiple levels, the interaction of 
low level elements shows emergent properties at higher levels. 
This interaction occurs among all levels. Organization at one level 
influences the others [3]. 
 
In our system, we think the smallest element as a granular micro-
sound event. Sounds constructed with the granular technique re-
quire high densities of short events to produce aurally convincing 
sound textures. Therefore, computer music composers have 
adopted algorithmic approach to handle granular synthesis with 
statistical controlled distributions combined with tendency masks, 
probabilistic functions and other methods while exploring the 
possibilities of controlling the granular streams  [4] [5] [6]. In 
general, the lack of these applications for creating macro-temporal 
patterns was the employment of a mono-layered time structure, 
which was missing a hierarchical organization of multiple layers 
and complexity.  
 

 

Figure 1: An example sonic event distribution (represented 
by small dashes) inside consecutive time cells. The distri-
bution in each cell is independent and stochastic. The ar-
row represents the possible information exchange between 
cells. But if this feature is not embedded in the structure, 
which would affect each others distribution process and 
there is no feedback from any output to input, no evolution 
is possible in such a structure.   
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An alternative event distribution system operating on multiple 
time-scales within a self similar structure has been proposed [7] 
[8]. The event distribution mechanism on each level of Cosmos is 
using deterministic or stochastic functions for making decisions on 
each events onset time and duration parameters on that level (Fig-
ure 2). Each event opens a subspace with other events on a lower 
level in the structure. As we see on Figure 3, the mechanism of 
sound synthesis starts by injecting a sound element as the input on 
the micro level (forming the excitation system) and the bottom-up 
procedure constructs the meso-spaces and finally the macro-space. 
The micro level characteristics of a sound grain influence the 
meso and macro properties of the sound event. The output of the 
system is fed back again to the input, as the micro-event sample 
data. This recursive system uses its own output and creates a multi 
layered development in the sonic structure. 
 
The particular transformations at the macro, meso and micro lev-
els are user defined but they are fixed during the operation and 
non-adaptive. For example if any of the transformations features 
some ‘destructive’ processing, meaning that it leaves something 
out, the result of the feedback process is degradation. 
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Figure 2: The top-down sonic event distribution mecha-
nism in of the Cosmos model. It is based on a self similar 
structure and interdependency between layers. The events 
are numbered sequentially, and some of them are overlap-
ping while increasing the local density. Each macro event 
opens a meso-space and each meso-event opens a micro-
space. The numbering process shows where each event is 
coming from.   

 
If the transformation is asynchronous granulation, the degradation 
results to a sonic powder; or if the output gains a noisy character 
then the feedback reinforces this behavior and the degradation of 
harmonic structure follows rapidly. But if there is any slight regu-
lar pattern in the function, it would be replicated at the output so it 
is not a drift towards white noise or distortion, and will have pre-
sent a similar phenomena such as in multi-layered pulsar synthesis  
[6]. 
 
This behavior is the result of the positive feedback, which creates 
an attractor strong enough winning out all of the other features in 
the system. The feedback system soon points to its end-states. 

  

 

Figure 3: This is the schematic overview of the audio rout-
ing and the event space organization inside the applica-
tion. The audio enters top-left. The dotted line is the feed-
back audio line. The black arrows show the bottom-up or-
ganization of the sonic data. Each micro-space corre-
sponds to a meso-event supplying the sonic data with the 
space-handling process and the meso events organize the 
meso-spaces corresponding to macro-events.  

What is being experiencing with degradation behavior here, is a 
lack of “structural coupling”, a lack of “adaptation” to the input 
(although, for the moment, the input = the system output). In other 
words, the transformations, or their composition together at the 
macro level, are insensitive to the input/output, they just work the 
same way independent of what comes in. When such a system 
eliminates the destructive relationship to its input/output, it be-
comes an eco-system [9]. For establishing this, we should use the 
selected external conditions of the environment, which will be 
derived from the analysis of the output to maintain the perceptual 
attributes of sound such as; noisy/harmonic character, intensity, 
spectral distribution, rhythmical behavior, particle density. 

2.1. Structure&Environment Coupling 

 
Non-equilibrium systems are driven away from a stable position 
and exhibiting dynamic behavior. In many cases the transition 
period between states is significant (e.g. metamorphosis in insects 
takes time). This period, called a transient, is a non-equilibrium 
state (equilibrium here refers just a constant state, not only to the 
lowest energy state familiar from physics). It is the transients that 
are the actual behavior. What we have here is a closed stochastic 
system, so the steady state in our system is irrelevant. Complex 
systems of this sort never settle to a fixed status, maybe the only 
fixed state is the silence in our case. It is subject to constant per-
turbation (due to the input sound to the Cosmos, which drives 
bursts of transient behavior).  
 
This instability with order is what we call ‘Edge of Chaos’, a sys-
tem midway between stable and chaotic domains (self-organized 
criticality) 10]. It is characterized by a potential to develop struc-
ture over many different scales and is an often found feature of 
complex systems whose parts have some freedom to behave inde-
pendently such as in Cosmos. For the ‘edge of chaos’ behavior we 
need some constraints – too many dynamics will die out, too few 
and absolute order will not be sustained.  
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Figure 4: A typical control mechanism in cybernetics. This 
model can be applied to many possible dynamic structures 
in different disciplines.   

 
The question is how to establish an evolutionary process of self-
organization possible with this system. Because we enter the 
world of cybernetics, the system design should be considered 
within its principles [11]. Cybernetics was defined by Wiener as 
“the science of control&communication, in the animal and the 
machine”, in a word, as the art of steermanship. Our system con-
cept includes; complexity, system-environment boundry, process, 
state, hierarchy, feedback and network of coupled variables.  
 
The aim would be first of all to create a dynamical system which 
will represent a structurally closed but organizationally open sys-
tem [Figure 4]. It should be able to accept/create control com-
mands for direct manipulation or self-organization within a coher-
ent structure. Respecting this model, we can substitute Cosmos 
such as in [Figure 6]. What is fixed here is the structure of Cos-
mos, its integrity with its interconnected components. Cosmos 
should determine its state by the interactions with the environment 
and among its control system components by showing an adaptive 
behavior to the external parameters, which is essential to self-
organization. This approach of cybernetics is taken universal and 
is valid for any sound-environment interaction, not specifically for 
the Cosmos model [9]. But the stochastic complex behavior of the 
Cosmos model introduces some interesting possibilities which will 
be discussed below.  
 

2.1.1. The Observing Part 

 
In our case, the system listens to its output, which becomes its 
‘environment interaction’ (Figure 5). The output of the system 
itself is the perturbation introduced to the system against which it 
should react and organize its state. In an ideal system, to every 
class of perturbations there corresponds a class of adequate coun-
teractions. This correspondence might be represented as a homo-
morphism from the set of perturbations in the environment to the 
set of compensations.  
 
The observer part keeps tracking certain features of this environ-
ment and does an analysis on the sound for certain perceptual 
attributes, which are set at the design level. It becomes in the end a 
self-observing system, ultimately using information on its in-

put/output, decides for the emergent behavior to take against the 
external conditions in order to re-organize itself.   
 
Regarding the integral structure of Cosmos, if one implements 
some flexible behavior in any or all of the three levels, macro 
meso and micro, the representation of the selected external condi-
tions will be evaluated and actions will be taken inside the new 
self organizing structure. The sound output of Cosmos itself can 
be interpreted with useful analysis methods to extract the sonic 
attributes [Figure 5]. The sound analysis can be further interpreted 
with statistical analysis tools to obtain the descriptive characteris-
tics of the data sets with the arithmetic mean value x , the stan-
dard-deviationσ , which is the most common measure of statisti-
cal dispersion, and the skew, which is a measure of the asymmetry 
of the distributed values for the incoming stream of observed val-
ues. The standard calculation method for these quantities is as in 
the equation (1).  
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There can be different integration times on these observed values 
corresponding to macro, meso and micro level time scales. The 
feature extraction process generates control rate data ix , which is 
interpreted for the reaction of the system only possible after a 
certain delay time depending on these integration times. 
 

  

Figure 5: The Cosmos output, which is the output of the 
system described in Fig3., is being analyzed and certain 
perceptually meaningful sonic parameters are extracted. 
Audio input comes in and control rate data comes out. 

 
- intensity analysis : At the very low level, the intensity 
detection is the basic observed parameter, where one can follow 
the envelope of the sound input to the system.  
 
- pitch analysis : The pitch analysis can be interpreted in a 
range from deterministic output to noisy character. Also when the 
event distribution happens with a regular rhythmic order, then 
with fast distribution rates, the rate itself is being perceived as a 
pitch.  
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- spectral processing : Filtering methods emphasize a 
certain region of the spectra, therefore increasing the redundancy. 
Applied in a feedback loop, it is analogous to the Larsen tone 
effect, which is the true acoustical feedback. The use of several 
BandPass filters would allow following and matching certain re-
gions in the spectrum of the incoming audio and serve as an analy-
sis tool. The spectral centroid is also an elementary parameter, 
which can be observed for finding a correlating value for the spec-
tral brightness of the incoming audio. 
  
- density : The density here is the quantity of events in a 
certain time span. But when they are overlapping, the detection of 
the distinctive events becomes difficult although perceptually its 
existence is evident depending also to their pitch distribution. 
When the pitch distribution is wider, the perception of discrete 
events becomes easier. The more density of the overlapping 
events, the more becomes the perceived intensity. Therefore den-
sity and intensity are correlated. 
  
For the implementation on Max/MSP, the ‘analyze~1’ object can 
be used to determine the pitch, loudness, noisiness and brightness. 
The loudness is already an average value, because the STFT is 
being used with an overlapping window function which does ex-
tract the spectral contour along the bins by averaging their inten-
sity along the window size. The object ‘lp.stacey2’ on Max/MSP 
can be used to report the statistical analysis for the mean value, 
standard deviation and skew quantity; but also one can implement 
these functions easily with JavaScript using already existing 
source codes.  
 
Furthermore one can apply low-pass filter for smoothing the noisy 
data. The Savitzky-Golay smoothing filter [12] is an example and 
can be used before the statistical description stage of the data. A 
second order polynomial has been used to filter the noisy part 
from the data, which is easily implemented on MaxMSP. 
 
We are not going to dive here into details and problematic in ex-
tracting the features like the precise pitch, amplitude and density 
values on the incoming data in terms of reliability. It is the reason, 
why we have suggested having a descriptive analysis of the data 
with the statistical functions. It is more efficient in our case to use 
the statistically significant output of the analysis and make use of 
this on the decision part. The artifacts of the analysis represent 
partly the incompleteness regarding the representation of the ex-
ternal conditions. But also according to the cybernetics principle 
of ‘incomplete knowledge’ [13], the model embodied in a control 
system is necessarily incomplete, the system cannot represent 
itself completely, and hence cannot have complete knowledge of 
how its own actions may feed back in to the perturbations.  
 

2.1.2. The Decision Part 

Adaptive behavior can be at any time scale, and can follow the 
perceptual attributes and react by changing the system variables 
depending on these conditions. In order to adequately compensate 
perturbations, a control system must “know” which action to se-
lect from the variety of available actions.  

                                                           
1 analyze~ object developed by Tristan Jehan 
2 The Litter Pack objects developed by Peter Castine 

This is the law of ‘Requisite Knowledge of Cybernetics’ [13]. 
Without the knowledge the system would act blindly to the exter-
nal conditions. The analysis results should be represented in the 
Cosmos model with the relevant system variables such as when 
the system tries to fulfill some goals, the Cosmos model should 
contain the representation of selected decisions in reaction to the 
external conditions. Likewise this adaptive behavior leads and 
forces the system state to change itself. [2]  
 
The system variables in the Cosmos model are the onset and dura-
tion distribution functions (a range from deterministic to various 
stochastic functions), density distribution functions, and stochastic 
modulation generators which do affect pitch, intensity, filter pa-
rameters on macro, meso and micro levels independently. The 
overall goal of these functions is to achieve control on each event 
space and perform the process of change on the appropriate opera-
tion level. This organized spatial distribution of events and modu-
lation functions are reminiscent to morphogenesis in developmen-
tal biology, where it is the study about understanding the proc-
esses that control the organized distribution of cells during the 
development of an organism. This change is controlled by the 
genetic program and can be modified by the environmental fac-
tors. The decision part in our system, should deliver this genetic 
code in controlling the ‘organic’ function of Cosmos, which de-
velops the morphological aspects of sound.  
 
The challenge of the user is how to describe the organic character 
and translate it in the decision mechanism with the available pa-
rameters. This involves the classification of the macro-sound 
structures. The problematic in this classification effort is also the 
definition of the spectral sound morphology, which is a process of 
change, a transition between states in the timbre space [14]. Eve-
rything is a matter of degree. Within this scheme, for the future 
implementation, we suggest to use fuzzy logic operations in its 
linguistic form to allow partial membership in a set of macro 
sound characteristics. Therefore, this fuzzy inference step takes 
control in the decision module, where the statistical analysis com-
ing from the observer module is the input parameter and the macro 
sound representation is the output. One can use the fuzzy logic 
control kit [15] for the implementation on MaxMSP.    

2.1.3. Preliminary ideas on the implementation 

 
Implementing and regulating the system behavior in Cosmos is 
complex since the interdependencies among these system vari-
ables are subject to create unexpected emergent behavior and they 
indirectly implement the system dynamics. There are two possible 
situations of emergent behavior here; 
 

- Within Cosmos; unpredictable emergent behavior 
because of the stochastic self similar structure. It 
does emerge and maintain itself at the ‘Edge of 
Chaos’. 

- The action which the system takes for organizing 
itself in the direction of the decision mechanism. It 
does produce order bottom-up. 

 
The decision mechanism, which is designed as an external appli-
cation, will decide for the manipulation and application of these 
i/o functions according to the desired goal [Figure 6]. The inter-
vening user could assign the settings at the initialization point.  
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With regard to any parameter observed, the decision part can be a 
conformer or a regulator at the most basic level. The parameter 
which is compared by the decision module, is going to be ob-
served inside certain boundries for an statistical inspection of the 
value. This distribution range and the boundries will be set also by 
the user. 

 
- Regulation tries to maintain the parameter in the 

system at a constant level, regardless what is hap-
pening in the external conditions.  

- As a conformer, it allows the environment to de-
termine the parameter, therefore applying a posi-
tive feedback in adapting itself to the external con-
ditions. 

 
The output of Cosmos represents the emergent behavior including 
the unpredictable elements in the bottom-up development. It is 
also the perturbation which enters to the system and causes the 
transient action. Also represented in Figure 6, the chain of actions 
will be like below in the system.  
 

- The observer does the analysis; 
- The decision module compares the results with its 

internal conditions and decides what action it 
should take against the incoming external condi-
tions; 

- The reactions are mapped to the Cosmos parameter 
space in order to represent them inside the system;  

- The internal conditions of the decision module are 
set by the user, which reflect a compositional func-
tion utilized by the user;  

 

Figure 6: The Cosmos engine, which is the system de-
scribed in Fig3., is being observed  and represented inside 
the control system. The user interacts with the decision 
module, which establishes control by mapping its deci-
sions to Cosmos parameter space. 

 
The delay between the decision point and the observation begin-
ning is merely based on the observation process length depending 
on the macro, meso and micro level processes in Cosmos. For 
instance, if we would like to analyze the process of change on the 
macro-space in Cosmos, the data will arrive after the macro-space 
duration, and the decisions will be taken and applied at the start of 
the next macro-space. The more the delay time, the more difficult 
establishing the precise control. At some point, transients may not 
have enough time to settle down because of the late reaction of the 
decision mechanism and the system will exhibit chaotic behavior.  

3. DYNAMIC MODES OF OPERATION 

What we see in first case is a dynamic complexity, where the 
structure of a system may be simple, but the behavior unpredict-
able. It is a property of its behavior. Some authors define that 
complex systems may be still divided up to complex adaptive 
systems and complex deterministic systems. In a deterministic 
system it is always possible to predict the final state, if the initial 
state is known. In a complex adaptive system it is not possible to 
know the initial state in such a detailed level, that the final state 
could be predicted. This is due to the non-linearity and the loops 
of positive feedback. 
 
It is expected that the implemented control system establishes an 
attractor, where the behavior of this complex stochastic system 
with unpredictable patterns would approach to a configuration of 
the phase state characteristic to the control system attractor. The 
goal-directedness of this system is suppression of these unpredict-
able patterns and deviations from the basin of the attractor. Musi-
cally a steady state tone or silence can be regarded as a stable state 
and noise as a chaotic state for the system. What is interesting here 
is the other equilibrium states for the observing mechanism which 
are at the ‘edge of chaos’. So in going from any state to one of the 
equilibriums (the goal presented by the decision mechanism), the 
system is going from a larger number of states to a smaller. In this 
way, it is performing a selection and this reduction in the number 
of reachable states signifies that the variety, and hence the statisti-
cal entropy of the system diminishes. This is called again the proc-
ess of self-organization. 
 
In general, a complex system will have separate dynamic modes of 
operation. We are considering our system as a dissipative system, 
which take energy input (its own output as the audio material 
feedback and the control data from the decision mechanism) to 
maintain its homeostatic position. It is the flow of matter and en-
ergy through the system that allows the system to self-organize, 
and the exchange entropy with the environment. 
 
Homeostasis is the property of an open system, the self-
maintaining nature of systems from the cell to the whole organism  
[16]. Reactive homeostasis in biological systems is an immediate 
response to a homeostatic challenge such as predation. This preda-
tion is depending on the structure implemented in the event distri-
bution and modulation mechanism of Cosmos; the ability of its 
morphogenesis. Especially in sound synthesis there can be many 
low level sound operations which deliver non-linear, non-
reversible processes such as the frequency modulation technique, 
where there is a non-linear relationship between the input spectra 
and the output spectra. Homeostatis is a feedback phenomenon 
which cannot exist without reaction. In our case with Cosmos, this 
reactive compensation is reestablished by finding the desired in-
ternal state according to the decision part of the system. 
 
Will the output of the system respect exactly the desired control, 
or will it be asymptotically close to its destination? (a question 
regarding the evolution theory) How do we define the attractor 
from a compositional point of view? 
 
The environment which is introduced by the user on the decision 
mechanism is a pre-defined artificial space with its statistically 
significant perceptual attributes. With these parameters one speci-
fies the attractors characteristic for certain musical/sonic features.  
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If the combination of these control parameters offers the variety of 
an environment which becomes the desired timbre space, the per-
turbations in the input would lead the system to re-organize itself 
approaching the attractors within this timbre space. 

4. SOME COMPOSITIONAL ASPECTS 

Stockhausen3 states that any separation between acoustics and 
music is no longer meaningful in this era of computer aided sound 
design. The line between musically interesting synthetic sounds 
and digital sound effects can be very thin. Therefore the use of 
such a system is interesting in both ways. There are intriguing 
compositional aspects necessary to mention here and we claim that 
the philosophical structure is compatible with the ideas of musical 
sound&form having progressed since the beginning of 20th cen-
tury. John Cage4 has regarded the form, the structure (the divisibil-
ity of a whole into parts) as the expressive content, the morphol-
ogy of the continuity. The simultaneous morphologies in different 
dimensions, which focus on particular perceptual attributes of 
sound, lead to the existence of form. Luigi Russolo5 has assessed 
that the musical art is searching the most dissonant combination of 
sound, the most strange and strident, namely a musical noise. Al-
gorithmic composition has dealt in the beginning with the genera-
tion or transformation of notes and phrases. In this case, the com-
position of larger temporal forms is a process of both composing 
the phases and also organizing them into larger structure (Iannis 
Xenakis6). Within the ability to reach the microstructure of sound, 
the process above has become the composition of sound and then 
composing with the sound [17]. At this point the note event is no 
longer assigned to specific sound sources as we call them per-
formed instruments, and particularly the process of composing the 
sound itself has gained the ability to deliver the formal structure 
and complexity by accessing the morphologies in different dimen-
sions of the structure.  
 
The system which we have presented here is, aiming towards 
shaping the timbre space in that direction too. The indeterminacy 
is built in due to the unpredictable emergent behavior. We define 
the restrictions and constraints at the decision module, which de-
mands the system to re-organize itself and shape the complex 
sonic output according to the compositional needs. The constraints 
let the sound object still evolve organically within these dynamics, 
so it would be a compositional idea to define the balance point, the 
distance from the attractor defined by the environment; the requi-
site variety versus the requisite constraint. The question would be 
what is the musical perceptual meaning of this trade point? 
 
The “fitness” of states in the system is determined by how closely 
they match the formal needs of the particular dimensions set in the 
decision module. In the sense of the direction of evolution, what 
would be the average fitness with compositional means? Can we 
classify this with existing terms like harmonic, non-harmonic, 
order-disorder, and with general terms describing the macro-sound 
object? These questions are pushing this research forward and 
suggesting the planning for future work.  

                                                           
3 in Perspectives of New Music 1(1), 39-48, 1967 
4 in his essay on “Indeterminacy” 1958 
5 L’Art des Bruits, Manifeste Futuriste 1913 

6 beginning with his Achorripsis 1956 and ST series compositions 1956-62 
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ABSTRACT 

This paper deals with an analytic solution of spectrum changes in 
scalar non-linear discrete systems without memory, whose transfer 
characteristics can be approximated via broken-line function. The 
paper also deals with relations between the harmonics ratio and 
the approximation parameters. Furthermore, the dependence of the 
harmonics ratio on the amplitude of a harmonic input signal is 
presented for the most common characteristics that are approxi-
mated via broken-line function. These characteristics are judged 
from the dissonance point of view. 

1. INTRODUCTION 

We have to deal with aliasing when a digital signal is being proc-
essed by a non-linear system. The aliasing is caused by bandwidth 
extension when the highest frequency component exceeds half the 
sampling frequency. To prevent that, we can either upsample the 
input signal or approximate the transfer function of the system via 
the finite sum of terms of Taylor’s series and use nonlinear proc-
essing by band-limiting input signal range as published in [1]. 

That is why non-linear systems are used with such a type of 
approximation whose response to an input signal with limited 
bandwidth has a limited bandwidth as well (e.g. polynomial ap-
proximation) or with such a type of approximation which ensures 
that harmonics of a higher order than n are masked by harmonics 
of a lower order than n or with non-stationary spectrum compo-
nents (e.g. exponential approximation [2]). 

The polynomial and exponential approximations have the ad-
vantage that approximation parameters can be evaluated by solv-
ing a linear equation system according to the required ratio of 
harmonics [2]. On the contrary, the ratio cannot be set-up inde-
pendently for each harmonic when broken-line approximation is 
used. Furthermore, the response of such a system to a limited-
bandwidth input signal has not a limited bandwidth (see below). 
However, the computing-power demands of these systems are 
low. An analytic solution to the computation of amplitude of 
higher harmonics will be presented below as well as the common 
spectrum types of output signal, which can be produced by a non-
linear system with broken-line approximation as a response to the 
harmonic input signal. 

2. BROKEN-LINE APPROXIMATION 

Broken-line approximation of a non-linear transfer function Ψ( ) is 
defined using R linear sections, for which the following equation 
holds for i = 1, 2, ..., R 

 ( ) iiii xnxxxnxSny <≤−= − ][for    ][][ 1P
, (1) 

where Si are the slopes of straight lines in the area xi–1 ≤ x[n] < xi, 
xPi are the points in which given line cuts the x axis, and xi are the 
lower limits of a particular section of the function (see Figure 1). 
In the discrete domain, the spectrum changes can be evaluated in 
such systems by computing the approximation of coefficients of 
the discrete Fourier transform [3]. 
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Figure 1: Drawing up the output signal equation of non-
linear system with transfer characteristics approximated 
by broken-line function using limit angles. 

The even-function attribute of the Fourier series [3] can be 
utilized in the case of spectral component analysis of the output 
signal of a non-linear system with cosine input signal (which is an 
even function). It can be seen from Figure 1 that the period of 
input signal x(α) is 2π and the function Ψ(x) is identical for x(α) 
and for x(–α). The following equation holds for the approximation 
of the discrete Fourier transform coefficients of output signal 
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If we substitute equation (1) to equation (2) we obtain the follow-
ing equation 
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where Θ0 = π, ΘR = 0, and 
 ( ) αααα k

X
x

k i
ik coscoscosP

1

P
, −= . (4) 

Using several goniometrical identities we obtain the following 
equation for the amplitude of k-th harmonics for k > 1 (see [2] for 
details) 
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where α = 2πn/N, N is the length of the processed signal, X1 is the 
amplitude of the harmonic input signal, and cos Θi = xi/X1. The 
following equations hold for the amplitude of the first harmonic 
and the dc component [2] 
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2.1. Characteristics and Parameters of Approximation 

It can be seen from equation (5) that the output signal of a non-
linear system with transfer characteristics approximated by bro-
ken-line function has not a limited bandwidth if R > 1. Equation 
(5) is a sum of goniometric functions, and a period ξ of spectral 
component amplitude repetition can be found for a finite number 
of limit angles Θi. However, their amplitudes decrease very 
slowly. The highest harmonic of the output signal spectrum that is 
not masked by lower harmonics can be found using the psycho-
acoustical model. The upsampling ratio can be chosen according 
to the order of this harmonic. 

Furthermore, equation (5) shows that the amplitudes of har-
monics depend on the difference of slopes Si – Si–1 of adjacent 
linear sections, rather than on the difference SixPi – Si–1xPi–1. So the 
amplitudes of higher harmonics increase with the difference of 
right and left limits at the points of function discreteness. The 
following equations hold for i = 0,1,..., R – 1 if the approximation 
function is continuous 
 ( ) ( )iiiiii xxSxxS P1P1 −=− −−

, (8) 

i.e. the Si and xPi parameters are linearly dependent according to 
the equation 
 ( ). (9) 
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By equation (5) one could say that the amplitudes of output 
signal harmonics are linearly dependent. However, the substitu-
tions x0 = –X1 a xR = X1 were used when equation (5) was derived 
(see Figure 1). So the input signal amplitude changes influence all 
limit angles Θi. The input signal will not span the i-th section of 
the characteristic if |cosΘi| > 1. The step-change of spectrum 
character of the output signal can be seen from the joint ampli-
tude-frequency analysis in Figure 2, when the input signal ampli-
tude exceeds the limit level cosΘi. The properties of the odd and 
the even transfer characteristic function can be also demonstrated 
using equation (5). With the harmonic input signal, only odd 

harmonics will be in the output signal when Ψ(α) = –Ψ(–α) , and 
only even harmonics will be in the output signal when Ψ(α) = Ψ(–
α) (see [2] for proof). 

 

Figure 2: Joint amplitude-frequency analysis of output sig-
nal of symmetrical limiter when cosΘ = 0.3. 

In the common case the broken-line approximation of transfer 
characteristic with R linear sections has 3R–1 parameters. The 
number of parameters decreases when the Si and xPi parameters are 
linearly dependent according to equation (8). The Following 
equations hold for the xP0 a SR–1 parameters if the output signal 
range is 〈ymin; ymax〉 
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The total number of parameters of broken-line continuous func-
tion with R sections is 2R–2. 

2.2. Characteristics of Typical Broken-Line Approximations 

Figure 3 shows the transfer characteristics of a simple non-linear 
system.  
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Figure 3: Transfer characteristics of simple non-linear 
system. 

Equations for computing the amplitudes of output signal har-
monics for such a type of system can be found in various publica-
tions dealing with analogue non-linear systems (e.g. in [4]). We 
can obtain the same equations for Ψ1(α) from equation (5) 
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The following equation holds for a modified function Ψ1’(α) 
 ( ) ( ) ,...2,1for  sin

π
2' =+= kΘk
k
SYY kk
δαα , (12) 

where δ = x1 – xP1. Figure 4 shows the joint amplitude-frequency 
analysis of output signal of a non-linear system with this type of 
transfer characteristic. The level of the output signal is zero for 
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input signal amplitudes below x1. The amplitudes of higher har-
monics are high if level x1 is slightly exceeded, and decrease with 
increasing harmonic input signal amplitude. 
 

 

Figure 4: Joint amplitude-frequency analysis of output sig-
nal of non-linear system from Figure 3. 

Figure 5 shows an interesting output signal spectrum that we 
obtain for x1 = 0. In this case, the spectrum of the output signal 
consists of the first and the even harmonics only and their ampli-
tude ratio does not depend on the amplitude of the harmonic input 
signal. 
 

 

Figure 5: Joint amplitude-frequency analysis of output sig-
nal of non-linear system from Figure 3 with x1 = xP1 = 0. 

Figure 6 shows the transfer characteristics of a system with 
soft and hard thresholds. 
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Figure 6: Transfer characteristics of system with soft and 
hard threshold. 

We can derive equations for this system from equation (5), 
which are similar to equations (11) and (12). However, the even 
harmonics have zero amplitude and the amplitude of the odd 
harmonics is doubled. 

On the contrary, the amplitudes of the odd harmonics are zero 
and the amplitudes of the even harmonics are doubled in compari-
son with equations (11) and (12) when the transfer characteristics 
are abs(Ψ2(α)) and abs(Ψ2’(α)) (see [2] for proof). 

Typical transfer characteristics of non-linear system com-
monly used for distortion audio effects are in Figure 7. We can 
derive relatively complicated equations for amplitudes of the 
harmonics of output signal spectrum of a non-symmetrical limiter 
(xT1 ≠ –xT2) from equation (5) (see [2] for details).   
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Figure 7: Transfer characteristics of non-symmetrical lim-
iter and limiter with non-linearity around operating point. 

Figure 8 shows the joint amplitude-frequency analysis of the 
output signal of non-symmetrical limiter. 
 

 

Figure 8: Joint amplitude-frequency analysis of output sig-
nal of non-symmetrical limiter. 

Simpler equations can be derived for the symmetrical limiter with 
transfer function Ψ3(α) when xT1 = –xT2  
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One can see from equations (13) that the amplitudes of the even 
harmonics are zero (see Figure 2). On the contrary, the amplitudes 
of the odd harmonics of symmetrical limiter with transfer function 
abs(Ψ3(α)) when xT1 = –xT2 are zero. It can be seen from the fol-
lowing equations derived for such a type of system from equation 
(5) 
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The transfer characteristics of all systems mentioned above 
have a linear section around the operating point. That is why only 
the first harmonic (or no signal) is present at the system output 
until the amplitude of the input harmonic signal exceeds the first 
limit point. Figure 9 shows the joint amplitude-frequency analysis 
of output signal of limiter with transfer characteristics Ψ’3(α) from 
Figure 7, which has non-linearity around the operating point. 

It can be seen that the output signal spectrum for the ampli-
tudes of harmonic input signal below the first limit point is similar 
to the output signal spectrum of the non-linear system from Figure 
3 with x1 = xP1 = 0. Higher harmonics ratio depends on the differ-
ence of slopes Si – Si–1 as mentioned in section 2.1. 

2.3. Distortion DAFx Using Broken-Line Approximation 

The scalar non-linear discrete system without memory, whose 
transfer characteristic can be approximated via broken-line func-
tion, can be used in any nonlinear audio processor.  

The question is which type of approximation should be used 
for the distortion audio effect. Several typical approximations used 
in these effects are described in [5] which start from analogue 
prototypes. However, we can design a non-linear system that 
generates higher harmonics according to our requirements using 
equation (5) and equations derived from it. We assume that such a 
type of spectrum enhancement of the output signal is required that 
is not perceived unpleasantly. Furthermore, we assume that such 
an upsampling ratio is used that the aliasing spectrum components 
are masked by the harmonic components. 

There are several criteria for the valuation of non-linear distor-
tion of a system, e.g. simple valuation using weighted harmonic 
distortion. The valuation using the dissonance ratio is another type 
of valuation. It is most frequently determined as the multiplication 
of numerator and denominator of a fraction that determines the 
interval between two pure tones. A 2D histogram can be obtained 
if this valuation is applied to intervals between the harmonic 
spectrum components. The dissonance ratio increases with the 
number of the harmonic, it is lower with the even harmonics, and 
it is highest with the seventh harmonic (see [2] for details). 

According to this valuation, the system should mainly gener-
ate the even harmonics but the odd harmonics should not be sup-
pressed. It follows from text above and from [5] as well that this 
can be achieved using the system with non-symmetrical signal 
limiting from Figure 7. A faster decrease in the amplitude of 
higher harmonics than with a classical limiter can according to (8) 
be achieved by increasing the slope of the transfer characteristics 
section, which performs the signal limiting. The generation of 
higher harmonics even for low amplitudes of the input signal can 
be achieved using a non-linear system with non-linearity around 
the operating point (see Figure 9). 

Following equation describes the non-linear system designed 
for the distortion effects. The equation was designed according to 
characteristics of the broken-line approximation described above: 
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where d1,d2∈(0,1), xT is the threshold level, d1 is distortion ratio 
bellow this level and d2 is the ratio above the threshold level. 

In contrast to the common symmetrical limiters, the output 
signal of such system consists of the first and even harmonics only 
when amplitude of the harmonic input signal is bellow xT. The 
distortion ratios above and bellow the threshold level can be ad-
justed almost independently. Higher harmonics with high disso-
nance ratio are attenuated when d1<0.1. 

 

 

Figure 9: Joint amplitude-frequency analysis of output sig-
nal of limiter with non-linearity around operating point. 

3. CONCLUSION 

A direct realization of discrete non-linear systems with transfer 
characteristics approximated by broken-line function is controver-
sial because of the aliasing distortion caused by the unlimited 
bandwidth of output signal of the system. However, we can easily 
modify the ratio of amplitudes of the output signal harmonics via 
simple changes of the approximation parameters while keeping the 
changes of the type of output signal spectrum under our control. 
The aliasing distortion can be suppressed using the input signal 
upsampling, whose ratio is determined using the psychoacoustical 
model, or we could find relations between the broken-line ap-
proximation parameters and the coefficients of its Taylor series. 
Future work will be focused on examining the output signal spec-
trum changes when transfer characteristic smoothing is used. 
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ABSTRACT

Locating singing voice segments is essential for convenient index-
ing, browsing and retrieval large music archives and catalogues.
Furthermore, it is beneficial for automatic music transcription and
annotations. The approach described in this paper uses Mel-Frequency
Cepstral Coefficients in conjunction with Gaussian Mixture Mod-
els for discriminating two classes of data (instrumental music and
singing voice with music background). Due to imperfect classifi-
cation behavior, the categorization without additional post-processing
tends to alternate within a very short time span, whereas singing
voice tends to be continuous for several frames. Thus, various
tests have been performed to identify a suitable decision function
and corresponding smoothing methods. Results are reported by
comparing the performance of straightforward likelihood based
classifications vs. postprocessing with an autoregressive moving
average filtering method.

1. INTRODUCTION

The availability of digital music material to end users is continu-
ally increasing through new media and content distribution meth-
ods. As a result, there is a growing need to automatically catego-
rize and annotate the large amount of data. This allows the user to
locate music that fits his or her personal preferences. It’s now com-
mon sense that semantically meaningful descriptions (e.g. genre,
tempo and musical key) of audio content are a suitable means to
achieve that goal.

Therefore, active research has been conducted in the field of
Music Information Retrieval (MIR) during recent years. Discrim-
ination between vocal and non-vocal parts of popular music has
been identified as an importand base technology for further high-
level analysis. This information can be used for example in artist
identification [1] and singing language recognition [2]. It has fur-
thermore much relevance in lyrics synchronization [3]. One of the
early approaches of vocal/non-vocal detection in popular music
has been derived from speech/music discrimination and introduced
by Berenzweig and Ellis [4]. They performed experiments using
several low-level descriptors and Hidden Markov Models (HMM)
for discriminating between two classes of a previously annotated
and trained database. The reported results vary between 55,2%
and 81,2%, depending on the utilized features. Tzanetakis [5] per-
formed experiments with different low-level features and a multi-
tude of classifiers. The reported results range between 61% and
75%. Maddage et al. [6] introduced an approach for vocal/non-
vocal detection without a previously trained classifier. They per-
formed a Fourier transform on the subbands of the spectrum of the
signal. Thereafter they decided if the signal is music or vocal based

on simple thresholding. They reported an accuracy of 84%. Unfor-
tunately all these approaches are not directly comparable, because
all publications are based on a different test set, varying in musical
content and size.

One of the base approaches that is relatively straightforward
to implement uses Mel-Frequency Cepstral Coefficients (MFCCs)
and a Gaussian Mixture Model (GMM) classifier. This technique
has been used in artist detection, singing language detection and
lyrics synchronization [1], [2], [3] and it exhibits performance
comparable to more complex systems.

With the combination of MFCCs and GMMs one often en-
counters rapidly alternating output, that is semantically meaning-
less for the target application. Therefore, a smoothing function for
decimation of outliers has been introduced in [7], where Tsai et
al. accumulated the log likelihoods of single frames over a certain
time span in order to achieve more reliable results. Thus, we de-
cided to pursue this approach and concentrate on postprocessing of
intermediate classification results. We identified that the instability
in classifying depends on factors like model quality, generality of
training data and complexity of test material. Since the influence
of the above mentioned factors can only be reduced to a certain
extent we investigated into finding a suitable smoothing algorithm.
This paper introduces a novel method for deriving a bounded de-
cision function and appropriate smoothing with an Autoregressive
Moving Average (ARMA) filter [8].

The structure of the paper is organized as follows. The next
two chapters describe feature vector extraction and GMMs. Sec-
tion 4 presents our decision function, the subsequent ARMA filter-
ing and additional smoothing. Thereafter the audio data set used
in the evaluation is described. Section 6 depicts the details of the
experiment and the corresponding results. Finally section 7 con-
cludes this work and provides some perspectives for future direc-
tions.

2. FEATURE VECTOR EXTRACTION

From the multitude of features that have been suggested for MIR
applications we have chosen to utilize MFCCs. MFCCs and derivates
have found multiple successful applications in the field of speech
recognition and speaker identification and has proved to be well-
suited for MIR, for example in singer and artist identification [1],
[2], [3]. The term cepstral originates from fundamental research
of Bogert [9]. The main point is the implicit decomposition of a
periodic signal into excitation and filter. The most straightforward
way to compute MFCC is the summation of FFT bins weighted
by the Mel-Filterbank passbands, taking the natural logarithm and
subsequent discrete cosine transform.

The coefficients computed by that method can be thought of as
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weighting factors for different periodic characteristics in the log-
arithmic distribution of energy in the Mel-bands. The very first
coefficient equals the overall energy and should be omitted for
classification purposes to be prone against different amplification
factors. The succeeding coefficients represent a more detailed de-
scription of the energy distribution in Mel-bands. Therefore, the
number of coefficients is limited to D in order to generalize the
properties of the current audio frame whilst omitting subtile dy-
namic aspects. Furthermore, the implicit orthogonality of MFCCs
simplifies the theoretical background of statistical modeling.

3. GAUSSIAN MIXTURE MODELS

Our main interest is targeted towards discrimination of the two
classes: music and music plus singing voice (further denoted as
MUS and VOX respectively). For each of the above mentioned
classes one particular Gaussian mixture model represents the dis-
tribution of the raw data in D-dimensional feature space as linear
combination of several D-dimensional Gaussian probability den-
sity functions (PDF). These two Gaussian mixture models are fur-
ther denoted as MUS GMM and VOX GMM. The parameters of
the component densities are estimated with the well-known ex-
pectation maximization (EM) algorithm [10] [11]. The linearly
weighted combination of Gaussian basis functions is expected to
generalize the collected features forming smooth approximations
of their arbitrarily shaped PDFs. Equation 1 gives the definition
of a GMM defined as a weighted sum of M component PDFs ac-
cording to [12]

p(x|λ) =

MX
i=1

pigi(x) (1)

where gi(x), i = 1, ..., M represent the component PDFs, x is a
D-dimensional observed feature vector and pi the individual mix-
ture weights or priors. Each component is defined as a D-variate
Gaussian PDF

g(x) =
1

(2π)D/2|Σ|1/2
exp


−1

2
(x− µ)T Σ−1(x− µ)

ff
(2)

with empirically estimated mean vector µ and covariance matrix
Σ. This way, a particular mixture PDF is completely parameter-
ized by the tuple λi = {pi, µi,Σi}. The training process is con-
stituted by the maximum likelihood (ML) estimation of the model
parameters that maximize the likelihood of the GMM given the
training data consisting of feature vectors for one class. The ML
optimization is actually carried out by the expectation maximiza-
tion (EM) algorithm, iteratively refining the initial estimation of
parameters [12].

The initial estimation of parameters is computed per model
by choosing an appropriate M and partitioning the classes in fea-
ture space using k-means clustering. The preceding clustering step
guarantees convergence to invariant ML estimates and is therefore
favoured in contrast to random model initialisation.

4. DECISION FUNCTION

The usage of VOX GMM and MUS GMM allows us to calcu-
late likelihoods of both models for every input frame of data. Let
L(λv|x) and L(x|λm) denote the likelihoods of feature vector x,
to belong to VOX and MUS classes respectively.

In previous works [7], a decision function was derived as a
simple difference between log-likelihood values for VOX and MUS
classes as given in equation (3).

f1(x) = log(L(λv|x)) − log(L(λm|x)) (3)

If the value of the decision function is above the theoretical thresh-
old of 0 then the corresponding frame is considered to belong to
the VOX class while values below 0 indicate MUS class.

In this work we propose a novel approach for computing a
decision function as given in equation (4).

f2(x) =
L(λv|x)

L(λv|x) + L(λm|x)
− 0.5 (4)

The theoretical threshold of the proposed decision function f2(x)
is also arranged to 0. It should be noted that whithout further post-
processing both decision functions essentially produce the same
results, when it comes to a binary threshold based decision (i.e.
indicate if L(λv|x) is higher than L(λm|x)). Since both decision
functions exhibit a very noisy slope, they are not directly suited
for utilization in real-world applications. It is not beneficial to
make a decision for audio excerpts that are too short to provide
semantically meaningfull interpretations. Therefore, the decision
functions need an additional smoothing and/or filtering.

Due to the complexity inherent to training two GMMs cov-
ering the entire body of real-world music, the absolute values of
L(λv|x) and L(λm|x) tend to be relatively small. Moreover, ab-
solute values of likelihoods for MUS and VOX parts even within a
particular song may exhibit significant differences.

The statistical properties of the above mentioned decision func-
tions have been examined in-depth in order to benefit from their
peculiarities. We investigated the PDFs of the values returned
by each of the desicion functions separately for MUS and VOX
classes of input data. Since manually segmented songs from our
audio data test set (see section 5) were available, we had the pos-
sibility to split the set of observed input feature vectors x in two
subclasses: VOX and MUS frames contained in the song. For each
of these subclasses the PDFs of the decision functions were esti-
mated. Exemplary results for a representative song are shown in
Figure 1. It can clearly be seen that although the experimental re-
sults for both decision functions proved the liability of the theoret-
ical threshold, the PDFs do exhibit distinct properties. In the upper
plot (results for f1(x)), the overlapping region of the PDFs covers
a large amount of observations. Thus, even small changes of the
thresholding could have significant impact on the classification re-
sults. In contrast, the lower plot (f2(x)) depicts overlapping in less
critical regions. A well-established technique to improve correct
classification rate is defining a so-called uncertain zone around the
threshold. One can see that for the decision function f1(x) it will
yield a high amount of uncertain frames. In addition, the borders
of uncertain zone for f2(x) must be given in absolute values which
tend to vary depending on the song.

Moreover, our experiments proved that the decision function
f2(x) is the most suitable for filtering and smoothing. It is ranged
between −0.5 and 0.5, and it is symmetrical around the threshold.
As it will be shown below, f2(x) can be successfully filtered using
ARMA filtering [8].

4.1. Autoregressive Moving Average Filtering

As singing voice generally tends to be continuous for multiple con-
secutive frames, we assumed that the instantaneous value of deci-
sion function of frame i is partly determined by k previous frames,
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Figure 1: Comparison of PDFs of the decision functions for a rep-
resentative song. The solid line in both plots corresponds to MUS
frames of the song, and the dashed line corresponds to VOX frames
of the song. The upper plot shows the PDFs recieved for f1(x) and
the lower plot shows the PDFs recieved for the decision function
f2(x).

i.e. it can be interpreted as autoregressive (AR) process. In addi-
tion, smoothing of the decision function for removing short term
outliers can be efficiently performed by means of moving aver-
age (MA) processing. The combination of the above mentioned
post-processing steps can be interpreted as an ARMA(p,q) pro-
cess. This process can be approximated by a rational transfer func-
tion [13] given by the linear difference equation:

xi =

qX
l=1

blni−l −
pX

k=0

akxi−k. (5)

The system transfer function H(z) between the input (ni) and the
output (xn) for the described ARMA process is the rational func-
tion H(z) = B(z)/A(z), where A(z) and B(z) represent the
z-transforms of the AR and MA branches respectively. We cal-
culate the coefficients bl and ak of the ARMA filter via Prony’s
method [13], [14]. Prony’s method is an algorithm for finding an
IIR filter with a prescribed time domain impulse response. This
filter can recover the coefficients bl and ak exactly if the data se-
quence is truly an ARMA process of the correct order. The order of
the ARMA filter was determined experimentally. The best results
were received for p = q = 10. An examplary result of ARMA fil-
tering applied to the decision function f2(x) is shown in the lower
plot of Figure 2. In that plot, additional smoothing via convolution
with a Hamming window was applied.

5. AUDIO DATA TEST SET

To assess the performance of the proposed method, we had to de-
fine a proper evaluation test bed. Due to the fact that there exists
no well established database for that particular task, we decided to
set up a proprietary test set by ourselves. Our test database con-
sists of 84 PCM WAV-files. All files are downsampled to 16 bit,
22050 kHz, mono. The database contains 10 singers: 5 male and
5 female (see Table 1). The songs of every singer were randomly
separated into training set (38 songs, 3-5 songs for every singer)
and test set (46 songs, 4-5 songs for every singer). Every record

Figure 2: The upper plot shows decision function f2(x) for an ex-
emplary excerpt of a representative song. The lower plot depicts
the decision function g(x) after ARMA filtering and smoothing.
For comparison, the dashed function represents the manual seg-
mentation for this audio excerpt.

in the database was manually labeled with regard to instrumental
and vocal parts using the open source tool Wavesurfer. The total
duration of the training set is 5815.47 sec, which equals more than
1.5 hours of music. The total duration of the test set is about 3000
sec, or 50 minutes, whereas only 1 minute excerpts of every song
were considered (from 20 sec to 80 sec).

Male Singers Female Singers
Brian Adams Barbara Streisand

Eros Ramazotti Anna Netrebko
Frank Sinatra Nelly Furtado

Ozzi Osbourne Anne Clark
Sting LeAnn Rimes

Table 1: Singers in the Database

6. EVALUATION AND RESULTS

At the stage of feature extraction we used D = 13 Mel-frequency
coefficients computed with 30 ms framesize and 10 ms hopsize. As
our system is considered to constitute a front-end for further singer
identification and lyrics alignment, we focussed on minimizing the
error in identification of MUS frames, thus errors for VOX frames
were considered to be less critical. For that reason, the number
of mixtures for MUS GMM was set to 20, and the number of mix-
tures for VOX GMM was 13. These optimum parameters had been
identified experimentally, the search was performed in an interval
from 4 to 52 mixtures per model. The covariance matrices Σ were
assumed as diagonal, considering the fact that they describe uncor-
related MFCCs.

The criterion F used to describe the classification rate has
been defined as the harmonic mean (8) of V (6) and M (7).

V =
number of voice frames detected correctly

total number of voice frames
(6)
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Figure 3: Correct detection rates for all 46 songs of the test set.
Dotted line corresponds to F = 0.75. Triangles represent base-
line classification results without post-processing. Circles depict
classification results achieved with the proposed method.

M =
number of music frames detected correctly

total number of music frames
(7)

F =
2V M

V + M
(8)

Figure 3 shows the achieved results for each of the 46 songs
of the test set with and without post-processing. Application of
the proposed approach resulted in an average increase of the F -
score from 72,7% to 81,3%. With our approach, the average re-
sult for MUS class is 90,5% while the average result for VOX
class is 75,0%. Classification performance can be observed to in-
crease significantly for the VOX class. This is due to fact that
the VOX GMM contains less mixtures than its counterpart. So
the possibility of spurious thresholding becomes higher in the raw
unsmoothed detection function. As we mentioned before, the mis-
takes in the MUS class are considered more critical and therefore
the outcomes correspond to our target. Besides relatively high
correct detection rate, the usage of the suggested approach allows
to retrieve semantically meaningful consecutive song segments of
MUS and VOX. These can be effectively used for further applica-
tions e.g. lyrics alignment.

7. CONCLUSION

This paper described our approach towards automatic detection of
singing parts in popular music. We used the well established meth-
ods of combining MFCCs and GMMs as a front-end. We showed
that comparably straightforward methods of post-processing pro-
duce significant increase in classification results. Moreover, the
application of the proposed decision function in conjunction with
subsequent ARMA filtering explicitly enhances the perceptual qual-
ity of the achievable song segmentation. The properties of the
described decision function can presumably be exploited in sys-
tems using further audio features and additional classification tech-
niques such as HMMs, Support Vector Machines or Neural Net-
works. The information that can be derived from statistical analy-
sis of the decision function allows for additional refinement stage

based on heuristics. In addition, the filtered and smoothed decision
function carries valuable information that can be interpreted in a
semantically meaningful manner. For instance, its local minima
indicate borders of phrases apparent while singing. These pecu-
liarities will be studied more in-depth in future work.
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ABSTRACT

In this paper we propose a digital simulation of an analog am-
plifier circuit based on a grounded-cathode amplifier with para-
metric tube model. The time-domain solution enables the online
valve model substitution and zero-latency changes in polarization
parameters. The implementation also allows the user to match var-
ious types of tube processing features.

1. INTRODUCTION

Valves are today mainly limited to musical analog processors such
as stomp boxes, equalizers, dynamic processors, power amplifiers,
etc. As a matter of fact they are physically used in commercial de-
vices because their performance and sound are generally quite dif-
ficult to match with digital processing systems [1]. Although in re-
cent years digital processors have gained more and more respect in
this field, musicians are still reluctant to give up the “warmth” and
the “added dirt” that make the tube sound so characteristic. Our
DSP solution for digital digital tube simulation in ground cathode
configuration is based on Koren’s phenomenological tube model
[2], which has the ability to match different harmonic distributions
and dynamic behavior. This solution was chosen over other triode
tube models for its flexibility and its intuitive parametrization.

The common cathode circuit was analyzed and split between
polarization circuit and small signal circuit even if the solution is
calculated on the large signal. In fact, the tube has a “built-in feed-
back”, as a large signal on the grid affects the gain of the circuit:
the tube polarization that sets the desired voltage gain is, in fact,
affected by the same amplified input signal that is present on the
plate. More recently a real-time wave digital solution was pre-
sented [3], which discusses a different time-domain technique to
solve the same problem.

In this paper we discuss the reference analog circuit, the polar-
ization and the small signal solution, and how they are combined
with the nonlinear resistance. After examining the dynamic prop-
erties of the stage, we finally present the adopted solution.

2. GROUNDED CATHODE TUBE AMPLIFIER

The circuit consists of three voltage generators: V1 is the DC
power supply, V2 is the AC or DC heater supply used for warming
the tube up, Vin is the input signal. The 12AX7 tube polarization
is set by three resistances: R1 is the anode resistor, R2 is the cath-
ode resistor, R3 is the load resistor. Vin is directly connected to the
grid. While increasing the grid voltage, the current in the tube that
flows from the anode (plate) to the cathode increases, which means

Grid

Plate

HeaterCathode

Figure 1: Simplified grounded cathode triode amplifier schematic.

that the voltage on R1 increases as well. As V1 is fixed, the voltage
on R3 decreases, and so does the corresponding current (which is
small compared to R3 polarization current). The situation when
we decrease the grid voltage is completely dual, except for the fact
that the relationship between grid voltage and plate current is non
linear.

3. PHENOMENOLOGICAL VALVE MODEL

According to [4], there are three aspects to consider in modeling
and simulating the nonlinear behavior of valves:

• the stage is expected to work at audio frequency, therefore
secondary effects such as Miller capacity are less than rele-
vant;

• the heater does not need to be included in the model as it is
independent from the grid, plate and cathode signals;

• the model is expected to be as general as possible, so that
different tube models can be accommodated within its pa-
rameter space.

The tube input (grid) will be here considered as an ideal volt-
age reader (infinite impedance port), which means that the polar-
ization can be passed to the model as a parameter. Any voltage
offsets, due to the fact that a small current is flowing into the grid
(which has a finite impedance) will be compensated by another
parameter. It is thus quite reasonable to model only the nonlinear
current generator in the output section. This allows us to focus our
attention on the dynamic plate-cathode resistor. The phenomeno-
logical model turns out to be particularly well-suited for describing
the real nonlinear function of the triode and for matching different
types of tube models.
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3.1. Koren’s Triode Model

Koren [2] proposes a phenomenological model that is very close
to the expected triode behavior on a wide range of plate currents
and voltage values. This model is based on the triode 3/2 power
law and it consists in the two following equations:

E1 =
Vpk

Kp
· log

(
1 + exp

(
Kp · ( 1

µ
+

Vgk + Vct√
Kvb + V 2

pk

)
))

, (1)

Ip =
EEx

1

Kg1
· (1 + sgn(E1)

)
, (2)

where Vpk is the plate cathode voltage, Vgk is the grid cathode
voltage and Ip is the plate current. An extensive description of the
model and of its parameters µ, Kg1, Ex, Kp, Vct, Kvb can be
found in [5] and [6]. Vct is the contact potential between grid and
cathode, which can be seen as an offset on the grid voltage:

V ′
gk = Vct + Vgk, (3)

Eq. (3) enables a more accurate matching of the plate I-V charac-
teristic, with the result of improving the accuracy of the parametriza-
tion. Ex and Kg1 can be optimized to obtain a good matching
with the experimental data for low grid voltage. Kp models the
behavior for large negative grid values while Kvb is related to the
location of the “knee” of the plate curve.

TUBE µ Kg1 Kp Kvb Vct Ex
12AX7 100.8 1890 828 72 0.612 1.4979
ECC88 32.92 155.625 225 4492 0.248 1.204
300B 3.99 2715 51 3.9375 2.16 1.526

Table 1: Parameters of different tubes.

4. CIRCUIT CONSIDERATIONS AND SOLUTION

The system is modeled in a rather traditional fashion: the circuit is
split into a linear polarization circuit and a small-signal nonlinear
circuit.

4.1. Polarization Circuit

The plate current Ip is computed with a fixed Ep (linearization
around the selected working point). There are four resistors: the
anode resistor Ra, the cathode resistor Rk, the load resistor Rl,
and the static plate-cathode estimated resistance. Ra, Rk, Vaa and
Ep are user-controlled parameters. Rl exists if:

Vaa < Ep + Ip · (Rk + Ra). (4)

Rl and R can be computed as in eqs. (5) and (6):

R =
Ep

Ip
, (5)

Rl =
Ep + Ip · Rk

Vaa−Ep+Ip·Rk

Ra
− Ip

, (6)

which preserves the validity of eqs. (1), (2). This circuit is rather
flexible, as it computes the adapted load on a desired polarization
and decouples input from output. The input port is an ideal voltage
reader, with a bias that sets the desired working point of the triode.
Other currents are computed with current partitioning resistor-sets.

Ra

R=Ep/Ip

Rk

Rl

Vaa

Figure 2: Polarization circuit schematic.

4.2. Small-Signal Circuit

The small-signal circuit in Fig. 3 is composed of three static resis-
tors, a non linear resistor, and an ideal nonlinear voltage-controlled
current generator. Ra, Rk and Rl are the same as those of the po-
larization circuit, while ip and r must be considered in a different
way. Notice that Koren’s model is a large signal model therefore
every current computation is based on the sum of small signal and
a polarization voltage.

Ra

r[NL]

Rk

Rl

ip[NL]

irl

ira

irk

ir

Figure 3: Small-signal circuit schematic. Orientation of currents
for a negative input, vg < 0

The current generator injects a negative current into the circuit
when a positive voltage vg is applied to the grid. The tube gain is
defined by the model parameters but also by the voltage between
anode and cathode Up and by the large-signal voltage that drives
the grid Ug . The current is split in the node on the right of the
generator by a current divider: ir controlled by ip is the small-
signal current in the dynamic resistor between anode and cathode.
As a consequence we have

ir = ir
(
ip, r(ip)

)
, (7)

vp = ir · r = ir
(
ip, r(ip)

) · r(ip), (8)

where vp is the small-signal contribution to the plate polarization.
The current divider equations allow us to compute all voltages in
the circuit.

4.3. Non Linear Dynamic Resistor

On the basis of experimental data taken from a 12AX7 tube datasheet
we found that with a plate cathode voltage of 250V and plate cur-
rent of 1.2mA the plate resistance is close to 210kΩ: this value is
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quite different from the 62.5kΩ that appears on the datasheet.

r = a · exp(b · Jp) + c · exp(d · Jp) (9)

Using a suitable model and curve fitting it is possible to compute
the dynamic resistance as a function of the plate’s large signal Jp.

coefficient estimated value 95% confidence interval
a 3.268 · 105 (3.164 · 105, 3.373 · 105)
b −5238 (−5347,−5129)
c 9.174 · 104 (9.078 · 105, 9.27 · 105)
d −315.3 (−322.7,−307.9)

Table 2: Values that model the nonlinear current variable plate
resistance of a 12AX7 tube with 250V on the plate.

4.4. Large-Signal Operation

Large signals are computed with the sign convention that current
is positive flowing top to bottom in Fig. 3. Eqs. (1) and (2) can be
used for computing Jp as a function of Ug and Up.

Up = Ep + vp, (10)

With a fixed grid voltage large signal value Ug we have

Up = Up(ip, r) = Up

(
ip(Up), r

(
ip(Up)

))
. (11)

Eq. (9) will use Jp as variable which is the maximum current
which flows in the tube. With reference to eqs. (1) and (2) it is
possible to notice a certain asymmetry with respect to the working
point.

ip
(
Up, vg

)
>

∣∣ip(
Up, v′g

)∣∣ ∀vg > 0,∀v′g < 0, (12)

ir is computed by a current divider between ip and r to simulate
an approximation of the nonlinear behavior of r in parallel con-
figuration with a voltage-controlled current generator. We found
that a small-signal voltage vp between plate and cathode was large
enough to affect Ep, which plays a significant role in the built-in
tube compression.

4.5. Working Conditions

One of the aspects that make the valve behavior musically inter-
esting is their “gentle” dynamic compression. The input signal is
transferred to the output with a modified amplitude ratio: small
voltages are more amplified than big values and, taking this to the
extreme, signal may be affected first by soft clipping and then by
hard clipping when the load reaches the voltage imposed by the
power supply. Unlike what expected from a “smooth" sounding
device, even triode amplifiers are capable of hard clippings [7].

With the current signs of Fig. 3 a negative input enables a
larger current flow than a zero input because of the contribution of
ir · r to the plate voltage, which increases the tube gain. The input
signal turns out to be more expanded until the magnitude of the
negative input becomes large enough. On the other hand reduc-
ing the input too much blocks the flow of currents. Soft clipping
depends on the shapes of the tube transfer function, as negative
inputs are subject to gain expansion and then gradually to heavier
compression.
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Figure 4: Cyclic behavior of transfer function’s working condi-
tions, caused by a 2V sine wave input

As far as compression is concerned, it is useful to think of cur-
rents in Fig. 3 with inverted signs, which allows us to deal with
positive signal with respect to grid polarization. Voltage contri-
bution ir · r is negative and is lowering the plate cathode voltage
giving rise to gain reduction. If the input value gets too high (when
irk gets equal to the polarization current flowing in Rk), the sys-
tem starts saturating until the large-signal voltage on Ra goes to
zero and the system begins hard clipping the output to a voltage
value that is fixed by the power supply.

5. NUMERICAL SOLUTION

The algorithm consists basically of two parts: polarization and
small-signal output computation. First the following polarization
variables are set: Eg , Ep, Ra, Rk and Vaa. On the basis of these
parameters plate current Ip

(
Eg, Ep

)
, static resistance R and dy-

namic resistance for null input r0(Ip) are computed. Then the load
resistor Rl

(
Ep, Ip, Ra, Rk

)
(if it exists with the desired values) is

computed with an imposed plate cathode voltage. In the small-
signal solution the voltage grid input is updated:

Ug = Eg +
vg

C
, (13)

where C is a scaling factor. The plate polarization Ep is updated
with the small-signal voltage contribution of the previous sample:
this will be clearer with eq. (17). Large signal Jp

(
Ug, Up

)
is com-

puted by using the plate polarization state of the previous sample.

Up(n) = Ep + vp(n − 1), (14)

This voltage influences the gain of the stage, therefore the dynamic
resistor for that plate current is computed. The saturation takes
place when the small signal ip cancels the large signal on Rk and
then on Ra. In both cases the growth of |ip| is stopped and a zero
voltage ends up being forced on both resistors: these conditions
depend on polarization currents. If ip turns out to be saturated,
the large signal JpS and the dynamic resistor r1S(JpS) are re-
computed. A good estimation of plate current and dynamic resis-
tance based on that polarization are determined. A new estimated
current ir(ip) can be obtained from the value of Jp computed in
the previous step. In fact, ir multiplied by r1 or r1S returns a good
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estimation of the plate polarization.

Up1(n) = Ep + ir(n) · r1(n) (15)

= Ep + ir

(
ip

(
vg(n), vp(n − 1)

)
, r1(n)

)
· r1

(
Jp(n)

)
.

The value of Up1 is kept as a safe estimate of the tube’s gain while
a new “final" estimation of both plate current JpX (Ug, Up1) and
dynamic resistance r2(JpX ) are computed. Through a new eval-
uation of the working conditions we can find whether the tube is
saturating and fix the current at ipXS and the dynamic resistor at
r2S(ipXS). With the second estimation of the plate current it is
possible to calculate the output voltage:

vout = Vaa − Ura − Irl · Rl. (16)

As a final step, the plate polarization based on JpX is sent to the
next sample

vpF (n) = vp(n + 1) = r2(ipX ) · ir(ipX , r2). (17)

The plate’s small signal contribution is recursively used for the
computation of the next sample.

6. RESULTS

Building a digital model of an analog circuits enables to have dif-
ferent dynamic and frequency response even from the same tube,
or better, from the same nonlinearity. The filter is working at
192kHz to avoid aliasing problems.
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Figure 5: 12AX7 soft driven with 5kHz sine input
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Figure 6: 12AX7 hard driven with 5kHz sine input

In Fig. 5 input gain and Ra are smaller than in Figure 6 but the
tube is the same. The aliased components are slightly greater than
in [3] but this stage implements hardclipping. Different effects
can be produced by reducing the power supply voltage as output
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Figure 7: 12AX7 output for 1kHz sinewave input: voltage ranges
from 0.25V to 1.5V in 0.25V steps. (a) hard clipping routine dis-
abled, (b) hard clipping routine enabled

waveform is pushed down in the negative half because amplifier
dynamic is reduced. By changing the working point, Eg and Ep,
the model produces different distributions of harmonics.

Fig. 7 shows a comparison with the stage distortion in [3]. The
aliasing is still acceptable even when causing the stage to go into
hard clipping. Reducing the sampling rate at 44.1kHz allows only
soft clip operation with an acceptable 15dB signal degradation:
hardclipping involves harsh sounding alias. The adopted model
does not account for capacitive behavior and grid input model.

A correct parametrization for large positive grid voltage is yet
to be found. Real-time parameter adjustments would improve the
performance and the ease of use.

7. CONCLUSIONS

We proposed a versatile nonlinear processing stage for tube sim-
ulation that allows the user to account for a variety of distortions,
from mild even harmonics to heavier odd harmonics. A specific
class of tube models was tested and proved to provide a dynamic
spectral response.
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ABSTRACT

Query by example for multimedia signals aims at automatic re-
trieval of samples from the media database similar to a user-
provided example. This paper proposes a similarity measure for
query by example of audio signals. The method first represents
audio signals using perceptual audio coding and second estimates
the similarity of two signals from the advantage gained by com-
pressing the files together in comparison to compressing them in-
dividually. Signals which benefit most from compressing together
are considered similar. The low bit rate perceptual audio coding
preprocessing effectively retains perceptually important features
while quantizing the signals so that identical codewords appear,
allowing further inter-signal compression. The advantage of the
proposed similarity measure is that it is parameter-free, thus it is
easy to apply in wide range of tasks. Furthermore, users’ expec-
tations do not affect the results like they do in parameter-laden
algorithms. A comparison was made against the other query by
example methods and simulation results reveal that the proposed
method gives competitive results against the other methods.

1. INTRODUCTION

The management of ever growing multimedia databases is very
time consuming when done completely manually. This is why au-
tomatic systems are required to lighten the job. Query by example
aims at automatical retrieval of samples from a database, which
are similar to a user-provided example. For example, a user gives
an example of a dog barking and the system returns all the samples
from the database which contain dog barking.

The concept of similarity itself is very problematic. Measur-
ing similarity of audio samples without annotations is very diffi-
cult comparing to a text-based search, since the similarity in signal
level does not correlate to human’s impression of similarity. For
example in the situation when there is an example of male speech,
it is impossible to know whether the user wants samples from the
same speaker, or about the same topic.

Most of the existing audio query by example systems approach
the problem as follows. first, features from the example signal and
from the database signals are extracted. Second, the distance be-
tween the example signal and each database signal is estimated.
Finally, the samples which have the shortest distance to the exam-
ple are retrieved.

Pampalk estimated a Gaussian mixture model (GMM) for the
example and estimated the similarity by the likelihood that the
database sample was generated by this model [1]. Mandel and El-
lis [2] calculated the mean of each feature over the whole sample

and used the Mahalanobis distance between the samples as a sim-
ilarity measure. They also used the Kullback-Leibler divergence
between two GMMs to estimate the similarity.

Helén and Lahti [3] used a histogram based method, which
generated feature histograms for each signal, and calculated the
distances between these histograms. They also used a method,
which generates hidden Markov model (HMM) for each sample
and also a universal background model using the whole database.
Then they estimate whether it is more likely for the database signal
to be generated by the example HMM or the background model.
Helén and Virtanen proposed a method for estimating similarity
by calculating the Euclidean distance between two GMMs of the
features [4].

When measuring the similarity between two samples, param-
eters like the feature set have to be decided a priori. The choice
of these parameters is crucial for the results and choosing the right
parameters requires a lot of knowledge about the specific task. As
a consequence, algorithm developer’s expectations and presump-
tions have an effect on the results. It would be profitable to have a
similarity metric that is not dependent on the user.

The proposed method utilizes low bit rate audio coding, which
retains the perceptually most relevant information of the signal.
The similarity of two samples is estimated using compression
based similarity measure. The proposed method does not require
setting of any parameters and it is especially practical in applica-
tions where there is very little knowledge about the contents of the
database beforehand.

The paper is organized as follows. Section 2 describes the
overview of the system, Section 3 describes the signal representa-
tion, Section 4 presents the compression based similarity metric.
Section 5 gives experimental results and comparisons to the other
methods and finally Section 6 is for conclusions.

2. SYSTEM OVERVIEW

The overview of the system is illustrated in Fig. 1. First, percep-
tual audio coding (MP3, AAC etc) is applied to the original audio
files. Second, the coded signals are compressed alone using some
lossless compression method (gzip,bzip etc.). Third, the files are
concatenated into a single file and compressed together using the
same compression method. Finally, similarity is calculated by es-
timating the benefit achieved by compressing the files together.

When the similarity estimates are received, there are two
application-dependent main possibilities how to return the results
to the user. The first, referred as k-nearest neighbor query (k-NN)
[5], is to sort the signals in order of the similarity and retrieve a
fixed number of most similar samples to the user. A drawback is
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Figure 1: Overview of the similarity estimation.

that there is a possibility that some of the received samples are
very different from the example, since a fixed number of samples
is retrieved. Furthermore, the whole database have to be queried
before the results can be presented.

The other possibility is to set a threshold, and retrieve all the
samples that are closer than the threshold. This method is referred
as ε-range query [5]. All samples inside the ε neighborhood of
the query sample are retrieved. This way all the retrieved sam-
ples should be relatively similar to the example and similar sam-
ples may already be returned to the user during the query. The
disadvantage of this method is that adjusting the threshold may
not be straightforward and it might require user feedback or go-
ing through the whole database. In this study both methods are
considered.

3. SIGNAL REPRESENTATION

The compression-based similarity measure requires a representa-
tion, where similar signals contain identical parts. A digital PCM
signals are therefore too precise for this purpose. Perceptual audio
coding provides a representation, where perceptually most impor-
tant characteristics of a signal are retained and the signal is quan-
tized so that identical codewords are present.

3.1. Perceptual audio codecs

Perceptual audio coding aims at representing an audio signal with a
small amount of data while retaining the perceptual quality as close
to the original as possible. Contrary to source coding, generic au-
dio codecs remove the data which is perceptually irrelevant [6, pp.
41-42], thus they are lossy. They achieve compression by utilizing
the properties of the human auditory system, especially the mask-
ing phenomenom. It refers to a situation where a separately au-
dible sound becomes inaudible in the presence of a louder sound.
The phenomenom is strong when the sounds occur simultaneously
and are closely spaced in frequency.

General-purpose perceptual audio codecs are currently widely
used in consumer electronics, for example in digital television, in-
ternet audio, and portable audio devices. The most commonly used
codecs are developed in the standardization framework of Mov-
ing Picture Experts Group (MPEG). They include MPEG-1 Layer
3 (commonly known as MP3) and its successor Advanced Audio
Coding (AAC). The perceptual codecs tested in this system include
MP3 encoder LAME1 and AAC encoder FAAC2.

The basic idea of perceptual audio codecs is to quantize the
input signal so that the quantization noise is inaudible. Since

1http://lame.sourceforge.net/
2http://www.audiocoding.com/

the masking phenomenon can be more easily modeled in time-
frequency domain, codecs calculate a time-frequency representa-
tion using a filter bank or short-time frequency transforms. An
auditory model approximates the masking effect, measures the au-
dibility of the quantization noise, and controls the amount of bits
required to represent the signal. The redundancy of the quantized
codewords can be reduced by entropy coding.

4. SIMILARITY MEASURE

To measure the similarity, we apply a measure developed by Ben-
nett et al., which approximates the information distance between
two sequences by compression [7]. The similarity measure has
been previously used to a wide range of tasks: fetal heart rate trac-
ings [8], classification of books by the author, optical character
recognition, and building an evolutionary tree from mitochondrial
genomes [9]. These studies show that the measure can be used in
a wide range of application areas, and it does not need any spe-
cific knowledge about the task. Accuracy of such parameter-free
algorithm is shown to be superior compared to traditional meth-
ods [10]. The distance used is referred as normalized compression
distance, which is an estimate of normalized information distance.

4.1. Normalized compression distance

The minimum amount of information required to represent given
string x is refered as Kolmogorov complexity. K(x|y) is the con-
ditional Kolmogorov complexity of string x relative to string y
defined as the length of the shortest binary program to compute x
if y is given as an auxiliary input. The minimum amount of infor-
mation required to generate string x from string y and vice versa
is refered as information distance (ID) [7]:

ID(x, y) = max{K(x|y), K(y|x)}. (1)
This distance metric has two major drawbacks. First, it mea-

sures absolute distances meaning that two short random samples
would have the same distance as two, almost similar, long sam-
ples. In order to have relative distance metric, the normalized in-
formation distance (NID) was proposed in [11]:

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)} , (2)

The other drawback is that this distance metric is based on the
notions of Kolmogorov complexities, which are noncomputable.
As a consequence, the approximation of the metric has to be used.
The K(x) and K(y) are approximated here using C(x) and C(y),
which are the sizes of compressed x and y respectively. The sim-
ilarity between two signals is therefore approximated using a nor-
malized compression distance (NCD) [9]:

NCD(x, y) =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)} , (3)

where C(xy) is the compressed size of concatenated x and y.
NCD is the measure of difference, thus larger values stand for more
different signals. The value of NCD is between 0 and 1 + ε, since
the compression techniques are not ideal.

This method can also be seen as parametric method, because
the compression algorithm has to be chosen. However, the objec-
tive is to get the best approximation of the Kolmogorov complex-
ity, therefore the algorithm that provides the best compression ratio
should be chosen.
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5. SIMULATION EXPERIMENTS

The performance of the proposed system was tested against
other query by example methods. The methods were the Eu-
clidean distance between the GMM densities [4], likelihood of
GMMs [1], feature histogram based method [3], KL divergence of
one-component GMMs [2], and Mahalanobis distance of feature
means [2].

All these methods use the following preprocessing: first, sig-
nals are divided into 46 ms frames and second, several features are
extracted from the frames. The feature set used here is the same
as in [3] and [4]: Mel-frequency cepstral coefficients (three first
coefficients), spectral spread, spectral flux, harmonic ratio, maxi-
mum autocorrelation lag, crest factor, noise likeness, crest factor,
total energy, and variance of instantanous power. Before the pro-
cessing, each feature is normalized to have zero mean and unity
variance over the whole database.

Tested audio coding methods were MP3, AAC, and adaptive
multi-rate (AMR). Bitrates between 8-64 kbits/s were tested and
the best ones were chosen to be presented here. In AAC we used
a version which does not apply frame wise Huffman coding to the
signal, because this gave slightly better results than the original
one. The method was also tested directly to wave files without any
perceptual audio codec. Different lossless compression algorithms
were also tested but the results were almost the same for all of
them, the gzip is used in the simulations.

Simulations were carried out using an audio database which
contains 1332 samples with 16 kHz sampling rate. The signals
were manually annotated into 4 main classes and 17 sub classes.
The classes and the number of samples in each class are listed in
Table 1. Samples for the environmental class are taken from CASR
recordings [12]. The subclasses correspond the classes in CASR
(car, restaurant, road). The drum samples are acoustic drum se-
quences used by Paulus and Virtanen [13]. The rest of the music
class are from RWC Music Database [14], acoustic class is from
RWC Jazz Music Database, electroacoustic is from RWC Popu-
lar Music Database, and Symphony is from RWC Classical Mu-
sic Database. Sing mainclass, which contains only monophonic
singing, was taken from Vox database presented in [15]. The
speech samples are from the CMU Arctic speech database [16].

All the samples in our database are 10 seconds long. The
length of speech samples in Arctic database are 2-4 seconds, thus
the samples from each speaker are combined to result in 10-second
samples. Original samples in the other databases are longer than
10 seconds, thus random 10 second clips are cut from those.

5.1. Evaluation procedure

One signal at the time is drawn from the database to serve as a
query signal. This query signal is compared against the other sig-
nals in database in order to find near similar samples. This pro-
cedure is repeated for 10 random signals from each class. Alto-
gether 10(n − 1) ∗ number_of_classes comparisons are per-
formed, where n is the total number of signals in the database.
K-NN search and ε-range query were tested. If the example and
retrieved signal are labelled in the same class, the database signal
is seen as correctly retrieved from the database.

Averages of recall and precision rates of classes are used to
present the results. Recall reveals the portion of similar signals
retrieved from the database:

Main class Sub class
Environmental (231) Inside car (151)

In restaurant (42)
Traffic (38)

Music (620) Acoustic (264)
Drums (56)
Electroacoustic (249)
Symphony (51)

Sing (165) Humming (52)
Singing (60)
Whistling (53)

Speech (316) Speaker1 (50)
Speaker2 (47)
Speaker3 (44)
Speaker4 (40)
Speaker5 (47)
Speaker6 (38)
Speaker7 (50)

Table 1: Classes.

recall(class) =
Nccs

nclass(nclass − 1)
, (4)

where nclass is the number of samples in the class, and Nccs

means the number of correctly retrieved samples from this class.
Precision gives the portion of correctly retrieved samples from

all the retrieved signals:

precision(class) =
Nccs

ND
, (5)

where ND is the total number of samples retrieved from certain
class when the example signal is from this class.

5.2. Results

The results from compression based method using different au-
dio coding algorithms compared to other methods in k-NN search
when k = 20 are presented in Table 2. The results of ε-range
query with different values of ε are illustrated in Figure 2.

The proposed method outperforms the reference methods in
ε-range query with large values of ε. This means it is the most
accurate method when the aim is to retrieve all the similar samples
from the database. In k-NN search using k=20, the results were
also relatively good but slightly lower than with the best feature-
based method.

There were only minor differences between different audio
codecs, AAC resulting in the best average results. Using no au-
dio codec at all gave very poor results. This was expected con-
sidering that compression algorithms require an identical strings
to compress and in wave format already a very small change gen-
erates different codewords. Similar effect can be seen when using
higher bitrates in audio codecs thus the lower bitrates gave the best
results.

6. CONCLUSIONS

In this paper, a novel approach to query by example for audio sig-
nals was presented. First, perceptually important characteristics
of a signal are retained by using a perceptual audio coder. Then
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Coding method Prec. main % Prec. sub %
No codec 29.0 8.7
MP3 8 kbit/s 94.1 68.8
AMR 8 kbit/s 96.5 83.0
AAC 10 kbit/s 96.5 85.5
Mahalanobis distance 97.3 92.6
Likelihood of GMMs 94.0 86.8
Histogram method 85.6 75.4
Euclidean distance of GMMs 97.5 95.7
KL distance of GMMs 97.5 90.8

Table 2: Precision values for main classes and sub classes for
different audio coding methods, and feature based methods with
k-NN search, when k=20. Gzip is used as a compressor.
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Figure 2: ε-range results of different methods with different values
of ε.

coded audiofiles are compressed using standard lossless compres-
sion techniques and similarity is estimated from the compression
ratios of individual files and combined files. The compression-
based similarity metric does not require the setting of any parame-
ters nor does it require any knowledge about the topic at hand.

The compression-based method was tested against the existing
query by example methods. In ε-range query it outperformed the
other methods at high recall rates and also in k-NN query it gave
competitive results. This reveals that considering the simplicity
of the proposed method, it is very practical for many applications.
Especially ones, where there is very little knowledge about the
contents of the database beforehand and thus, choosing the right
features is impossible.
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ABSTRACT 

Reaction tests are typical tests from the field of psychological 
research and communication science in which a test person is 
presented some stimulus like a photo, a sound, or written words. 
The individual has to evaluate the stimulus as fast as possible in a 
predefined manner and has to react by presenting the result of the 
evaluation. This could be by pushing a button in simple reaction 
tests or by saying an answer in verbal reaction tests. The reaction 
time between the onset of the stimulus and the onset of the re-
sponse can be used as a degree of difficulty for performing the 
given evaluation. 

Compared to simple reaction tests verbal reaction tests are 
very powerful since the individual can simply say the answer 
which is the most natural way of answering. The drawback for 
verbal reaction tests is that today the reaction times still have to be 
determined manually. This means that a person has to listen 
through all audio recordings taken during test sessions and mark 
stimuli times and word beginnings one by one which is very time 
consuming and people-intensive. 

To replace the manual evaluation of reaction tests this article 
presents the REACTION (Reaction Time Determination) system 
which can automatically determine the reaction times of a test 
session by analyzing the audio recording of the session. The sys-
tem automatically detects the onsets of stimuli as well as the 
onsets of answers. The recording is furthermore segmented into 
parts each containing one stimulus and the following reaction 
which further facilitates the transcription of the spoken words for a 
semantic evaluation. 

1. INTRODUCTION 

There are three main classes of reaction tests, the plain Reaction 
Time Test, the Stroop Test, and the Association Test, which inves-
tigate different psychological phenomena. The typical setup for 
each of them is that a test person watches a screen on which a 
visual stimulus is presented. To gain the attention of the partici-
pant the stimulus is presented together with an alerting sound like 
a beep. After evaluating the stimulus the participant reacts by 
saying his answer. Simple java examples of non-verbal reaction 
tests can be found on the web [1, 2, 3]. 

In plain Reaction Time Tests the participant does not have to 
make any decisions about the presented stimulus [1]. He just has 
to acknowledge the perception of the stimulus as fast as possible. 
The test simply evaluates the reaction time’s length. An example 
of a Plain Reaction Time Test could be that a red dot appears 
somewhere on the screen at random intervals in time. The partici-
pant has to say the word “dot” every time he discovers it. 

Stroop Tests, named after their inventor, try to create some in-
terference in the test person’s consciousness between trained 
actions and cognitive abilities [2, 4]. Therefore the participant has 
to make a decision about the stimulus which is interfered by some 
opposing property of the stimulus itself. A well known example is 
reading color names (e.g. red, green, blue, etc.) which are printed 
in a different color or vice versa. Another example is naming the 
highest number out of a set of printed numbers with the smaller 
numbers being printed in a much bigger font than the higher 
numbers. 

In Association Tests the test person is presented a picture or a 
word, often a noun (e.g. love, death, pleasure, etc.) on which he 
has to answer a certain emotional association (e.g. good, bad, 
embarrassing etc.) [3, 5]. 

Reaction test sessions are usually recorded on audio or video-
tape to be evaluated afterwards. On the audio track of the re-
cordings the audible alert signals marking new stimuli and the 
answers of the participants are recorded. In this simple setup no 
additional information like time stamps or electronic markers for 
the onsets of new stimuli is recorded. This means that the re-
cording is the only resulting material from the test session. 

The advantages of using this simple setup is that it is very 
portable and investigators only have to take a minimum care of 
technical issues. The playback device usually is a laptop or some-
times a video cassette recorder with a TV-screen. The recording 
device is often an analogue dictating machine placed somewhere 
near the test person. Since until now the tests are manually evalu-
ated afterwards, the poor recording quality is not impairing the 
evaluation as long as all answers can be understood. 

To replace the manual evaluation an automatic evaluation sys-
tem, like the one presented in this article, processes the sessions’ 
recordings as input. It has to detect the recorded alert signals to 
determine the stimuli onsets and the onsets of the recorded an-
swers. The system has to deal with the recording’s poor quality 
like a high ground noise level, crackles, bad leveling and clipping. 

2. PREVIOUS APPROACHES 

The automatic measurement of reaction times in reaction tests 
breaks down into two tasks. One task is detecting the alert sounds’ 
onsets marking the beginning of new stimuli. These onsets are the 
borders of segments, each containing a new stimulus and an an-
swer. The other task is finding the onsets of the answered words. 
Both tasks have to be performed under noisy conditions. 

Although there is actually no system which approaches the 
automatic evaluation of reaction tests directly there are approaches 
which perform tasks similar to the two subtasks mentioned above. 
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Matsunaga et al. have presented a procedure for automatically 
segmenting broadcast news into speech, music and jingles (com-
parable to the given alert signal) and other classes [6]. In a noise 
free environment the detection rate for speech is 95.0 % and the 
detection rate for jingles is 87.7 %. The system has not been tested 
under noisy conditions. 

Kim and Sikora have compared different algorithms for auto-
matically segmenting sounds from different speakers in broadcast 
audio material [7]. The system does not need a priori information 
about the number of speakers and its recognition rate is 93.2 % for 
a scenario comparable to the scenario given in this work but with 
clean speech. Although the presented algorithms work well with 
clean speech the recognition rate drops with noisy environments. 

Dufaux et al. have presented a system for automatic sound de-
tection for noisy environments [8]. It detects impulsive sounds and 
is used for surveillance purposes. Their system has a recognition 
rate of up to 85.1 % for a SNR of 10 dB. The system could be 
useful for finding the alerts marking new segments but for an 
applicable system the recognition rate is still not high enough. 

The work of Spina and Zue on automatic segmentation of gen-
eral audio data [9] focuses on the training of segmentation systems 
which operate on noisy environments. Their work also shows the 
difficulty of trained recognition systems to deal with noise at all. 

Various methods have been proposed for general onset detec-
tion which can also help solving the problem [10]. The recognition 
rates for onsets in a comparable scenario range from 70 % to 90 % 
and the problem of distinguishing between stimuli onsets and 
word onsets in an error prone environment would remain. 

The cited approaches are developed to meet the requirements 
of a general case scenario. Therefore they turned out not to be 
robust enough to be directly applicable. As a result the 
REACTION system uses a different signal processing approach 
custom made for the given reaction test scenario. 

3. THE REACTION SYSTEM 

The user interface of the REACTION system can be seen in fig-
ure 1. The system needs two wave files in pcm-coded format, 

mono or stereo with a minimum sample rate of 8000 Hz as input 
files for processing. One is the session’s recording and the other is 
the short alert signal that marks the onsets of stimuli. 
The process which is performed by REACTION is segmenting the 
session’s recording by searching for the given alert signal so that 
each segment starts with the onset of a new stimulus. Further the 
onset of the test person’s response is detected and the reaction 
time i.e. the time between the segment’s start and the word’s onset 
is determined. REACTION can operate on single sessions’ re-
cordings or in batch mode on several recorded sessions in one or 
more folders. The distinction between single or batch mode is 
done with the radio buttons in the upper right part of the interface. 
In batch mode the user can also set the system to crawl the se-
lected folder recursively by checking the field “Recursive”. 
The program together with a manual and examples can be 
downloaded at our institute’s website [11]. The usage is free for 
research purposes and in non commercial applications. 

4. ALGORITHM 

The two input signals of the system are x(n) which is the session’s 
recording and b(n) which is the alert signal that marks the onsets 
of stimuli with n denoting the sample index. The algorithm’s 
flowchart is shown in figure 2. It is divided in a pre-processing 
stage which operates on x(n) and b(n) and the main process. A part 
of a typical session’s recording can be seen in figure 3. 

4.1. Pre-Processing 

The session’s recording x(n) is first band pass filtered with a 
second order Butterworth filter with cutoff frequencies at 50 Hz 
and 3900 Hz. This eliminates high frequency glitches and DC-

 

Figure 1: REACTION’s graphical user interface showing 
a computed segment together with the word’s onset. 
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Figure 2: Flowchart of the REACTION system showing 
the pre-processing chain (left) and the main processing 
chain (right). Input signals are shifted to the left, output 
signals are shifted to the right. 
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offsets together with other low frequent rumble. After this initial 
filtering the signal is resampled to fs = 8000 Hz for further proc-
essing.  

For the resulting signal xf(n) the short term power px(n) is 
computed with a window size of 25 ms, resulting in N = 200 for 
fs = 8000 Hz: 

 ( ) ∑
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To eliminate ground noise an automatic noise gate is applied to 
the signal. Because of the nature of x(n) most of its samples will 
neither contain speech nor parts of the alert but only the ground 
noise. Therefore a histogram is build to count the occurrences of 
the different values of px(n). The value of of px(n) which occurs 
most often will represent the ground noise level pgn. All samples 
of xf(n) and px(n) will be set to zero if their level is smaller than 
2·pgn resulting in the signals xng(n) and png(n): 
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The signal is further normalized by a modified version of the short 
term power. Therefore the one sided decay envelope v*

png(n) of 
png(n) is computed: 

 ( ) ( ) ( )( )∆⋅−= 1,max ** nvnpnv pngngpng . (4) 

The half value time for the exponential decay envelope is set to 
220 ms, resulting in ∆ = 99.961% for fs = 8000 Hz. The two sided 
decay envelope vpng(n) is gained by applying equation (4) again to 
the reversed signal of v*

png(-n). The output signal xstn(n) and its 
power pstn(n) can be obtained by normalizing xng(n) and png(n) to 
the power envelope as given by the following equations: 

 
( ) ( ) ( )nvnpnp pngngstn /=

, (5) 

 
( ) ( ) ( )nvnxnx pngngstn /=

. (6) 
The pre-processing of the alert signal b(n) to form the signal 
bstn(n) is formed accordingly to the steps described above. Only 
the automatic noise gate can be omitted because the nature of the 
signal is that it has no silent passages. 

After having passed the pre-process stage the signals xstn(n) 
and bstn(n) are band limited, they are eventually noise gated and 
normalized in a way that their short term power is unity for the 
alert passages as well as for the spoken words. Figure 4 shows the 
signal from the example used in figure 4 after being pre-
processed. 

4.2. Main Processing 

The second processing stage is the main process in which the alert 
signal’s onsets and the words’ onsets are determined. Since the 
signals have fixed properties after pre-processing this determina-
tion can be computed in a straight forward process. 

First xstn(n) and bstn(n) are cross correlated to build the correla-
tion signal rxb(n). To get rid of the typical phenomenon of oscilla-
tion of the correlation signal the short term power pr(n) of rxb(n) is 
computed according to equation (1), again using a window size of 
25 ms. 

Since xstn(n) and bstn(n) both are normalized in terms of their 
short term power no dynamic leveling needs to be applied for 
using the correlation’s short term power pr(n) as a trigger to get 
the segment’s onsets. It can directly be compared to a static 
threshold prt. This threshold is automatically determined to be 
15 % of the maximum short term power value pbb(n) of the auto-
correlation rbb(n) from bstn(n). Every local maximum of pr(n) 
marks a new segment as given by the following equations if it lies 
in a set of taps Mj whose according values of pr(n) lie above that 
threshold: 
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Figure 3: Part of a typical input signal x(n). The ground 
noise level together with the bursts being alert sounds or 
spoken words can clearly be seen. 

 

Figure 4: The input signal after being pre-processed. The 
noise is gone and all bursts are normalized. The alert sig-
nals and spoken words can already be visually distin-
guished. The alert signals appear as cubic bursts whereas 
the words have a frayed shape. 

Figure 5: The short term power of the cross correlation 
(top) and the short term power of the pre-processed input 
signal (bottom) together with horizontal dashed lines 
marking the static thresholds for new segments and word’s 
onsets. The detected segment borders and word onsets are 
marked with vertical dotted pins. 
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The signal s(n) which is also an output signal of the whole proc-
ess, has the character of a trigger signal. It is 1 at the beginning of 
new segments and 0 elsewhere. To avoid multiple triggering the 
threshold has to be crossed for at least 10 ms (80 taps for 
fs = 8000 Hz) which avoids triggering by glitches. Furthermore a 
new segment is only indicated if the last one is at least 50 ms gone 
(400 taps for fs = 8000 Hz). 

To find the word’s onsets a slope technique is used. For every 
segment the word’s onset is defined to be the first point in time 
where the normalized short term power pstn(n) of the signal xstn(n) 
reaches 25 % of its maximum, which is exactly 0.25 because of 
the normalization. To avoid triggering by glitches the threshold 
has to be crossed for at least 10 ms (80 taps for fs = 8000 Hz). The 
signal w(n) is derived from the words’ onset times. It is 1 at the 
words’ onsets and 0 elsewhere. Figure 5 shows parts of the signals 
pr(n) and pstn(n) for the example from figure 3 together with the 
generated triggers for segments and words’ onsets. The resulting 
segmentation for the example signal can be seen in figure 6. 

5. EVALUATION 

The system was evaluated with real recordings of a reaction test. 
In this test 240 persons had to respond to 89 stimuli resulting in 
21360 stimuli to be processed. The mean length of each test ses-
sion’s recording was 11.03 seconds and the total length of all 
evaluated recordings was 44:12 hours. The average reaction time 
determined in the tests was 3.30 seconds. The recordings were 
taken with an analogue dictating machine. 

Although the quality of the recordings was quite poor, includ-
ing the earlier mentioned flaws, the performance of the system 
was very good as it is depicted in figure 7. From the 21360 proc-
essed stimuli the REACTION system could segment 21162 seg-
ments (99.1 %) correctly. It has turned out that the system has 
never detected a new segment at a wrong point. Either the seg-
ment’s border is detected correctly or it is missed completely. This 
behavior helps finding falsely segmented stimuli since they double 
the value of the determined (false) reaction time for the preceding 
segment. This marks these falsely segmented stimuli clearly as 
outliers in subsequent evaluations. Furthermore this behavior 
matches with outliers produced by semantic errors, i.e. when a 
person for some reason takes very long to respond to the presented 
stimulus. Therefore errors resulting from false segmentation can 
be ruled out quite easily afterwards. 

From the 21162 correctly detected segments for 20583 words 
(97.3 %) the onset was detected correctly with an allowed toler-
ance of 15 ms. Compared to typical reaction times which are 
several seconds (in this case 3.30 s) the given tolerance is quite 

small. In total the number of correctly detected reaction times was 
20583 (96.4 %). 

6. CONCLUSIONS 

The presented REACTION system can automatically detect reac-
tion times from audio recordings of verbal reaction tests. It is 
indifferent against noise and other signal errors and because of its 
high recognition rate it is directly applicable and robust in every-
day use. 
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Figure 6: The original input signal together with the seg-
ment borders (dashed lines) and the word’s onsets (dotted 
lines). 

Segmentation Rate 99.1 % 
Onset Detection Rate 97.3 % 
Reaction Time Detection Rate 96.4 % 

Figure 7: REACTION’s Detection Rates 
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ABSTRACT

This paper presents an improved method for simulating and modi-
fying the beating effect in piano tones. The beating effect is an au-
dible phenomenon, which is characteristic to the piano, and, hence,
it should be accounted for in realistic piano synthesis. The pro-
posed method, which is independent of the synthesis technique,
contains a cascade of second-order equalizing filters, where each
filter produces the beating effect for a single partial by modulat-
ing the peak gain. Moreover, the method offers a way to control
the beating frequency and the beating depth, and it can be used to
modify the beating envelope in existing tones. The results show
that the proposed method is able to simulate the desired beating
effect.

1. INTRODUCTION

The beating effect is one of the audible characteristics in piano
tones [1]. It occurs due to the coupling of detuned strings. Even if
there is only one string per a key, as in the first keys of the piano,
beating can be present due to false coupling [2]. As the beating
effect is a perceptually important phenomenon, it must be taken
into account in a realistic piano synthesis model.

Various beating effect simulations have been proposed for dig-
ital waveguide synthesis. In the first waveguide models the beat-
ing effect was produced with parallel detuned string models [3, 4].
Bank suggested a resonator-based approach, where a resonator is
tuned close to the frequency of the target partial, which produces
the beating effect due to frequency modulation [5, 6]. In addition,
a multi-rate version of the resonator-based approach has been pro-
posed [7]. In the resonator-based approach, the frequency of the
partial must be known in order to control the beating frequency.
Moreover, the approach does not provide straight-forward control
over the depth of beating. Additionally, Bank and Sujbert have
suggested a method using pitch-shift to produce the beating effect
[8].

Rauhala et al. [9] proposed a beating model, where the beating
effect is, first, simulated by separating the partial from the signal
with a bandpass filter. Then, the partial is modulated with a low-
frequency oscillator (LFO). Finally, the modulated partial is added
to the original signal. This approach does not require exact knowl-
edge of the frequency of the partial and it provides an easy way
to control the depth of the beating. On the other hand, the depth
control is not very accurate due to the mixing of signals (however,
Järveläinen and Karjalainen [10] suggest that the perception of the
depth of the beating is quite poor), and the mixing can produce
some uncontrollable features in the produced sound.

In this paper, an improved beating effect method is proposed
based on [9]. The main idea in this method is to produce the mod-
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Figure 1:An example of the magnitude response of the equalizing
filter (fc=55.0 Hz,fbw=5.5 Hz,fs=44100 Hz,K=5.0 dB) used in
the proposed method. This demonstrates the case where the sec-
ond partial is modified with the method (f0=27.5 Hz). The cross
denotes the magnitude response at the target partial frequency (5.0
dB), while the circles denote the response at the adjacent partial
frequencies (0.04 dB for the first partial and 0.13 dB for the third
partial). The filter’s magnitude in the case where the estimated
partial frequency is biased by±1 % is denoted with diamonds
(4.63 dB for -1.0% bias and 4.64 dB for +1.0% bias).
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Figure 2:Block diagram of the equalizing filter [11].
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Figure 3: (Bottom) An example of the magnitude response of the
equalizing filter (fc=327.0 Hz,fbw=65.4 Hz, fs=44100 Hz) in
time, when peak gainK is modulated (Gb = 5 dB and beating
frequency 1.0 Hz). (Top) The corresponding modulation signal
envelope.

ulation with the equalizing filter by controlling its peak gain. This
results in a simpler structure than in the previous method. More-
over, it offers accurate control over the beating frequency and the
beating depth. Additionally, it can be generalized to produce any
kinds of envelopes for certain partials in an arbitrary audio signal.
Also, the simulation process is accurately controlled since there is
no need to mix signals as in the previous method. In addition, the
method can be used for modifying and even cancelling the beating
effect of certain partials in existing tones.

This paper is organized as follows. The proposed method is
introduced in Section 2. The results from applying it for simu-
lating the beating effect in synthetic tones and for modifying the
partial envelopes of recorded tones are then presented. Finally, the
conclusions are shown in Section 4.

2. PROPOSED METHOD

A second-order equalizing filter, proposed originally by Regalia
and Mitra [11], was chosen to produce the beating effect in the
proposed method, because it provides control over the peak gain
via a single parameter. Moreover, the magnitude response of the
filter is suitable for modifying a single partial, as it can have a
narrow peak at the desired frequency and a flat response elsewhere.
The transfer function of the equalizing filter can be written as [11,
12]

HEQ(z) =
1

2
(1 + K) +

1

2
(1−K)A(z), (1)
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Figure 4: Magnitude responses of the original signal (top) and
the processed signal (middle), which has been modulated with the
equalizing filter (fc=392.4 Hz,fbw=26.2 Hz,fs=44100 Hz,Gb

= 5 dB). The corresponding modulation envelope (bottom) has
been obtained by examining the resulting envelope from a fre-
quency modulated signal containing two sinusoidal components.
The original signal is a synthetic piano tone (keyC2, f0=130.8
Hz) produced with the waveguide piano synthesis model [9].

Input signal
HEQ1(z) HEQ2(z) HEQN(z)...

Output

Modulating
signal #1

Modulating
signal #2

Modulating
signal #N

 

Figure 5: Block diagram of the general structure for modifying
partial envelopes.

HEQ1(z) HEQ2(z) HEQN(z)...
Output

LFO #1 LFO #2 LFO #N

String
model

 

Figure 6:Block diagram of the proposed method applied to beat-
ing effect simulation in piano tones.
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where

A(z) =
a− cos( 2πfc

fs
)(1 + a)z−1 + z−2

1− cos( 2πfc
fs

)(1 + a)z−1 + az−2
, (2)

a =
1− tan(πfbw

fs
)

1 + tan(πfbw
fs

)
, (3)

fc is the center frequency of the peak,fbw is the peak bandwidth,
fs is the sampling frequency, andK is the peak gain. In this
work, fbw is determined as0.2f0, wheref0 is the fundamental
frequency.

Figure 1 shows an example of the filter’s magnitude response.
Since the filter’s effect on the adjacent partials is minimal (around
0.1 dB in this case), it suggests that the filter does not produce au-
dible effects on the adjacent partials. Moreover, the filter is robust
against inaccurate partial frequency estimations, as a 1.0% bias
leads to a peak magnitude of 4.6 dB instead of 5.0 dB in this case.

The filter can be structured such thatK is a single indepen-
dent multiplier as seen in Figure 2. Zölzer [12] showed that the
magnitude response of this filter is slightly asymmetric, which can
be fixed by modifyinga to be dependent onK if K < 1. However,
the asymmetric property of the magnitude response is not audible
as the bandwidth of the peak is very narrow in this case. Hence,
we propose to use Eq. (2) as such in this method.

In this method,K is modulated with a control signal. For
instance, in case of the beating effect,K can be determined as

K(n) = 10
GbyLFO(n)

20 , (4)

wheren is time in samples,Gb is the desired beating depth in
dB, andyLFO is the signal produced with the LFO generator. An
example of the resulting magnitude response of the filter, whenK
is modulated with the LFO, is shown in Figure 3.

It is important to take into account that by modulating filter
coefficientK the filter becomes time-variant. When the modu-
lation signal resembles an envelope, which can be produced with
frequency modulation, the only major effects on the spectrum of
the resulting modulated tone are the two sidelobes that cause the
beating effect, as seen in Figure 4. Moreover, there will be no tran-
sient effects [13, 14], since the structure does not have a feedback
loop after coefficientK.

In order to produce the effect for multiple partials, a cascade of
equalizing filters can be used. The generalized method is shown in
Figure 5, and the method applied for simulation of beating effect
for several harmonics is presented in Figure 6.

3. APPLICATION EXAMPLES AND RESULTS

In this section, the results from applying the proposed method for
simulation of the beating effect for synthetic tones are presented.
It is then shown how the method can be used for modifying partial
envelopes in recorded tones.

3.1. Simulation of the beating effect for synthetic tones

The proposed method was incorporated into the previously pre-
sented waveguide piano model [9]. The piano string model in-
cludes a dispersion filter [15], a loss filter [16], a delay line, and
a fractional delay filter [17] for tuning the fundamental frequency.
In addition, the string model is excited with a parametric excitation
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Figure 7: (Top) The envelope of the 5th partial produced by the
piano synthesis model without the beating method (thick line), and
with the proposed beating method at various parameter values:
Gb = 8 dB and beating frequency 1.5 Hz (solid line),Gb = 5
dB and beating frequency 1.0 Hz (dashed line), andGb = 3 dB
and beating frequency 0.5 Hz (dash-dotted line). The bottom three
panes show the corresponding modulation signal envelopes. The
fundamental frequency is 65.4 Hz (keyC3) and the inharmonicity
coefficient value is1.5× 10−4.

method [18]. In the first test, the beating effect was added to a sin-
gle partial with different beating frequencies and beating depths.
The results, which are shown in Figure 7, suggest that the method
is able to produce the beating effect accurately at various beating
frequencies and beating depths.

Also, the robustness of the simulation method was evaluated
by using inaccurate partial frequencies in the simulation biased by
1 %, 2 %, and 5%. In sound synthesis, partial frequencies can be
estimated accurately if the phase delay response of the dispersion
filter can be calculated. However, if the dispersion filter is con-
trolled in real-time [15], the partial frequency estimations might
be slightly inaccurate. For example, frequency modulation-based
methods are not robust against inaccurate partial frequency esti-
mations, because a bias in the estimation will significantly affect
the beating frequency and the depth of the beating effect. Figure 8
shows that the frequency of the beating effect remains the same in
all cases, whereas the depth of the effect decreases with large bias
values. The beating effect is difficult to detect when the bias is 5
%, but at 2% it can be seen clearly in Figure 8. However, the esti-
mation error is usually below 1% within the bandwidth where the
dispersion phenomenon is perceived [15, 19]. Hence, the proposed
simulation method is suitable for sound synthesis.
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Figure 8:(Top) The envelope of the 5th partial produced by the pi-
ano synthesis model including the beating method, when the par-
tial frequency is biased by 0% (solid line), 1% (dashed line), 2
% (dash-dotted line), and 5% (line with crosses). The envelope
produced without the beating model is denoted as thick line. The
fundamental frequency is 65.4 Hz (keyC2), and the inharmonicity
coefficient value is1.5 × 10−4. (Bottom) The modulation signal
envelope.

Next, the method was used to simulate a realistic case, where
the beating effect is present in the envelopes of multiple partials
of the synthetic piano tone. Two synthetic tones were produced,
where the first one used modulation signals obtained from the mea-
sured partial envelopes, and the latter used a full-wave rectified
sinusoidal LFO (in real-time sound synthesis, the latter is better
as there is no need to store large modulation signals for individual
partials). Figure 9 displays the results, which show that the method
is able to simulate the desired beating effect. The tone, which was
produced using the measured partial envelopes shown in Figure
10, has very similar partial envelopes compared to the target tone.
The latter tone with rectified sinusoidal modulation (modulation
signals are shown in Figure 11) captures the dominating trends in
partial envelopes, which might be enough for real-time sound syn-
thesis, as the partial envelopes cannot be perceived very accurately
[10].

3.2. Modification of the partial envelopes in recorded tones

The proposed method is not only able to simulate the beating effect
for waveguide synthesis, but it can morph the partial envelopes in
audio signals with various kinds of modulating signals. In order
to demonstrate this, the method was used for modifying partial en-
velopes in a recorded piano tone in two ways. First, the beating
effect of a single partial was increased. Figure 12 shows the origi-
nal signal and the modified signal, where the beating effect of the
second partial has been increased without affecting other partial
envelopes.
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Figure 9: (Top) Partial envelopes extracted with the short-time
Fourier transform (STFT) from a recorded piano tone (f0=129.1
Hz, keyC3), (middle) a synthetic tone produced with the proposed
method using exact partial envelopes obtained from the recorded
tone as modulation signals (the envelopes are shown in Figure 10),
and (bottom) a synthetic tone produced with the proposed method
using rectified sinusoidal modulation approximating the partial
envelopes (the modulation signal envelopes are shown in Figure
11). Modified partials have been marked with index numbers.
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Figure 10:The modulation envelopes used in the middle figure of
Figure 9.
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Figure 11:The modulation envelopes used in the bottom figure of
Figure 9.

Next, the beating effect of first ten partials was cancelled. The
modulation signals shown in Figure 13 were obtained by, first,
eliminating the general decay rate in the determined partial en-
velopes and then inverting the resulting envelopes. The partial fre-
quencies were determined manually in these examples. It can be
seen in Figure 14, which shows the original signal and the mod-
ified signal, that the beating effect has been reduced significantly
except for one dip in the envelope of the seventh partial. The rea-
son for this dip is that the magnitude of the notch in the original
envelope is larger than 20 dB, which is more than what the beat-
ing equalizer is capable of amplifying without causing undesired
effects on the tone. Hence, the dip in the modulation signal had to
be smoothed in order to prevent undesired effects. Sound exam-
ples are available in the web1.

Modification of recorded tones is an exciting feature, which

1http://www.acoustics.hut.fi/publications/papers/dafx07-beq/
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Figure 12:(Top) The partial envelopes extracted with STFT from
the original recorded piano tone (f0=129.1 Hz, keyC3), and (bot-
tom) the partial envelopes of a modified tone, where the second
partial envelope has been modulated with the LFO with parame-
ter valuesGb = 5 dB and beating frequency = 1 Hz.

can be used for sound analysis purposes. For instance, it can be
used for minimizing the effect of beating when calibrating sound
synthesis models. Then, the beating effect simulation can be cali-
brated separately. Secondly, it can be used for synthesizing tones
for experiments evaluating the perception of the beating effect [10]
by modifying recorded tones and controlling the beating effect.

4. CONCLUSIONS

This paper proposes an improved beating-effect simulation by mod-
ulating the peak gain of an equalizing filter. The proposed method
is simple and it offers accurate control over the beating frequency
and the beating depth in a straight-forward manner, as seen in the
test results. Moreover, it is unnecessary to know the exact fre-
quency of the partial, as in the resonator-based approach, since the
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Figure 13:The modulation envelopes used in Figure 14.

shape of the peak allows some inaccuracy without affecting the
beating frequency. Finally, the proposed method can be used to
modify partial envelopes in audio signals, which can be any kind
of signals including recorded instrument and synthetic tones.
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ABSTRACT

This paper explores a computationally efficient, physically in-
formed approach to design algorithms for emulating guitar distor-
tion circuits. Two iconic effects pedals are studied: the “Distor-
tion” pedal and the “Tube Screamer” or “Overdrive” pedal. The
primary distortion mechanism in both pedals is a diode clipper
with an embedded low-pass filter, and is shown to follow a non-
linear ordinary differential equation whose solution is computa-
tionally expensive for real-time use. In the proposed method, a
simplified model, comprising the cascade of a conditioning filter,
memoryless nonlinearity and equalization filter, is chosenfor its
computationally efficient, numerically robust properties. Often,
the design of distortion algorithms involves tuning the parameters
of this filter-distortion-filter model by ear to match the sound of
a prototype circuit. Here, the filter transfer functions andmemo-
ryless nonlinearities are derived by analysis of the prototype cir-
cuit. Comparisons of the resulting algorithms to actual pedals
show good agreement and demonstrate that the efficient algorithms
presented reproduce the general character of the modeled pedals.

1. INTRODUCTION

Guitarists tend to feel that digital implementations of distortion
effects sound inferior to the original analog gear. This work at-
tempts to provide a more accurate simulation of guitar distortion
and a physics based method for designing the algorithm according
to the virtual analog approach[1, 2].

Often guitar effects are digitized from a high level understand-
ing of the function of the effect [3, 4]. This work describes the
results of a more detailed, physical approach to model guitar dis-
tortion. This approach has been adopted previously in the context
of generating tube-like guitar distortion [5], not to modela specific
effect as done here. This approach starts with the equationsthat de-
scribe the physics of the circuit and is an alternative to obtaining
the static transfer curves of a nonlinear system by measurement
[6].

Many digital distortion pedals feature pre- and post-distortion
filters surrounding a saturating nonlinearity. The filters are com-
monly multiband (three or four bands) parametric filters that are
tuned to taste.

An analysis of the circuits shows that analog solid-state cir-
cuits tend to use low-order filters. To keep costs down, circuits
are designed with minimal component count, which limits filter
order. For the purpose of distortion effect modeling, the frequency
range of interest is from just above DC to 20 kHz. Features in the
frequency domain above 20 kHz can be ignored, also contribut-
ing to low-order filters. Frequency features below 20 Hz mustbe

retained, however, because intermodulation due to mixing of sub-
sonic components with audio frequency components is noticeable
in the audio band.

Stages are partitioned at points in the circuit where an active
element with low source impedance drives a high impedance load.
This approximation is also made with less accuracy where passive
components feed into loads with higher impedance. Neglecting
the interaction between the stages introduces magnitude error by a
scalar factor and neglects higher order terms in the transfer func-
tion that are usually small in the audio band.

The nonlinearity may be evaluated as a nonlinear ordinary dif-
ferential equation (ODE) using numerical techniques [7, 8]. How-
ever, the solution of nonlinear ODEs is computationally intensive,
and the differences are subtle. Therefore in this work, the nonlin-
earity is approximated by a static nonlinearity and tabulated. This
can be justified on perceptual grounds.

It is well known that nonlinearities cause an expansion of band-
width that may lead to aliasing if the sampling rate is insufficiently
high [3]. Consequently typical digital implementations ofdistor-
tion upsample by a factor of eight or ten, process the nonlineari-
ties, and downsample back to typical audio rates[3, 9]. Frequency
content tends to roll off with increasing frequency, and remaining
aliases at oversampling factors of eight or above tend to be masked
by the dense spectrum of guitar distortion.

Because the filters in this work are derived from analog pro-
totypes, upsampling also increases the audio band accuracyof
the discretization by bilinear transform. An alternate approach
would be to design low order filters so that the response at Nyquist
matches the continuous time transfer function [10, 11].

The following is an analysis of the stages in two typical dis-
tortion pedals.

2. FUNDAMENTAL TOOLS

2.1. SPICE simulation

For circuits that are difficult to analyze, SPICE simulationpro-
vides detailed numerical analysis. DC analysis in SPICE performs
static sweeps of voltage or current sources to measure memory-
less transfer curves. AC analysis finds the frequency response of
a circuit linearized about an operating point. These responses can
be imported into Matlab and converted to digital filters as in[1].
SPICE also serves as a reference solver for numerical solutions of
the time domain response for nonlinear ODEs.
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Figure 1:Non-inverting op amp gain

2.2. Continuous time pole-zero analysis

Linear circuits are described by rational transfer functions. For
most low-cost audio circuits such as guitar effects, the transfer
functions are typically low order. The poles and zeros can beiden-
tified on a log-frequency plot of magnitude in dB. In dB, it can
be seen that the magnitude contributions of poles subtract and the
magnitude contributions of zeros add. For the low pass filter, at
the pole frequency, the magnitude is 3 dB lower than at its low
frequency asymptote. For the high pass filter, the magnitudeat
the pole frequency is 3 dB lower that at its high frequency asymp-
tote. Therefore, well separated pole and zero frequencies can be
identified from the decibel magnitude response by looking for the
3-dB points. These frequencies can then be used to reconstruct the
rational expression for the transfer function.

2.3. Analysis of operational amplifier circuits

Transfer functions can be easily found analytically for circuits with
operational amplifiers (op amps).

2.3.1. Ideal op amp approximation

The ideal op amp approximation states that if negative feedback is
present,

1. V+ = V
−

,

2. I+ = I
−

= 0

whereV+ is the voltage at the+ terminal of the op amp andV
−

,
the voltage at the− terminal. I+ andI

−
are the currents flowing

into the two terminals. These conditions do not hold if negative
feedback is not present, for example, ifVo is not connected toV

−

or if the op amp output is close to the supply voltages, causing it
to clip.

2.3.2. Non-inverting configuration

An example of this analysis is done for the non-inverting op amp
configuration shown in Fig. 1. The ideal op amp rule givesV

−
=

Vi, so the current throughZs is Is = Vi/Zs. BecauseI
−

= 0,
all the current flows acrossZf , so V0 = Vi + IsZf = Vi +
Vi/Zs. After algebraic manipulation, the transfer function is found
to be Vo

Vi
=

Zs+Zf

Zs
. This results in a continuous time transfer

function if complex impedances are used forZf andZs. Writing

Tone filterSaturating nonlin

9V 4.5V

Gain + filter

bjt buf

bjt buf

in

out

pwr supply "Distortion" effect

Figure 2:Block diagram of Distortion pedal.

it in the form shown in (1) allows the poles and zeros to be seen
more easily:

Av(s) =
Zf

Zs

(

Zs

Zf
+ 1

)

(1)

2.4. Bilinear Transform of low order transfer functions

Once a continuous time transfer function is obtained eitherby anal-
ysis or by inspection of the magnitude response, the bilinear trans-
form can be used to digitize this filter. First- and second-order
continuous time systems are common, so their mappings are given
below.

The continuous time system,

H(s) =
bnsn + ... + b1s + b0

ansn + ... + a1s + a0

, (2)

results in

H(z) =
B0 + B1z

−1 + ... + Bnz−n

A0 + A1z−1 + ... + Anz−n
, (3)

where for a second order system, coefficients ofH(z) are

B0 = b0 + b1c + b2c
2, (4)

B1 = 2b0 − 2b2c
2, (5)

B2 = b0 − b1c + b2c
2, (6)

A0 = a0 + a1c + a2c
2, (7)

A1 = 2a0 − 2a2c
2, (8)

A2 = a0 − a1c + a2c
2, (9)

and for a first-order system, coefficients ofH(z) are

B0 = b0 + b1c, (10)

B1 = b0 − b1c, (11)

A0 = a0 + a1c, (12)

A1 = a0 − a1c. (13)

(14)

Herec = 2/T is chosen as typical for the bilinear transform.

3. CIRCUIT ANALYSIS OF DISTORTION PEDAL

The block diagram of the Boss DS-1 Distortion pedal [12] is shown
in Fig. 2. It is basically gain with a saturating nonlinearity sand-
wiched between filters. However, distortion from the bipolar tran-
sistor (BJT) emitter follower buffers and first gain stage are not
negligible.
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Figure 3:Input buffer: Emitter follower circuit.
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Figure 4:BJT transimpedance gain

3.1. Emitter Follower buffers

A typical guitar pedal has an emitter follower (Fig. 3) at theinput
to buffer the signal from the guitar pickups, and another similar
emitter follower at the output to drive the cable and subsequent
load. The emitter follower topology is nominally linear in oper-
ation and flat in frequency response in the audio band. Typically
it is used in conjunction with high pass filters, whose cutofffre-
quency can be determined from the resistance and capacitance val-
ues. Here it is 3 Hz. The stage can be implemented as cascaded
low order high pass filters . Implementation of high pass filters is
straightforward with the bilinear transform method of digitizing an
analog prototype as described in Section 2.

3.2. Single bipolar transistor transimpedance gain stage

Gain can be provided by a single bipolar junction transistor(BJT)
in a transimpedance gain topology shown in Fig. 4.

The frequency response is found from SPICE and digitized by
finding the continuous time poles and zeros, forming the transfer
function and taking the bilinear transform. This stage shows 36 dB
of bandpass gain (Fig. 5). There are two zeros at DC, one pole at
3 Hz, one pole at 600 Hz, and another at 72 kHz, which is ignored
because it is well outside the audio band. A transfer function is
formed directly in (15):

H(s) =
s2

(s + ω1)(s + ω2)
, (15)

where the numerator is the product of two zeros,s, and the denom-
inator is the product of the poles atω1 = 2π3 andω1 = 2π600.
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Figure 5:Frequency response of BJT stage

The bilinear transform applied toH(s) with a sampling rate
fs = 44.1 kHz gives a second order digital filter whose coeffi-
cients can be found using (9).

This stage introduces significant nonlinearity at large inputs,
but this is neglected for now.

3.3. Op amp gain stage

Non-inverting op amp “buffers” are common in guitar circuits be-
cause they minimize loading on the preceding stage. To analyze
the circuit in Fig. 6 impedances are used in (1). The final transfer
function in factored form is given by (16).

H(s) =
(s + 1

RtCc
)(s + 1

RbCz
) + s

RbCc

(s + 1

RtCc
)(s + 1

RbCz
)

(16)

whereRt = D·100kΩ, Rb = (1−D)100kΩ+4.7kΩ, Cz = 1µF,
andCc = 250pF. CapacitorCz blocks DC to prevent the output
from saturating in the presence of DC offset, whileCc stabilizes
the op amp and contributes a low pass pole.D ranges between
(0, 1) and is the value of the “DIST” knob that controls the amount
of gain before saturation and therefore the intensity of thedistor-
tion.

The frequency response is shown in Fig. 7 for values ofD
from 0 to 1 in increments of0.1. This is a second-order stage
than can be digitized directly by the bilinear transform, forming
a second-order section with variable coefficients. The frequency
response of this stage depends on the “DIST” knob. Notice that
the frequency response at half the audio sampling rate,|H(f =
22050)|, is not zero and considerable warping will take place with-
out oversampling or the filter design method by Orfanidis [10].

This transfer function can be discretized by the bilinear trans-
form, (9), which also preserves the mapping of the “DIST” param-
eter.

The op amp provides the main nonlinearity of the Distortion
effect. To first order, the op amp hard clips the signal atVdd/2. In
reality the op amp response is much slower because it is open loop
and needs to recover from overdrive. It is also typically asymmetri-
cal in behavior, leading to significant even-order harmonics where
otherwise only odd-order harmonics are expected. Refinements of
the op amp clipping model can be based upon the macromodel-
ing technique as done in SPICE to speed up simulations [13]. A
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black box approach, the macromodeling technique emulates the
input/output behavior of the op amp instead of simulating the be-
havior of its internal devices.

3.4. Diode clipper

Following the op amp clipper is a RC low pass filter with a diode
limiter across the capacitor (Fig. 8). The diode clipper limits the
voltage excursion across the capacitor to about a diode dropin
either direction about signal ground.

The model of the pn diode is

Id = Is(e
V/Vt − 1), (17)

where the reverse saturation currentIs, and thermal voltageVt of
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Figure 9: Static nonlinear functions compared: tabulated, tanh,
arctan, approximation to tanh

the device are model parameters that can be extracted from mea-
surement.

The nonlinear ODE of the diode can be derived from Kirch-
hoff’s laws:

dVo

dt
=

Vi − Vo

RC
− 2

Is

C
(sinh(Vo/Vt)), (18)

whereVi, Vo are the input and output signals respectively.
This is not a memoryless nonlinearity because it is a low-pass

filter whose pole location changes with voltage. Fig. 10 depicts
the input-output characteristic, which can be described asa “clip-
ping” function, along with various analytic approximations based
on hyperbolic tangent and arctangent. At high amplitude levels,
the differences between different clipping functions is subtle.

For efficiency, this nonlinearity is approximated as static, and
the DC transfer curve is computed by settingdVo

dt
= 0 in (18),

and tabulating the functionVo = f(Vi) by Newton iteration. A
nonuniform sampling of the input to output transfer curve isused
that utilizes a constant error percentage or signal to quantization
noise ratio. The rationale for this is that at small amplitudes, the
curve is most linear with the highest gain, and most susceptible to
quantization noise. At high levels, the nonlinearity is compressive,
reducing the gain and quantization error. A logarithmic sampling
with a floor about zero is chosen. Linear interpolation is used to
further reduce quantization noise.

Alternatively an approximation such as

x

(1 + |x|n)1/n
(19)

can be used to compute the nonlinearity. This formula (19) well
approximates hyperbolic tangent whenn = 2.5. The transfer
curve of the tabulated function is compared with that of tanh, arc-
tan, and (19) in Fig. 9. The curves are normalized so that the slope
aboutVi = 0 matches visually andVo at the extremes match. The
formula (19) can be seen to be a good approximation of tanh. Arc-
tan looks like a close approximation to the actual DC nonlinearity
but it is not as linear aboutVi = 0. The approximation (19) has the
advantage of an additional parametern that can be varied to better
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Figure 10:Small signal approximation of diode clipper
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Figure 11:Tone circuit of Distortion pedal

match the actual function. In this work, the tabulated nonlinearity
is chosen.

3.5. Tone stage

The tone stage (Fig. 11) is a highly interconnected passive network
that cannot be accurately separated. However, an analysis of the
circuit shows its design intent, and the error due to separating the
blocks is less than that due to component tolerance in an actual
circuit.

This circuit involves a fade between high pass filter and low
pass filter blocks. The fading affects the cutoff frequencies of the
filters, but this effect is small. A digitization of this circuit can
capture the essence of its operation, which is a loudness boost:
a V-shaped equalization as commonly observed for tone circuits
intended for electric guitars[5, 1].

A full analysis is straightforward but tedious, so AC analysis is
performed in SPICE, and the corner frequencies found graphically.
The weightings for the fade are also determined by simulation.
The high pass corner frequency isfhpf = 1.16 kHz and the low
pass corner frequency isflpf = 320 Hz.

This is implemented digitally as a weighted sum of first-order
high pass and low pass filters discretized by the bilinear transform
rather than discretizing the complete transfer function. This sim-
plification eliminates time-varying filters and the computation to
update the coefficients, using static coefficients instead.Modeling
a user controlled parameter with greater accuracy is unnecessary
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Figure 12:Distortion pedal tone circuit frequency response. Solid
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Figure 13:Block diagram of Overdrive pedal.

because a user would not likely notice the difference in filter re-
sponse.

The magnitude response of the original circuit is compared
with the Matlab approximation in Fig. 12. The responses are very
similar with< 1 dB error in most cases.

4. CIRCUIT ANALYSIS OF OVERDRIVE PEDAL

The block diagram of an overdrive pedal, specifically the Ibanez
Tube Screamer, is given in Fig. 13[14]. It is characterized by high
pass filters, followed by the summation of a high-pass filtered and
clipped signal summed with the input signal. This is followed by
low-pass tone filtering and a high pass in the output buffer. The
following is an analysis of the circuit in rigor

4.1. High pass filters

The first stages of the overdrive pedal are high pass filters with the
following cutoff frequencies:fc1 = 15.9 Hz, fc2 = 15.6 Hz.

4.2. Non-inverting op amp with diode limiter

The non-inverting op amp (Fig. 14) of the overdrive pedal is sim-
ilar to that of the distortion except the diode limiter is nowacross
Zf . The diode limiter essentially limits voltage excursion across
the op amp keeping it within ideal op amp conditions. The voltage
at the minus input of the op amp is then the same as that on the
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Figure 14:Clipping stage of overdrive pedal.

plus terminal. This generates a current acrossZs,

In =
Vneg

Zs
= Vi

s

R1(s + ωz)
, (20)

whereωz = (R1Cz)
−1, R1 = 4.7kΩ, Cz = 0.047µF. In flows

through the components connected between the minus terminal
and the output of the op amp. Circuit analysis produces the fol-
lowing equation:

In =
Vo − Vi

R2

+ Cc
d

dt
(Vo − Vi) + 2Is sinh(

Vo − Vi

Vt
) (21)

Making a variable substitutionV = Vo − Vi yields,

dV

dt
=

In

Cc
−

V

R2Cc
−

2Is

Cc
sinh(V/Vt), (22)

whereCC = 51pF,R2 = 51k+D500k, andD ∈ (0, 1), control-
ling the intensity of the overdrive. It can be seen that this ODE is
the same as that for the Distortion pedal, (18), whenIn is replaced
by Vi/R.

The arithmetic introduced by the variable substitution canbe
described in block diagram form as depicted in Fig. 13. The essence
of the overdrive circuit is the summation of the input signalwith
the input filtered and clipped. The above variable substitution is
solved forVo:

Vo = V + Vi, (23)

whereV is obtained by solving (22).

4.3. Tone stage

The tone stage (Fig. 15) can also be analyzed according to ideal op
amp rules. The algebra is complicated, but the result is

Vo

Vi
=

(RlRf + Y )

Y RsCs

s + Wωz

(s + ωp)(s + ωz) + Xs
, (24)

where

W =
Y

RlRf + Y
,

X =
Rr

Rl + Rr

1

(Rz + Rl‖Rr)Cz
,

Y = (Rl + Rr)(Rz + Rl‖Rr),

−

+

4.5V 4.5V
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Figure 15:Overdrive tone circuit.
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Figure 16: Overdrive tone circuit frequency response for T = 0,
0.5, 1.

ωz = 1/ (Cz (Rz + Rl‖Rr)), ωp = 1/ (Cs (Rs‖Ri)), Rf =
1k, Rr = (1 − T )20k, Rl = T20k, Rz = 220, Cz = 0.22µF,
Ri = 10k, Rs = 1k, Cs = 0.22µF, andT ∈ (0, 1) controls the
cutoff frequency of the low pass.

This is a second-order transfer function with variable coeffi-
cients. Fig. 16 shows the essentially low-pass character ofthe
magnitude response.

5. RESULTS

Actual Distortion and Overdrive pedals are compared to the digital
emulations for a 220 Hz sine signal with amplitude of 200 mV, and
an exponential sine sweep. The settings on the actual pedal are
adjusted until the spectrum resembles that of the digital version for
the sine input. Adjustments were made approximately to match the
difference in magnitude of the first two harmonics, and to match
the position of notches in the frequency domain.

The time waveforms and magnitude spectra for the single-
frequency excitation are shown in Figs. 17–20. The sinusoidal
sweeps are represented by a log-frequency spectrogram [15]in
Figs. 21–24 with 80-dB dynamic range.

The waveforms show a general similarity. The spectrograms
indicate that frequency equalization is close. The measured spec-
tra exhibit a strong even-order nonlinearity that is not modeled in
the digital implementation. The emulated versions using the sim-
plified algorithms in both cases sound slightly brighter than the
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Figure 17: Time response to 220 Hz sine, measured distortion
pedal (dashed) and algorithm (solid)
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Figure 18:Normalized spectrum of response to 220 Hz sine, dis-
tortion pedal (top), algorithm (bottom)
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Figure 19: Time response to 220 Hz sine, measured overdrive
pedal (dashed) and algorithm (solid)

actual pedals, possibly due to the lack of even-order nonlinearity
and a difference in equalization..

The digitally emulated result also deviates from the measured
one because there was no attempt to calibrate the model to the
actual pedal with its particular component values and parameter
settings. It is more representative of a circuit whose components
are exactly the values as in the schematic.

0 5 10 15 20
−80

−60

−40

−20

0

Frequency (kHz)

M
ea

s 
(d

B
)

0 5 10 15 20
−80

−60

−40

−20

0

Frequency (kHz)

S
im

 (
dB

)

Figure 20:Normalized spectrum of response to 220 Hz sine, over-
drive pedal (top), algorithm (bottom)
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Figure 21:Measured distortion pedal, sine sweep log spectrogram
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Figure 22:Distortion algorithm, sine sweep log spectrogram
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Figure 23:Measured overdrive pedal, sine sweep log spectrogram
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Figure 24:Overdrive algorithm, sine sweep log spectrogram

6. CONCLUSIONS

The simplified, physically informed approach enables the design
of distortion algorithms that emulate the behavior of analog proto-
types. A first-pass design with no tuning is able to reproducethe
salient characteristics of the effect.

While the result is not an exact emulation of the analog imple-
mentation, it provides a procedural basis for the design of adistor-
tion algorithm, and a starting point from which further tuning can
be done. The computational power needed is comparable to that
available in commercially available guitar effects boxes because of
the similar architecture comprising oversampling, low order filters,
and a tabulated nonlinearity.

In this work, BJT gain stage and op amp clipping behaviors
are oversimplified. Nonlinearities are assumed to come froma
single symmetrical diode clipper, which is not true under large-
signal conditions. Improved models of remaining nonlinearities
are the subject of ongoing research.
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ABSTRACT

The diode clipper circuit with an embedded low-pass filter lies at
the heart of both diode clipping “Distortion” and “Overdrive” or
“Tube Screamer” effects pedals. An accurate simulation of this cir-
cuit requires the solution of a nonlinear ordinary differential equa-
tion (ODE). Numerical methods with stiff stability – Backward
Euler, Trapezoidal Rule, and second-order Backward Difference
Formula – allow the use of relatively low sampling rates at the cost
of accuracy and aliasing. However, these methods require iteration
at each time step to solve a nonlinear equation, and the tradeoff for
this complexity must be evaluated against simple explicit meth-
ods such as Forward Euler and fourth order Runge-Kutta, which
require very high sampling rates for stability. This paper surveys
and compares the basic ODE solvers as they apply to simulating
circuits for audio processing. These methods are compared to a
static nonlinearity with a pre-filter. It is found that implicit or semi-
implicit solvers are preferred and that the filter/static nonlinearity
approximation is often perceptually adequate.

1. INTRODUCTION

Guitarists tend to feel that digital implementations of distortion
effects sound inferior to the original analog gear. This work at-
tempts to provide a more accurate simulation of guitar distortion
and a physics-based method for designing the algorithm in the
same manner physical modeling is done for acoustic instruments.
Guitar effects consists of circuits that are accurately described in
the audio frequency band by nonlinear ordinary differential equa-
tions (ODEs). Often the circuits are comprised of linear stages
that can be efficiently implemented by infinite impulse response
(IIR) digital filters. The remaining nonlinear ODEs may needto
be solved by a numerical method or other approximation.

The diode clipper circuit with an embedded low-pass filter
forms the basis of both diode clipping “Distortion” and “Over-
drive” or “Tube Screamer” effects pedals[1]. An accurate simu-
lation of this circuit requires the solution of a nonlinear ordinary
differential equation (ODE). Numerical methods with stiffstabil-
ity, Backward Euler, Trapezoidal Rule, and second order Back-
ward Difference Formula (BDF, also called Gear) allow the use of
low sampling rates at the cost of accuracy and aliasing[2]. How-
ever, these methods require iteration at each time step to solve a
nonlinear equation, and the tradeoff for this complexity must be
evaluated against simple explicit methods such as Forward Euler
and fourth-order Runge-Kutta, which require very high sampling
rates for stability.

1.1. Related work

A nonlinear system can be represented analytically as a Volterra
series. There has been work to form finite-order Volterra series for
simulating electronics [3, 4]. However, these are interesting only
for low order, whereas for highly nonlinear systems, directsimu-
lation by numerical methods is more computationally efficient [5].

Numerical solution of ODEs is a very mature topic in applied
mathematics and many sophisticated algorithms exist for improv-
ing accuracy and speed [2, 6, 7, 8]. Backward Euler, Trapezoidal
Rule, and BDF (called Gear in SPICE) are options to solve the
nonlinear ODEs in circuits [9, 10]. Most algorithms are designed
with a variable step size (sampling rate) to maintain a specified ac-
curacy. The error is typically specified in the time-domain and is
related to an order of the step size. Matlab features a rich suite of
ODE solvers [11] that can be used for experimentation and gaining
experience with the solution of ODEs.

Although not presented as such, an example of numerical sim-
ulation of ODEs for musical application is [12]. The WDF is an
alternate implementation of the trapezoidal rule. It is equivalent to
trapezoidal rule integration and results in the same iterations being
solved because the nonlinearity is expressed in K-variables.1

1.2. Error criterion

Most applications for ODE solvers have a different set of require-
ments than those for audio. The error criterion for general solvers
adaptively adjusts the step size to an excessively small value.

A fixed sampling rate is better suited for implementation in
real-time audio processing. In addition, borrowing from the field
of perceptual audio coding [13], the error specification foraudio is
best defined perceptually in the short-time frequency domain.

For audio, using a larger step size to reduce computational
costs may increase aliasing, but this is tolerable if below the mask-
ing threshold of the desired audio signal. Also, the original analog
electronics have a relatively high noise floor which would mask
low level aliasing.

In this paper, the audio band is defined to be 0–20 kHz, where
a match to the accurate solution of the ODE is desired. Subsonic
frequencies are included because they may mix through the nonlin-
earity and cause perceptible amplitude modulation of the output.
High frequencies are assumed to be sufficiently low due to roll-off
of typical spectra that mixing products are negligible.

1The term “K-variable” means “Kirchoff variable,” such as a voltage
or current. In contrast, WDFs use “W-variables” (“wave variables”). K-
variables can be converted to W-variables and vice versa by means of a
two-by-two matrix multiply as in (8).
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Figure 1:Small signal approximation of diode clipper

1.3. Diode clipper equation

Often nonlinearities for virtual analog modeling are assumed to be
memoryless. The derivation below proves this to be an incorrect
assumption, although cascading filters with a memoryless nonlin-
earity may be used as a perceptually close approximation. That
the nonlinearity has memory is also suggested in [14], wherethe
measurement technique to find the nonlinear transfer curvesin a
tube amp does not find a smooth nonlinearity, but rather a noisy
one due to hysteresis.

The diode clipper in guitar circuits is typically a RC low-pass
filter with a diode limiter across the capacitor (Fig. 1). Thediode
clipper limits the voltage excursion across the capacitor to about a
diode drop in either direction about signal ground.

The model of the pn diode is

Id = Is(e
V/Vt − 1), (1)

where the reverse saturation currentIs, and thermal voltageVt of
the device are model parameters that can be extracted from mea-
surement.

The nonlinear ODE of the diode can be derived from Kirch-
hoff’s laws:

dVo

dt
=

Vi − Vo

RC
− 2

Is

C
sinh(Vo/Vt), (2)

whereVi, Vo are the input and output signals respectively.
This small-signal interpretation (Fig. 1) of this circuit con-

tradicts the assumption of a memoryless nonlinearity because it
yields a low-pass filter whose pole location changes with voltage.

2. NUMERICAL METHODS

2.1. Basic methods

The basic methods solve equations of the form

dv

dt
= v̇ = f(t, v) (3)

where the system statev is, in general, a vector, andf(t, v) is a
nonlinear function which encompasses any inputu(t) to the sys-
tem. Time,t, is the independent variable of integration for ODEs
that describe circuits.

In the case of a linear constant-coefficient differential equa-
tion, (3) can be written in state space form:

v̇(t) = Av(t) + Bu(t) (4)

where the eigenvalues ofA are the poles of the system. Linear
filters are efficient solvers of this special case of ODEs.

Explicit methods are those whose output depend only on state
from previous time steps. Implicit formulas may depend on cur-
rent state and require iteration if the ODE is nonlinear. Newton’s
method is the most popular solver, in part because it is scalable to
higher dimensions. For single dimensional equations, bisection or
bracketing provides predictable convergence [2].

In the literature for numerical methods, the methods are no-
tated with subscripts denoting the time index andh for step size
(sampling period). Here the methods are presented using square
brackets to denote the time index andT for step size as for digital
filters.

2.1.1. Forward Euler (FE)

v[n] = v[n− 1] + T v̇[n− 1], (5)

wherev[n] is the system state at discrete timen, andT is the
sampling interval. This is an explicit, first-order method.

2.1.2. Backward Euler (BE)

v[n] = v[n− 1] + T v̇[n], (6)

Note that this is similar to (5) except this is an implicit equation.

2.1.3. Trapezoidal Rule (TR)

v[n] = v[n− 1] +
T

2
(v̇[n] + v̇[n− 1]) , (7)

Trapezoidal rule is similar to the Euler methods, using instead the
average of the derivatives at timen andn−1, resulting in a second-
order method.

It is known that the trapezoidal rule has the smallest truncation
error of any method of order two [10]. It is also equivalent tothe
discretization of a continuous-time transfer function by the bilinear
transform. The trapezoidal rule is also the only practical order-
preserving method that does not introduce artificial damping when
discretizing continuous time systems.

2.1.4. Wave Digital Filter implementation of Trapezoidal
Rule integration

The wave digital filter (WDF) is an alternate implementationof
the trapezoidal rule integration where K-variablesV , I (values
corresponding to physical voltages and currents) are replaced by
W-variablesa, b by the mapping [12, 15]

[

a
b

]

=

[

1 R0

1 −R0

] [

V
I

]

(8)

Summarizing the approach in [15, 16], to make a nonlinear
WDF, one may use (1), which is in the formI = I(V ) and substi-
tute into (8) and obtain the wave variables:

a = f(V ) = V + RI(V ) (9)

b = g(V ) = V −RI(V ) (10)
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Given an incident wavea and an invertiblef(V ), one may
find V and then use (10) to findb. BecauseI(V ) is the nonlinear
function (1), this requires an iterative method. Note that the itera-
tion involves the K-variableV . Therefore, the resulting iterations
are identical to the direct application of the trapezoidal rule to the
ODE.

The trapezoidal rule is implied in the use of the bilinear trans-
form to locally discretize capacitors and inductors. The nonlinear
WDF can thus be viewed as an alternative implementation of the
trapezoidal rule solver for nonlinear ODEs.

The WDF poses the advantage that the nonlinear equations are
solved locally for each nonlinear element, minimizing the size of
the matrix equation to be inverted, even if the circuit contains many
nodes or elements.

2.1.5. Backward Difference Formula

The Backward Difference Formula of order two (BDF2) is com-
monly used in circuit simulation and deserves mention here.It is
a multi-step method that only requires a single function evaluation
of (3).

v[n] =
4

3
v[n− 1]−

1

3
v[n− 2] +

2T

3
v̇[n] (11)

2.1.6. Runge-Kutta

A popular higher-order one-step method is the explicit fourth-
order Runge-Kutta formula (RK4).

k1 = Tf(n− 1, v[n− 1]),

k2 = Tf(n− 1/2, v[n− 1] + k1/2),

k3 = Tf(n− 1/2, v[n− 1] + k2/2),

k4 = Tf(n, v[n− 1] + k3),

f(n, v) = v̇(n, v) =
Vi[n]− v

RC
− 2

Is

C
sinh(v/Vt),

v[n] = v[n− 1] +
k1

6
+

k2

3
+

k3

3
+

k4

6

The function evaluations at times in between samples could be
inconvenient for digital audio. The only time dependence inthe
diode clipper ODE is the input voltage. Therefore, RK4 requires
input at twice the sampling rate of the output. On the contrary, a
method should have a higher output rate than input rate because
the nonlinearity causes the output to have a wider bandwidththan
the input.

2.1.7. Semi-implicit methods

Because the Newton method converges to the solution quicklyif
the initial guess is close to the final result, often one iteration
is sufficient for oversampled methods. This is the semi-implicit
method[2], which has predictable cost.

Another way to save computation is to compute the Jacobian
once and use it several times in the iterations (chord method)[11].

2.1.8. Approximation of ODE by static nonlinearity and digi-
tal filters

This is not an ODE method but approximates the result. It pro-
vides a baseline to evaluate the significance of the memory inthe
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Figure 2:Tabulated static nonlinear function

nonlinearity. The comparison also demonstrates what is lacking
when static nonlinearities are used.

The nonlinearity used is the DC approximation of the actual
nonlinearity (Fig. 2), which can be derived from (2) by setting

C
dV

dt
= 0. This is implemented using a lookup table as in [1]

and is also known as waveshaping distortion. It is found thatusing
a first-order low-pass filter before the nonlinearity with a cutoff
frequency determined by theR andC of the diode limiter reduces
aliasing while maintaining accurate output.

2.2. Order and Accuracy

The traditional measure of accuracy is Local Truncation Error
(LTE), which is the lowest order difference between the Taylor
series expansion of the solution and the result of the method.
Other manifestations of error are aliasing and frequency warping.
Oversampling reduces error by the order of the method. Because
aliasing is more a function of the nonlinearity than of the method,
it determines the minimum oversampling factor required. Fre-
quency warping is not a concern in the audio band at these high
sampling rates.

2.3. Stability

Consider the linear system described by (4) withB = 0. Substi-
tuting this into the Forward Euler method (5), for example, yields:

yn = (I + TA)yn−1 + TBun−1 (12)

This is stable if|1 + Tλ| < 1 for each eigenvalueλ of matrix A.
The stability of an ODE method depends on the ratio between the
sampling frequency and the largest eigenvalue of the systemA.

2.3.1. Explicit methods

The plot of the region of stability on theT − λ plane often forms
a bounded region where the method is stable. Explicit methods
result in polynomial stability conditions [6], which traceout a sta-
bility region that is a subset of the left halfs-plane. Consequently,
this places a limit on the largest magnitude negative eigenvalue the
system may assume to assure bounded behavior.

2.3.2. Implicit methods

For implicit methods, the stability region extends to infinity in
the negative half-plane, thereby placing no limit on the maximum
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Figure 3: Time-domain waveform for 110Hz + 155 Hz input,
Trapezoidal (TR) and static approx., 8x oversampling. Theyare
indistinguishable in the figure.

magnitude of an eigenvalue of a system, if it is not complex, and
allows a low sampling rate. For Trapezoidal, Backward Eulerand
BDF2, the regions encompass all of the left half-plane, so all stable
systems will map to stable discrete time systems (“A-stability”).
Backward Euler and BDF2 will introduce artificial damping to
higher-frequency poles, while Trapezoidal Rule applies the bilin-
ear transform to the poles and introduces no additional damping.

2.3.3. Stiff stability

For the ODEs found in circuits, it has been found in practice that
implicit methods drastically reduce the sampling rate requirement
relative to explicit methods, and are ultimately more efficient[10].
In the ODE literature this property is known as “stiffness.”Stiffly
stable solvers place no requirement on the minimum samplingrate
needed to ensure a bounded solution. Instead, considerations for
accuracy, in this case aliasing, govern the choice of step size.

All explicit methods are not stiffly stable [6] and they require
a minimum sampling rate to operate properly. The left half plane
eigenvalue of the diode clipper can be found from a small-signal
linearization of the circuit. The linearized circuit is shown in
Fig. 1. WhenVo is large the linearized diode resistance will
dominate overR, making this eigenvalue approximately

λclip ≈ −C
Vt

2Is
sech(Vo/Vt). (13)

3. COMPARATIVE RESULTS AND DISCUSSION

3.1. Single-frequency sine

The implicit and semi-implicit methods at8× oversampling gen-
erate almost identical time-domain responses in response to a dual-
tone excitation (110 and 155 Hz, 4.5 V peak), so only the Trape-
zoidal Rule (TR) and static approximation are shown in Fig. 3.
Figs. 4-5 plot the error relative to an accurate solution computed
with an oversampling factor of 32. All of the numerical methods
exhibit similar error profiles with very low error. The approxima-
tion shows noticeably larger error than the numerical solvers, but
it is typically less than -40 dB.

A spectral comparison better represents the audible differ-
ences. The numerical solvers all produce similar output spectra
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Figure 4: Time-domain dB error for 110Hz + 155 Hz input, 8x
oversampling. Backward Euler, Trapezoidal, BDF2, and static ap-
prox.
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Figure 5: Time-domain dB error for 110Hz + 155 Hz input, BE,
TR and semi-implicit versions, 8x oversampling.

and are represented in Fig. 6 by the semi-implicit trapezoidal rule,
which is very accurate at eight times oversampling as indicated by
the time domain error. This is compared to the static approxima-
tion, which is a close approximation that reproduces most ofthe
major peaks and contour of the spectrum.

A high-level, high-frequency sine-wave excitation (4.5 V,
15001 Hz) reveals inadequacies in the semi-implicit methods,
which exhibit overshoot in the time-domain plots (Fig. 7) and
spurious tones in the frequency domain. The static nonlinearity
produces phase error at high frequencies, although the magnitude
of the fundamental is correct. The spectra of trapezoidal, semi-
implicit trapezoidal, and static approximation are plotted in Fig. 8
with a reference spectrum generated by a trapezoidal rule with
oversampling of 32.

3.2. Sine sweep

A high-amplitude, sinusoidal, exponential-frequency sweep from
0 to 20 kHz was processed by the methods. The oversampling fac-
tor of eight is chosen so the method is well-behaved throughout the
test. The output is downsampled to 96 kHz and displayed as a log
spectrogram [17]. All of the ODE methods produce almost identi-
cal output if stable, so only the spectrograms for trapezoidal rule,
its semi-implicit version, and the static nonlinearity areshown in

DAFX-4

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

200 DAFX-07



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

0 5 10 15 20
−100

−80

−60

−40

−20

0

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

(a) Semi-implicit trapezoidal
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(b) Static nonlinearity approximation

Figure 6:Spectra of responses for 110Hz + 155 Hz input.
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Figure 7:Time domain waveform for 15001 Hz input, implicit and
semi-implicit methods,8× oversampling.

Fig. 9.

3.3. Computational cost

Because the number of iterations in an ODE solver that employs
Newton’s method is related to the input in a complicated way,an
empirical measurement of cost is made. The number of iterations
for several test signals is given in Table 1. The inputs used are an
exponential sine sweep from 0 to 20 kHz, an E power chord on the
low strings, and a riff with a bend.

The cost per sample in terms of function calls to compute the
derivative (3) or the Jacobian in the iterative methods is shown in
Table 2. The cost of computing the derivative is assumed to be
similar to the cost of computing the Jacobian. The cost is normal-
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(a) Solid: Trapezoidal, Dash-dot: reference
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(b) Solid: Semi-implicit trapezoidal, Dash-dot: reference
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(c) Solid: Static approx., Dash-dot: reference

Figure 8:Magnitude spectra of responses to 15001 Hz normalized
to (32×) oversampled reference.

ized per audio sample at the base sampling rate of 48 kHz. For
iterative methods, the number of iterationsn is assumed to be 1.2
as suggested by the actual guitar signals in Table 1.

3.4. Discussion

For audio-frequency input, the differences between the methods
are negligible in the audio band because the process is oversam-
pled to reduce aliasing. The oversampling causes the various or-
der errors to be very low in the audio band and makes the effect
of frequency warping insignificant. It would seem then that asta-
ble method of low order would be sufficient while guaranteeing
bounded output.

The time-domain outputs of the semi-implicit methods show
significant ringing for high-frequency inputs, but this is an extreme
case because high amplitudes at these frequencies are rarely en-
countered in practical guitar signals.
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Figure 9: Log spectrogram of sine sweep, processed at8× over-
sampling,fs = 48 kHz, 80-dB dynamic range.

Input BE BE s-i TR TR s-i BDF2

sine sweep 1.381 1 1.370 1 1.367
power chord 1.035 1 1.035 1 1.035
riff 1.1821 1 1.1814 1 1.1815

Table 1:Number of iterations for (semi-)implicit methods: Back-
ward Euler, semi-implicit BE, Trapezoidal, semi-implicitTR,
BDF2

Method X f -calls f -calls/sample

FE 38 1 38
RK4 30 4 120
BE 8 2n 19.2
BE s-i 8 2 16
TR 8 1 + 2n 27.2
TR s-i 8 3 24
BDF2 8 2n 19.2
static 8 lookup -

Table 2: Cost comparison of methods: Oversampling (X) re-
quired. Calls to derivative or Jacobian function. Calls peraudio
sample,n = 1.2 for iterative methods.n = # iterations; base
sampling rate = 48 kHz

The explicit methods, while simple, do not produce reliably
accurate results in the frequency domain unless they are highly
oversampled. The evaluation of cost validates prior findings in the
circuit simulation literature that implicit or semi-implicit methods
are preferred over explicit ones due to the large oversampling re-
quired for the explicit methods to be stable.

4. CONCLUSIONS

One important factor in deciding the sampling rate is the inevitable
problem of bandwidth expansion caused by a nonlinearity, which
may result in aliasing in sampled systems. Because the nonlinear-
ities are strong, bandwidth is expanded by a large factor, necessi-
tating large oversampling rates. This constraint on the sampling
rate causes the different methods to be negligibly different in the
audio frequency band. One can conclude that the simplest pos-
sible method that produces stable output should be used to save
computational cost.

The amount of iterations taken by implicit methods depends
on the frequency of the input signal. Quickly moving signalsrela-
tive to the step size cause the initial estimate of the state to be far
from the solution, requiring many iterations. Because the process
is already highly oversampled relative to the bandwidth of real-
istic guitar signals to reduce aliasing, semi-implicit methods may
work well. Future work could improve upon the convergence of
the semi-implicit methods by limiting the overshoot for fast sig-
nals.

The static approximation of the ODE, which involves a pre-
filter and the DC transfer curve, is seen to be a cheap and effective
approximation of the ODE, validating its widespread use in digital
implementations of distortion effects. For future work, itis desir-
able to find other low-cost approximations of the ODE that result
in better accuracy in the output spectrum.

At the very least, the application of ODE solvers to nonlinear
musical effects builds insight into the problem and provides a ref-
erence point by which to evaluate more efficient approximations.
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ABSTRACT

In this paper we present a generic system for audio indexing (clas-
sification/ segmentation) and apply it to two usual problems: speech/
music segmentation and music genre recognition. We first present
some requirements for the design of a generic system. The train-
ing part of it is based on a succession of four steps: feature ex-
traction, feature selection, feature space transform and statistical
modeling. We then propose several approaches for the indexing
part depending of the local/ global characteristics of the indexes to
be found. In particular we propose the use of segment-statistical
models. The system is then applied to two usual problems. The
first one is the speech/ music segmentation of a radio stream. The
application is developed in a real industrial framework using real
world categories and data. The performances obtained for the pure
speech/ music classes problem are good. However when consider-
ing also the non-pure categories (mixed, bed) the performances of
the system drop. The second problem is the music genre recogni-
tion. Since the indexes to be found are global, “segment-statistical
models” are used leading to results close to the state of the art.

1. INTRODUCTION

Automatic audio indexing has become a major concern today. Given
the increasing amount of audio indexing applications (sound recog-
nition, music genre/ mood recognition, singer type recognition,
speaker recognition, speech/ music segmentation. . . ) many differ-
ent applications have been, are and will be developed. However
most of these applications rely on the same underlying concepts:
extract a set of time-frame feature vectors, train a statistical model
using hand-labeled data in order to create a “classifier” and finally
use this classifier to label unknown data. Because of that, develop-
ing a unique generic and modular indexing system is attractive.

In the ongoing French national project “Ecoute”, two of these
indexing applications are to be developed: a speech/ music seg-
mentation and a music genre recognition system. It has therefore
been decided to develop this generic audio indexing system and
apply it to the two problems. The goal of this paper is to present
this generic indexing system and detail its application to the two
problems.

Several generic systems have been proposed so far. For ex-
ample, the Waikato University WEKA [1] system is a generic ma-
chine learning system written in Java. However its direct appli-
cability to the audio case is not obvious (no feature extraction, no
consideration of time information). The Sony EDS [2] system per-
forms both feature extraction and machine learning but is heavy
in computation time. The McGill University jAudio[3] + ACE[4],
Tzanetakis’ Marsyas[5], or IMIRSEL’s M2K [6] systems all seem

promising solutions but it still need to be proven that they provide
large performances for specific applications.

Our generic system is based on a system we previously devel-
oped for a task of instrumental sound recognition[7]. For this task
the system showed very good performances. The training stage
of the system is based on a succession of four steps: feature ex-
traction, feature selection, feature space transform and statistical
modeling. The system has been modified and extended to make
it generic and modular. The requirements for the design of such
a generic system are presented in part 2.1. The system we have
developed is presented in part 2.2. We then present the results of
applying it to the two considered problems: speech/ music seg-
mentation (part 3.1) and music genre recognition (part 3.2).

2. GENERIC AUDIO INDEXING SYSTEM

2.1. Requirements for a generic system

The two main actions the system must perform are training and
indexing. “Training” denotes the stage in which a classification
model is learned from hand-labeled data. “Indexing” denotes the
stage in which this classification model is used to label or segment
unknown data. The two actions must be clearly separated since
they are not used by the same people.

Training consists in extracting features from a set of audio files
(or a database) and finding a mapping between the characteristics
of the features and hand-annotated labels of the audio files. An
audio file can have a unique label (for example a “music genre”
label describes a whole music track file) or a succession of labels
over time (a 24h radio program file is described by a succession of
labels over time: speech, music, jingles. . . ). These labels define
the problem to be solved. The set of files and the corresponding
labels must be easy to define and modify by the user.

The performances of the system depend strongly on the fea-
tures used. Each problem may require different features. There-
fore, in a generic system, changing the feature extraction stage
must be easy. Conversely the system must be able to choose by
itself the appropriate subset of audio features in order to solve a
specific problem.

The performances of the system also depend strongly on the
choice of the model used to represent the mapping between the
features and the labels (the classification model). SVM is known to
perform the best but is limited to two classes problems, KNN also
perform very well but is limited by the size and dimensionality
of the training set. This part of the system must also be easily
parametrizable.

Part of the training consists in testing the performances of the
trained model. Several evaluation methods can be used for that:
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cross-database validation, N-folds cross validation or Leave-One-
Out validation.

The system we have developed takes the previous require-
ments into account. The global flowchart of the system is pre-
sented in Fig. 1. We describe it in the following part.

Figure 1: Flowchart of our generic indexing system.

2.2. Description of the system

2.2.1. Describing a new indexing problem

In order to make the description of a new indexing problem easy
for the user, we have chosen to use a simple set of text files.

List of audio files and annotations: The first text file contains a
list of audio files that will be used by the system to learn
the characteristics of the classes. Each row of the text file
contains the path to an audio file followed by the name of
the corresponding annotated class. The user also has the
possibility to replace the name of the annotated class by the
path to a Wavesurfer[8] .lab file which allows to annotate,
for the same audio file, a succession of classes over time.

List of classes and mappings: The second file contains the list
of the name of the classes that will be considered for the
training. This list can be a subset of the classes used for
the annotation of the audio files (we call the later “anno-
tated classes”). In this case, only the files (or the tempo-
ral segments) corresponding to this subset will be consid-
ered during the training. This file can also perform a map-
ping between the annotated classes and new class names.
This allows mapping annotated class names between vari-
ous databases. Several annotated classes can also be mapped
to the same new class. This allows creating hierarchy among
classes. For example combining the annotated “talk-voice”
and “ads-voice” classes (see part 3.1) into a unique trained
“speech” classes is very easy with our system.

Extractor: Finally, the last input to the system is the path to a
“feature extractor”. A “feature extractor” is a program that

takes as input the path to an audio file and output the fea-
tures values over time in a binary file. The format of the
output file is self-defined in order to 1) make it usable with-
out the knowledge of the feature extractor, 2) gives the nec-
essary information in order to guarantee that all the feature
files used by the system are compatible. In order to do that,
each file contains the feature values, feature names, an iden-
tifier to the used feature extractor, the parameters of it and
its version.

2.2.2. Training the system

In order to train the system, we first extract all the features of the
audio files to be used as examples to learn the classes. This is done
in a batch process using all the files defined in the list of audio files
and using the defined “feature extraction” program. The results of
this is a set of binary feature files.

A database is then created containing all the feature and class
values. For this, the system reads all the binary files containing the
features over time, reads the class definitions and perform the map-
ping between the features and the classes. At this stage, the user
can export all the data in the Weka[1] format in order to perform
external statistical analysis.

The training of the system then starts. It is a succession of
three stages.

Feature selection: The first stage of the system selects among
all extracted features the ones that are the most useful to
describe the classes. The algorithm currently used is the
Inertia Ratio Maximization with Feature Space Projection
(IRMFSP) we proposed in [7].
The IRMFSP algorithm measures for each individual fea-
ture (we consider a multi-dimensional feature, such as the
MFCC, as a set of scalar features) the inertia ratio (also
named Fisher discriminant) knowing the feature values and
their class belonging. The algorithm then selects the fea-
ture with the largest inertia ratio (the most discriminative
feature). It then applies an orthogonalization process by
projecting the whole feature space on the selected feature.
This process guarantees that the remaining features are or-
thogonal to the selected feature (i.e. no more correlated).
The process is then repeated in order to select the next fea-
tures.

Feature space transform: The second stage transform the fea-
ture space in order to reduce its dimensionality while im-
proving class representation. Currently two transforms are
used: -the PCA which reduces the dimensionality of the
feature space while preserving most of the variance of the
data, -the LDA which reduces the dimensionality while max-
imizing the class separation of the data.

Class modeling: Finally, the third stage performs the statistical
modeling of the problem. The following models are cur-
rently available: multi-dimensional Gaussian modeling, Gaus-
sian mixture modeling, K-Nearest Neighbors, hidden Markov
models, various unsupervised clustering algorithms, and his-
togram learning.

The output of the training is a “CLASS model” file, which
stores all the parameters of the training and the references to the
extractor to be used. This file can then be used for the indexing of
unknown files.
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2.2.3. Indexing

The current system can process the two following types of index-
ing:

Local indexing means that various labels are assigned over the
file duration. In this case, each time frame (feature vector)
is processed separately and classified separately. Smooth-
ing techniques over time can be applied by computing short-
term histogram of class belonging or by applying median
filtering. Class changes over time can then be used to per-
form segmentation and assign a label to each segment. The
local indexing will be used in part 3.1 for the speech/ music
segmentation problem.

Global indexing means that a single global label is assigned to
the whole file (or segment) duration. This is the case when

1. the feature vector is timeless, i.e. it describes directly
the whole file (or segment) duration (this was the case
in our instrumental sound classifier[7]),

2. when a global decision is taken from a succession of
instantaneous features. This is the case when using
hidden Markov modeling or when using the methods
proposed below.

The results of the indexing process is output in a simple text file
(Wavesurfer format).

2.2.4. Global indexing methods

In a standard classification system, each feature-vector at each time
frame f(t) is considered independently as an observation of a spe-
cific class ci. The training and indexing are therefore performed
directly on a frame basis. We call this model a “frame-statistical
model”.

When all the frames of a given file (segment) are supposed to
belong to the same class, one can benefits from this knowledge by
performing a “vote” among the frame-classes. This allows improv-
ing the accuracy of the classification by reducing the effect of local
(frame-class) misclassification. We present below the "cumulated
histogram" and the "cumulated probability" method.

In some cases (as for example the music genre problem of part
3.2), a segment (file) belongs as a whole to a class-to-be-found,
but its individual frames do not necessarily belong to the class-to-
be-found (in the case of music genre, a given time frame of a rock
song can be very close acoustically to a given time frame of a blues
song, therefore the various time frames of a given track could be-
long to various classes while the whole track belongs to only one
class). The class-to-be-found is rather defined by a specific dis-
tribution or succession over time of frame-classes. The "segment-
statistical model" presented below allows to take this into account.

“Cumulated histogram”: The decision about the global class of
a file/ segment is made by choosing the class with the largest
number of occurrences among the frames. For this, each
frame of the file/ segment is first classified separately: i(t) =
arg maxi p(ci|f(t)). The histogram h(i) of class belong-
ing i(t) over all the frames is then computed (the bins of
the histogram corresponds to the various classes ci). The
class corresponding to the maximum of the histogram h(i)
is finally chosen as the global class. In the following we
call this method “cumulated histogram”.

“Cumulated probability”: Another possibility, is to use the frame
probabilities p(ci|f(t)), cumulate them over all the frames
belonging to the file/ segment (p(ci) = 1

T

P
t p(ci|f(t))

and choose the class i with the highest cumulated probabil-
ity (i = arg maxi p(ci)). We call this method “cumulated
probability”.

“Segment-statistical model”: In this paper, we propose to learn
the characteristics of the “cumulated probability” and use
the corresponding statistical models to perform the clas-
sification. We note s a specific segment (file) and ps(ci)
its cumulated probability. We note Si the set of segments
(files) of the training set belonging to a specific class i. For
each class i, we compute the set of “cumulated probabili-
ties” ps∈Si(ci). For a specific class i, we then model the
behaviors of the bins ci over all the s ∈ Si. We call this
model a “segment-statistical model” and note it p̂i(ci). In
order to index an unknown segment/ file, we first compute
its “cumulated probability” ps(ci) and classify it using the
trained “segment-statistical models” p̂i(ci).
Two statistical models have been considered:

1. The first one uses a Gaussian modeling of the bins
of ci. For each class i, we compute the mean and
standard deviation of each bin ci over all the s ∈ Si.

2. The second model uses only the above-mentioned mean
values. In this case, the indexing is performed by
choosing the class i corresponding to the model p̂i(ci)
with the largest cosine distance with the “cumulated
probability” ps(ci) of the unknown segment (file) s.

2.2.5. Validation

The current system can perform two types of validation.

Cross-database validation: one database is used for training the
system, another one is used to evaluate the performances of
it.

N-folds cross validation: the set of data is divided into N-folds:
N-1 of them are used for training the system, the remaining
one is used to evaluate the performances of it. In this case,
special care must be taken in order to guarantee indepen-
dence between the folds used for training and the one used
for evaluation. In our system, we use the folder informa-
tion of the files to detect dependencies. A specific case of
N-folds cross validation is the Leave-One-Out validation in
which N equal the number of data.

In part 3.1, we will used both validation methods, in part 3.2, only
cross-database validation will be used.

2.2.6. Features

So far, two feature extractors have been developed.
Dedicated audio features: The first extractor we have de-

veloped is dedicated to the problem of instrument sound recog-
nition and is described in details in [9]. In this extractor, the as-
sumption is made that the audio file contains a single instrument
note. Therefore the extraction of high-level concepts (such as at-
tack time or fundamental frequency of a note) is -feasible (i.e. can
be done considering current signal processing capabilities) and -
meaningful (i.e. has a meaning for the given signal).
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Generic audio features: In the case of generic audio (music,
radio stream. . . ) the extraction of such concepts would be -difficult
(requiring either temporal segmentation or source separation) and
-meaningless (considering that a 24h radio program or a music
track has more than one attack time or release time). Therefore
the second extractor we have developed only contains the subset
of features that do not rely on any time model (such as the tempo-
ral organization assumption necessary to derive the attack time) or
signal model (such as the harmonic sinusoidal model necessary to
derive the fundamental frequency). It extracts instantaneous fea-
tures such as MFCC and Spectral Flatness Measure.

2.2.7. Temporal modeling of features

Instantaneous features are usually extracted using a 40ms window
with a hop size set to 20ms. This can lead to a very large amount of
data for the training: 4 millions feature vectors for a 24 hours radio
program file. In order to decrease the amount of data, “temporal
modeling” of the feature vectors can be performed.

“Temporal modeling” means modeling the evolution over time
of each feature using frame analysis. The length of the sliding
window is typically chosen between 500ms to 2s and the modeling
is performed over each window. The current system can perform
the following type of “temporal modeling”: statistical measures
(mean, variance values over each window), histogram of cluster
belonging, spectral decomposition of feature evolution [10] and
sub-band grouping of this spectral evolution [11] [12].

3. TWO APPLICATIONS OF THE INDEXING SYSTEM

3.1. Speech/ music segmentation

The first application we present is a tool for automatic segmenta-
tion of radio streams. This tool is developed in coordination with
a company that produces managing and archiving softwares for
radio stations. The categories to be indexed as well as the radio
corpuses are directly defined and provided from their clients and
are thus real world categories and data.

Speech/ music segmentation has been the subject of a large
amount of research in the last two decades. The front-end of most
systems starts by extracting low-level features such as the zero-
crossing rate, 4 Hz energy modulation, spectral moments, MFCC,
entropy. . . Each class is then modeled using instance-based classi-
fier (KNN), Bayesian classifier (Gaussian mixture model), Support
Vector Machine. . . The field is well established and has dedicated
evaluation protocols such as DARPA in the USA or ESTER [13]
in France. We refer the reader to [14], [15], [16], [17], [18], [19]
for major or recent publications in this field.

The goal of this part is twofold: first we want to test the ap-
plicability of our system for a task of speech/ music segmentation,
secondly we want to test such a system in a real industrial frame-
work.

3.1.1. Considered categories

Two sets of categories are to be found. The first set corresponds to
acoustical categories: music, voice, mix and bed.

• “Mix” denotes segments where music and speech exist but
do not overlap continuously over time; they rather succeed
each other over time.

• “Bed” denotes segments where speech and music overlap
regularly over time; a typical example of it is the introduc-
tion of news on the radio.

The second set of categories corresponds to industry categories,
i.e. the categories used by radio programmers to annotate their
programs: music, talk, ads and jingles. Obviously the categories
“talk” and “ads” can be composed of voice, mix or bed. The cate-
gory “jingle” can also be composed of any of the previous acous-
tical categories. We do not detail the “jingle” part of the system
in this paper since it is processed by a dedicated audio finger-print
system which allows to identify them. The correspondence be-
tween the industry and the acoustical categories is indicated into
Tab. 1.

3.1.2. Corpus

The corpuses used for the development and testing of the system
are the following:
Corpus RadioFrance: the speech part is composed of a subset

of the MPEG-7 corpus made of recordings of Radio-France
radio station in July 98, the music part is composed of two
subsets: the ISMIR2004 “song excerpts” test set and a pri-
vate music genre database.

Corpus UK: consists of 24h of recording of a major commercial
radio group in the UK. This station has a high rate of audio
compression, includes many ads, jingles, talks and music.

Corpus SUD: consists of 24h of recording of a regional radio sta-
tion in France.

Each corpus has been annotated into the above mentioned cate-
gories. However, the RadioFrance corpus is only annotated in the
categories music-music and speech-clean (equivalent to talk-voice
and ads-voice). The annotations are in the Wavesurfer format. The
distribution of the corpuses is indicated into Tab. 2. For each cat-
egory we indicate its percentage (%) and its duration in minutes
(m). As one can see, all three corpuses are highly unbalanced in
favor of the music category.

3.1.3. System configuration

Features: For each corpus, we have extracted the following set of
instantaneous audio features:

• 13 Mel-Frequency-Cepstral-Coefficients (using 40 triangularly-
shaped Mel bands, and keeping the DC component),

• Delta-MFCC,
• Delta-Delta-MFCC,
• 4 Spectral-Flatness-Measure coefficients (the 4 rectangularly-

shaped frequency bands are [250, 500], [500, 1000], [1000,
2000] and [2000, 4000] Hz),

• Delta-SFM,
• Delta-Delta-SFM.

The signal is first converted to mono and down-sampled to 11KHz.
The frame analysis was performed using a 40ms Blackman win-
dow, the hop size was 20ms. We then apply temporal modeling to
the 50Hz feature vector signal using the mean and variance values
over a 2s window with a hop size of 1s.

Classifier: Various configurations of the classifier have been
tested (variation of the number of selected features, choice of the
statistical model, variation of the number of mixtures in the GMM. . . ).
The best results were obtained with the following configuration:
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• Feature selection: IRMFSP algorithm using the first 40 se-
lected features,

• Feature space transform: Linear Discriminant Analysis,

• Class modeling: GMM with 20 mixtures and full-covariance
matrix. Since the corpus is highly unbalanced we did not
use the prior probabilities in the Bayes formulation.

Table 1: Correspondence between industry and acoustical cate-
gories for speech/music segmentation

Table 2: Distribution of the three corpuses for speech/music seg-
mentation

Table 3: Ten-fold cross-validation confusion matrix of the
speech/music system for the 7 categories problem using the UK
corpus

3.1.4. Results

7 classes problem: We first present the results obtained when con-
sidering blindly the 7 classes problem (blindly means that we do
not take into account the fact that some classes are in fact acous-
tically equivalent): music-music, talk-voice, talk-mix, talk-bed,
ads-voice, ads-mix and ads-bed. The results obtained using a ten-
fold cross-validation method for the UK corpus (the most diffi-
cult) are indicated in Tab. 3. The average Recall (average over the
classes) is R = 57.5% (the random Recall for 7 classes would be

Table 4: Cross-database evaluation of the speech/music system for
the 2 categories system using the three corpuses

R = 14.28%). Music-music and talk-voice are recognized at R =
79.4% and R = 71.8% respectively. The largest confusions occur
with the non-pure categories (mix and bed) and when trying to dis-
tinguish talk from ads. The category talk-voice is mainly confused
with ads-voice/ talk-mix/ talk-bed, the category talk-mix with talk-
bed/ ads-mix/ ads-bed, the category ads-voice with talk-voice. . .

2 classes problem: We now only consider the pure categories
and merge the acoustically equivalent categories. This leads to two
classes: music-music and a category merging the categories talk-
voice and ads-voice, which we call speech. For the UK corpus,
using a ten-fold cross-validation method, the mean Recall is R =
95.6% (Rmusic = 96.7% and Rspeech = 94.4%), for the Radio-
France corpus it is Rmusic = 96.48% and Rspeech = 96%, for the
SUD corpus it is slightly lower: Rmusic = 95.8% and Rspeech =
92.1%. Whatever the considered number of classes or the consid-
ered corpus, music tends to be more easily recognized than speech.

Cross-database validation: We now want to test the gener-
ability of the trained classification model. In particular, we want
to test if the system has learned the general characteristics of mu-
sic and speech or the specific characteristics of music and speech
as played on the specific radio station used for training. In order
to test this, we perform a cross-validation over the three corpuses:
one corpus is used for training, the two remaining ones for eval-
uation. The results are indicated in Tab. 4. Each cells report the
mean (over the classes) Recall R, mean F-measure F , and the mu-
sic and speech Recalls. In the following, we note Rx→y the Recall
obtained when training the model on the corpus x and using it to
classify corpus y.

The best result is obtained when training the model using the
RadioFrance corpus and applying it for the indexing of the SUD
corpus: RRF→SUD = 95.2%; the second best result when using
SUD to classify RadioFrance: RSUD→RF = 95%. The worst re-
sults are obtained when using RadioFrance to classify UK or UK to
classify SUD. RadioFrance and SUD seem very close acoustically
while UK seems very different. The assumption that the difference
comes from the language of the corpuses (French/ English) is con-
tradicted by the individual class Recalls. Actually, using UK to
train the speech model and applying it to the RadioFrance or SUD
corpuses leads to the highest Recalls: RUK→RF

speech = 99.9% and
RUK→SUD

speech = 99.8% respectively. The difference between the
corpuses seems to come mainly from the music part: RUK→RF

music =
84.3% and RUK→SUD

music = 79.1%. The music of RadioFrance
or SUD tends to be recognized as the speech learned from UK.
Also the speech of UK tends to be recognized as the music of
RadioFrance or SUD (RRF→UK

speech = 73.9% and RSUD→UK
speech =
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81.3%). The music model is better trained using the SUD corpus:
RSUD→RF

music = 96.9% and RSUD→UK
music = 99.1%.

Comments on the Precision and F-measure: The values
of the F-measure, or the Precision factor, must be analyzed with
care since they strongly depends on the distribution of the test set
which is highly unbalanced in our case. For example in the case of
RadioFrance classified by UK, we get 99.9% Recall for the class
“speech”, but its Precision is only 13.4%. This looks like a large
part of “music” has been classified as “speech”. In fact this part is
small in comparison to the number of “music” data: only 15.6% of
the music data have been classified as speech. But since the total
number of music data (m=48382 data) is much larger than the to-
tal number of speech data (s=1175), even 15.6% (0.156*m=7581)
makes the Precision drops drastically (the Precision is computed
as 0.999*s/(0.156*m+0.999*s).

Conclusion: Considering that no specific modifications of our
system have been made for the specific task of speech/ music in-
dexing, the results obtained for the two-classes problem are very
encouraging. The choice of the training set seems however to be
important for the generalization of the system and different corpus
may be required for training the music and speech models. How-
ever, the application of our system for the seven-classes problem
(including the non-pure categories “mix” and “bed”) requires fur-
ther development. In this case, the use of generic audio features (as
used in our experiment) does not allow distinguishing efficiently
the non-pure classes.

3.2. Music genre recognition

The second application we present is a tool for the automatic recog-
nition of music genre. Although music genre categories have been
showed to be fuzzy or hill-defined [20], their automatic estimation
is a usual step in the understanding of the acoustical characteristics
underlying music similarity. For this reason, it has been the subject
of many contributions in recent years. Moreover dedicated frame-
works, [21] or MIREX [22], are devoted to its evaluation which
allows the comparison of newly developed algorithms to state-of-
the-art algorithms. In opposition to speech/ music front-ends, two
main categories of systems exist in the case of music genre recog-
nition. The first one learned the classes directly from low-level
features [23] [24] (MFCC, Spectral Contrast, Loudness, Rough-
ness. . . ). The second one learned the classes from high-level fea-
tures [25] (tempo, beat histogram, chroma, pitch contours). Our
system belongs to the first category since it uses the same set of
low-level features as our speech/ music segmentation system. We
refer the reader to [26] for a recent overview of the music genre
topic.

3.2.1. Corpus and categories

For the evaluation of the performances of our system, we have
used the test sets from the ISMIR2004 music genre contest [21].
It should be noted that we had only access to the training and de-
velopment set, not to the evaluation one. Training of our system is
done on the training set and the performances are given on the de-
velopment set. The distribution of both sets are indicated in Tab. 5.
As for the speech/ music corpuses, the corpus is here also very un-
balanced in favor of the classical music category. The definition of
the classes is also controversial: jazz and blues are merged into a
single class, the “world music” class contains many different types
of music.

3.2.2. System configuration

Features: The same set of features as for the speech/ music seg-
mentation system has been used. However the modeling length
was set to 4s (instead of 2s) and the hop size to 2s (instead of 1s).

Classifier: Various configurations of the classifier have been
tested and the best results were obtained with the following con-
figuration:

• Feature selection: no

• Feature space transform: Linear Discriminant Analysis,

• Class modeling: GMM with 5 mixtures and full-covariance
matrix. Since the corpus is highly unbalanced we did not
used the prior probabilities in the Bayes formulation.

3.2.3. Results

Since we know that all the frames of a given file belong to the
same music track and should therefore have the same music genre
class, we use the global indexing methods proposed in part 2.2.4.
We compare the three global indexing methods (cumulated his-
togram, cumulated probability, segment-statistical model) to the
frame-based decision method. For the “segment-statistical model”
method, we only present the results obtained using the cosine-
distance method (using only the mean of the bins ci) since it leads
to the highest results. However, we indicate in Fig. 2 both the
mean and standard-deviation of the bins ci for the 6 classes of our
training set.

Table 5: Description of the training and development corpus for
music genre recognition

Table 6: Confusion matrix of the music genre system for the 6
categories using the ‘segment-statistical models”.

The classification on a frame-basis (87039 frames have to be
classified) gives a mean Recall of R = 62.2% (± 14.3% varia-
tion among the classes). The “cumulated histogram” method (729
tracks have to be classified) gives a mean Recall of R = 76.2% (±
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Figure 2: Trained “segment-statistical models” for the 6 music
genres: mean values (thick lines), ± standard deviation (thin
lines).

18.9%). The “cumulated probability” method gives a mean Re-
call of R = 77.4% (± 16.8%) The best method is the “segment-
statistical model” with a mean Recall of R = 78.7% (± 14%).

In Fig. 6, we indicate the confusion matrix obtained using the
“segment-statistical models”. The largest confusions occur be-
tween classical and world (some world-music tracks use classical
instruments), metal-punk and pop-rock (some rock songs are close
acoustically to metal songs), electronic and pop-rock. It is difficult
to further comment on these confusions considering the spread of
the acoustical content of the categories. However, it seems clear
that using only timbre-related features (such as the MFCCs and
SFMs) do not allow distinguishing high-level concepts such as mu-
sic genre.

Conclusion: Considering again the fact that no specific mod-
ifications of our system have been made for the specific task of
music genre recognition, the results obtained are very encourag-
ing. We get a mean Recall of 78.7%. In comparison, the re-
sults obtained by the 5 participants of the ISMIR2004 music genre
contest[21] were R = 78.78%, 67.22%, 58.60%, 55.70%, 51.48%.
It is important to note however that we present results for the de-
velopment set while the results presented in [21] were for the eval-
uation set.

4. CONCLUSION AND FUTURE WORKS

In this paper we presented a generic system for audio indexing
(classification/ segmentation). The system aims to be easy to use
and applicable to a large range of indexing problems. We tested
this by applying it to two usual problems: speech/ music segmen-
tation of radio stream (in a real industrial framework) and music
genre recognition. For this, a set of generic low-level audio fea-
tures (MFCC and SFM) was used.

For the speech/ music segmentation problem, and when con-

sidering only the pure categories speech/ music, the performances
of our system were good. We also showed that the system could
be generalizable across datasets: a model trained on a specific ra-
dio channel could be used to index other radio channels. How-
ever when taking into account the non-pure categories (“mix” and
“bed”), the performances of our system dropped.

For the music genre recognition problem, since the indexes to
be found are global, we used the proposed “segment-statistical-
models” leading to results close to the state of the art.

The main goal of this paper was to show the effectiveness of
our generic generic system to solve quickly a specific problem.
Considering the fact that we have used the same system for both
problems, the results obtained are encouraging.

However the features used were very generic and therefore do
not allow to represent precisely the characteristics of some classes.
This was the case for the non-pure categories in speech/ music (de-
scribing these categories would involve having the possibility to
observe separately the various parts of the spectrum). This was
also the case for differentiating some music genres (differentiating
them would require higher level musical features such as rhythm
patterns, chord succession. . . ). Future works will therefore con-
centrate on extending the set of audio features on which the feature
selection is performed.

Another current limitation of our system comes from the un-
balancing of training sets (one class is more represented than the
others). In fact, real life training sets are often unbalanced. Fu-
ture works will therefore concentrate in adapting our training al-
gorithms (feature selection, feature space transforms) to this.
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ABSTRACT 

There is an increasing need for automatically classifying sounds 
for MIR and interactive music applications. In the context of 
supervised classification, we describe an approach that improves 
the performance of the general bag-of-frame scheme without 
loosing its generality. This method is based on the construction 
and exploitation of specific audio features, called analytical, as 
input to classifiers. These features are better, in a sense we define 
precisely than standard, general features, or even than ad hoc 
features designed by hand for specific problems. To construct 
these features, our method explores a very large space of func-
tions, by composing basic operators in syntactically correct ways. 
These operators are taken from the Mathematical and Audio 
Processing domains. Our method allows us to build a large num-
ber of these features, evaluate and select them automatically for 
arbitrary audio classification problems. 

We present here a specific study concerning the analysis of 
Pandeiro (Brazilian tambourine) sounds. Two problems are con-
sidered: the classification of entire sounds, for MIR applications, 
and the classification of attacks portions of the sound only, for 
interactive music applications. We evaluate precisely the gain 
obtained by analytical features on these two problems, in com-
parison with standard approaches. 

1. ACOUSTIC FEATURES  

Most audio classification approaches use either one of these two 
paradigms: a general scheme, called bag-of-frames, or ad hoc 
approaches. 

The bag-of-frame approach ([2], also cited [41]) consists in 
considering the signal in a blind way, using a systematic and gen-
eral scheme: the signal is sliced into consecutive, possibly over-
lapping frames (typically of 50ms), from which a vector of audio 
features is computed. The features are supposed to represent char-
acteristic information of the signal for the problem at hand.  These 
vectors are then aggregated (hence the “bag”) and fed to the rest 
of the chain. First, a subset of available features is identified, us-

ing some feature selection algorithm. Then the feature set is used 
to train a classifier, from a database of labeled signals (training 
set). The classifier thus obtained is then usually tested against 
another database (test set) to assess its performance. 

The use of the features as input to classifiers plays two roles: a 
dimension reduction role, and a representation role. Indeed, the 
signal itself could in principle be used as input to classifiers, but 
its dimension (number of samples) is usually too high with respect 
to the training set size, resulting in overfitting. Additionally, the 
time/amplitude representation of signals has long been acknowl-
edged to be poorly adapted to represent perceptive information: 
audio features used in the classification literature aim precisely at 
capturing essential perceptive characteristics of audio signals that 
are not easily revealed in the temporal representation. A source of 
audio features is for instance MPEG7-audio ([15] or more specifi-
cally [28] or [20]) for the music domain. These features are usu-
ally of low dimensionality, and contain statistical information 
from the temporal domain (e.g. Zero-crossing rate), spectral do-
main (e.g. SpectralCentroid), or more perceptive aspects (such as 
sharpness, relative loudness, etc.). 

The bag-of-frame approach has been used extensively in the 
MIR domain, for instance by [32]. A large proportion of MIR 
related papers has been devoted to studying the details of this 
chain of process: feature identification [28]; feature aggregation 
[34]; feature selection [26],[22],[7]; classifier comparison or tun-
ing [1],[41].  

An even larger proportion of ISMIR papers discuss the appli-
cation of this approach to specific musical problems: genre classi-
fication [38],[21],[25],[39]; orchestral sound [27]; percussion 
instrument [37],[35],[13],[36]; tabla strokes [9],[6]; audio finger-
printing [5]; noises [12] as well as identification tasks, such as 
vocal identification [18] or mood detection [19]. 

This approach achieves a reasonable degree of success on 
some problems. For instance, speech music discrimination sys-
tems based on the bag-of-frame paradigm yield almost perfect 
results. However, the approach shows limitations when applied to 
more “difficult” problems. Although classification difficulty is 
hard to define precisely, it can be noted that problems involving 
classes with a smaller degree of abstraction are usually much more 
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difficult to solve. For instance, genre classification works well on 
abstract, large categories (Jazz vs. Rock), but performance de-
grades for more precise classes (e.g. Be-bop vs. Hard-bop).  

In these cases, the natural tendency is usually to look for ad 
hoc approaches, which aim at extracting “manually” from the 
signal the characteristics most appropriate for the problem at 
hand, and exploit them accordingly. This can be done either by 
defining ad hoc features, integrated in the bag-of-frame approach 
(e.g. the 4-Hertz modulation energy used in some speech/music 
classifiers, [32], or by defining completely different schemes for 
classifying, e.g. the analysis-by-synthesis approach designed for 
drum sound classification [45], and further developed by [44] and 
[31]. 

One of the possible reasons for the limitation of bag-of-frame 
approach is that the generic features used, such as the Mpeg-7 
feature set, do not always capture the relevant perceptive charac-
teristics of the signals to be classified. Some classifier algorithms, 
such as kernel methods [33] including Support Vector Machines 
[4],[34] do try to transform the feature space with the aim of im-
proving inter-class separability. However, the increasing sophisti-
cation of feature selection or classifier algorithms cannot compen-
sate for any lack of information in the initial features set. 

Although ad hoc approaches may indeed reach interesting per-
formance, they are rarely reusable: ad hoc features are, by defini-
tion, problem specific. Consequently the scientific contribution 
(and epistemological status) of reports of ad hoc approaches is 
highly debatable. 

In this work we try to extend the range of applications for 
which the general bag-of-frame approach gives satisfactory re-
sults, by proposing a mechanism that invents specific ad hoc fea-
tures, in an automatic way to improve the classification perform-
ance. 

To find better features than the generic ones, one can find in-
spiration in the way human experts actually invent ad hoc fea-
tures. The papers quoted above use a number of tricks and tech-
niques to this aim, combined with intuitions and musical knowl-
edge. For instance, one can use some front-end system to normal-
ize a signal, or pass it through some filter, add pre or post-
processing to isolate the (hopefully) most salient characteristics of 
the signal. 

We propose here to automate a process of feature invention, 
by an algorithm which explores quickly a very large space of ad 
hoc functions. The functions are built by composing together - in 
the sense of functional composition - elementary operators. We 
call these functions analytical because they are described by an 
explicit composition of functions, as opposed to other forms of 
signal reduction, such as arbitrary computer programs. 

This paper is structured as follows: In Section 2 we introduce 
the EDS system, designed to create automatically and explore 
large sets of analytical features. Section 3 is devoted to the de-
scription of several experiments to compare the performance of 
analytical features against generic ones, on two sound classifica-
tion problems for the Pandeiro (Brazilian percussion instrument): 
an easy one, for MIR applications, and a more difficult one, for 
interactive music applications. 

2. CREATION OF ANALYTIC FEATURES: THE EDS 
SYSTEM 

EDS – Extractor Discovery System – is developed at the Sony 
CSL laboratory in Paris [45] to study experimentally the notion 
of analytical feature for audio signal processing applications. 

The EDS system is able to explore efficiently the space of 
analytical features for arbitrary supervised audio classification 
problem. A problem is determined by a database of audio sam-
ples labelled (usually by hand) with a finite set of classes. The 
exploration of the space of analytical features is based on various 
function creation methods from a set of basic operators, consid-
ered as elementary. These two aspects are described in the fol-
lowing sections. 

2.1. A library of elementary operators 

The choice of elementary operators is of course arbitrary. These 
operators were selected so as to allow the creation of functions 
with a “reasonable” degree of abstraction, i.e. represent salient 
perceptive characteristics of the sound with a small number of 
operators (about 10, see below), while allowing to create new, 
and possibly relevant functions. These operators are either basic 
mathematical operations (e.g. absolute value, max, mean) or sig-
nal processing operators such as Fourier transforms, filters, Db, 
and spectral operators like spectralCentroid, spectralSkewness. 
This library also includes more specifically musical operators 
such as Pitch or Ltas (Long Term Average Spectrum). For the 
sake of reproducibility, we describe in this paper results obtained 
with the 76 basic operators listed in Annex 1. 

If we limit the size of analytical features we create (i.e. the 
number of operators used in its expression), we explore a finite 
function space. To give a rough idea of its size: the feature space 
of features composed of at most 5 operator contains 2,5.109 func-
tions. In practice, we explore functions of size at most 10, which 
represents a space of 5.1020 functions. Here are some typical 
examples of functions generated by EDS: 

(A) Mean(Mfcc(Differentiation(x),5))  

(B) Median(Rms(Split(Normalize(x),32))) 

The first function (A) computes the average of the 5 first cep-
stral coefficients of the differentiation of the signal (represented 
by x). The second one (B) computes the mean value (Median) of 
the energy (Rms) of successive frames (split) of 32 samples long 
in the normalized signal. 

Feature creation is controlled by two mechanisms: 

1 – Each basic operator is typed according to the physical dimen-
sions of its arguments. Types avoid creating syntactically mean-
ingless features. For instance, the Fft operator takes as input 
something of the “time/amplitude” type, and its output type is 
“frequency/amplitude”. EDS can therefore generate 
Fft(HpFilter(x)), but not, e.g., Fft(max(x)). 

2 – Heuristics allow the system to further avoid creating unprom-
ising functions. E.g. a heuristics penalizes functions with too 
many repetitions, like Fft(Fft((Fft(x)))). 
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In practice, adding a new basic operator to the library 
amounts to define 1) corresponding typing rules and 2) heuristics 
to control the use of this operator (see [24]). 

2.2. Creating analytical features 

The creation of analytical features by composing elementary op-
erators is based on genetic programming search [16]. The main 
steps of this search are the following: 
1. Construction of an initial population of analytical features, by 

random compositions of operators. 
2. Evaluation: compute each feature on all the training signals, 

then use a classifier (see Section 2.3) to assess performance. 
3. Iteration of the process. The next population is built from the 

best features found in the current population, to which are 
added new features obtained using various genetic transforms 
of the current features. 

This genetic procedure explores parts of the infinite set of all 
analytical functions composed of basic operators. The conver-
gence towards “meaningful” or “interesting” analytical features is 
not guaranteed as this heuristic-based approach can be entrapped 
into local minima. 

The genetic transforms of step 3 are the following: 

- Substitution: replacing one operators by another one with a 
compatible type. E.g. 

(A’) Max( Mfcc(Differentiation(x),5) )  
is a substitution (Max replaces Mean) of (A) 

- Cloning: special case of substitution which consists in copying 
a feature but changing its parameters, e.g. : 

(B’) Median(Rms(Split(Normalize(x), 64)))  
is a clone of (B). 

- Mutation: an extension of substitution to sub expressions ap-
pearing in the definition of a feature, which satisfies the typing 
rules: 

(A”) Mean( Chroma(Normalize(x)) )  
is a mutation of (A): sub expression Chroma (Normal-
ize(x))  replaces Mfcc (Differentiation (x),5).  

- Crossover: combining two features to create a new one while 
satisfying the typing rules. For instance:  

(C) Mean( Rms(Split(Normalize(x),32)) )  
(C’) Median(Rms(Split( Differentiation(x) ))  

are crossovers between (A) and (B). 

- Addition: adding an operator to the root of a feature: 
(B”) 

Abs( Median(Rms(Split(Normalize(x),32))) )  
is an addition of (B). 

2.3. Evaluation of features 

To evaluate features, we need a computable criterion which 
measures the quality of a feature, i.e. its capacity to distinguish 
elements of different classes (labels). There are various ways to 
define such a criterion. The Fischer Discriminant Ratio [8] is 
often used because it is simple to compute and reliable for binary 
problems (two classes). However it is notoriously not adapted to 
multi-class problems, in particular for non convex distributions of 
data. 

To improve feature evaluation, we chose to implement a 
“wrapper approach” to feature selection: features are evaluated 
using a classifier built during the feature search. The fitness is the 
performance of a classifier built with this unique feature (or more 
precisely its F-measure [30]) trained on the training database. 
This measure yields better performance than the Fischer criteria 
on multi-class problems. 

3. PANDEIRO SOUND CLASSIFICATION 

The Pandeiro is a Brazilian frame drum (a type of tambourine) 
used in particular in Brazilian popular music (samba, côco, ca-
poeira, chôro). As it is the case for many popular music instru-
ments, there is no official method for playing the Pandeiro. How-
ever, the third author, a professional Pandeiro player, has devel-
oped such a method, as well as a notation of the Pandeiro, that we 
use in this paper. This method is based on a classification of 
Pandeiro sounds in exactly six categories (see Figure 1): 

Tung: Bass sound, also known as open sound; 

Ting: Higher pitched bass sound, also open; 

PA (big pa): A slap sound, close to the Conga slap; 

pa (small pa): A medium sound produced by hitting the Pandeiro 
head in the center. Also considered as a slap, but softer; 

Tchi: The jingle sound; 

Tr : A tremolo of jingle sounds. 

The need for automatically analyzing Pandeiro sounds is two-
fold. First, MIR applications, for education notably, require the 
ability to automatically transcribe Pandeiro solos. 

 . 
tung   ting 

  
tchi   tr 

  
PA   pa 

Figure 1. The gestures to produce the six basic Pandeiro 
sounds. 
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The second need is more original, and consists in developing 
real time interaction systems that expand the possibilities of the 
percussionist, to allow him to increase its musical “powers”. In 
this case, we need to analyze robustly and quickly Pandeiro 
sounds, to trigger various events (see, e.g.[17]). 

We therefore define two different analysis problems, corre-
sponding to these two applications. 

The first problem consists in classifying complete sounds 
(150ms duration) in the 6 classes. The second problem, much 
more difficult but more useful for real time applications, consists 
in classifying sounds using the least possible information, typi-
cally only the attack (about 3ms, that is 128 samples at 44 kHz), 
so as to allow a subsequent triggering of a musical event. To this 
aim we must build a reliable and very fast classifier.  

3.1. Available sound databases 

We have recorded a 2448 complete Pandeiro sounds (408 of each 
6 types). They were produced with the same instrument and re-
corded on a Shure Beta 98 microphone linked to a MOTU Trav-
eller sound card.  

In order to classify the sounds, it is important to finely locate 
them in time. To this aim, we designed a robust attack identifier, 
which works as follows, on the sounds of the two databases. 

We first extract an auditory spectrogram for the incoming 
signal [14]. Because of real-time constraints, we only compute an 
approximation of this spectrogram, as follows. The incoming 
signal is divided in non-overlapping frames of 1.4ms (64 samples 
at 44kHz). A loudness value is computed for each frame, generat-
ing the “loudness curve”. We compute the differentiation of this 
curve. We call these two curves, the loudness” and the differen-
tial. Both are low pass filtered to reduce noise. 

The attack detection is then performed in two phases. First 
we determine a threshold value for distinguishing actual sounds 
from noise. To this aim, the player captures 5 seconds of ambient 
noise (typically room noise as well as soft Pandeiro tchi sounds) 
and calculate the above mentioned curves from this audio infor-
mation. The maximum value of these curves define the loudness 
and differential thresholds. 

In the second phase, an attack is reported if, at a certain 
frame, the loudness level is greater than the loudness threshold 
and the norm of the differential curve exceeds the differential 
threshold. This frame is considered as the “attack frame”.  

          

Figure 2. The attack detector: on the left, the full sound 
and attack portion. On the right, a zoom of the pre-attack 
and post-attack portions of the signal. 

When an attack is reported, two audio files are recorded. The 
first file is the audio contained both in the attack frame and its 
preceding frame. This file populates the pre-attack database (see 
Figure 2). We record another audio file with the audio stream 

right after the attack (the attack frame and one after it). This file 
populates the post-attack database. 

Classifying the sound using only the pre-attack database in-
formation is the most difficult and useful problem in our context. 
The results on the post-attack database are slightly better, as it 
will be discussed, but they require an extra delay of 1.4ms (to get 
the next 64 samples) before processing. 

3.2. Experiments: training and testing bases 

In order to assess the efficiency of analytical features, we com-
pare them to results obtained with a “reference feature set”, 
whose complete list is given in Annex 2. This reference set in-
cludes general features commonly used in audio signal classifica-
tion tasks, and well defined mathematically. The list includes 
notably the Mpeg-7 audio list, as well as several others, such as 
Chroma, often used for music analysis [10]. 
We systematically evaluate the performance of two classifiers: 
one built with the reference set, the other built with the features 
found by EDS with the set of basic operators in Annex 1. 

Each experiment is in turn divided in two parts. First, classi-
fiers are trained on training samples and tested on the test sam-
ples. To this aim, databases are systematically divided in two 
parts, 2/3 for the training, and 1/3 for the test. The samples are 
chosen randomly, to avoid artifacts (e.g. evolution of the mem-
brane during the recording session, small variations in the player 
gestures). 

In the second part, classifiers are trained and tested only on 
the test database, using 10-fold cross-validation. 

This double experiment aims at showing that the advantages 
obtained by analytical features are consistent, and do not depend 
on the conditions of experiments. The cross-validation using only 
the test database is motivated by the fact the EDS already uses the 
training database for evaluating the analytical features. So reusing 
it for training the classifiers could produce biases (although we 
are not sure why and how). 

Finally, for the attack problem, we build an experiment in 
which the signal itself is used as a feature (this is possible be-
cause these signals are very short). The aim is to confirm that the 
signal is not a good feature. 

3.3. Choosing the classifiers 

There is a vast literature on supervised learning algorithms [41] 
West, K., Cox, S., Features and Classifiers for the automatic 
classification of musical audio signals, ISMIR 2004. 

[42] West, K., Cox, S., Features and Classifiers for the 
automatic classification of musical audio signals, 
ISMIR 2004. 

[43] with no clear winner in general. To demonstrate the advan-
tages of analytical features, we have conducted experiments with 
various classifiers, to avoid biases (e.g. SVM, kNN, J48). For the 
sake of clarity, we report here only the results with Support Vec-
tor Machines [34], which turned out to be the best and most sta-
ble algorithms tried. (We use the implementation provided in 
Weka [40] with the polynomial kernel.) 

We used EDS in a fully automated way for the creation and 
selection of analytical features. For each problem, we ran the 
genetic search until no improvements were found in feature fit-
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ness. For the complete sound problem, EDS evaluated about 
40,000 features. For the attack problem EDS evaluated about 
200,000 features. 

3.4. Feature Selection 

To compare the two approaches (general versus analytical fea-
tures) in a fair manner, it is important to train classifiers on 
spaces with identical dimension. For the full sounds, all reference 
features (cf. Annex 2) could be computed, yielding a feature set 
of dimension 100. We have therefore selected 100 scalar analyti-
cal features among the 23,200 computed by EDS. 

In the case of attacks, not all reference features were comput-
able, because there is insufficient data: only 17 reference features 
could be computed and evaluated, with a total dimension of the 
feature set of 90. We therefore selected 90 analytical features 
among the 77,500  (resp. 53,500) EDS created for pre-attacks 
(resp. post-attacks). 

To illustrate the results obtained, we have tried two different 
feature selection methods. Feature selection is important to avoid 
using redundant features. Here again, there are many feature se-
lection methods [11] and the choice of the method turns out to be 
important for the final evaluation of the classifier. To avoid bias, 
we use, here also, two methods. The first is the IGR algorithm 
(Information Gain Ratio) [29]. Technically, this corresponds to 
the Weka AttributeSelection algorithm with the following pa-
rameters: the evaluator is a InfoGainAttributeEval and the search 

is a Ranker, which allows us to determine a priori the dimension 
of the feature set.  

Secondly, we also developed a feature selection algorithm 
more suited to the application of EDS to multi-class problems. 
The idea is to select a feature set that “covers” optimally the 
classes to learn, from the viewpoint of individual features, that is, 
essentially of their F-measure (see Section 2.3). This algorithm 
iterates over all classes and selects successively features with the 
best F-measure for a given class. 

Finally, we present results obtained for various sizes of fea-
ture sets (from 1 to 100). This is an important aspect in the con-
text of real-time systems, where we want to minimize the number 
of features to compute in real time. As we will see, EDS finds not 
only better features but also feature sets of lesser dimension. 

3.5. Results and comments 

The tables Figure 3, Figure 4 and Figure 5 show the results ob-
tained: 

For the two problems, analytical features found by EDS im-
prove the classification performance. The full sound problem is 
relatively easy. The use of the full reference feature set (dimen-
sion 100) yields a precision of about 99,9%. With the same di-
mension, analytical features yields the same precision. The gain 
becomes interesting if we consider feature sets of smaller dimen-
sion: 2 analytical features yield a precision of 89,5% versus 78% 
for general features. 

 
   Feature Set Dimension 

Experiment Description 100 90 75 50 25 15 10 5 3 2 1 
Reference IGR Train/Test 99,9 99,9 99,6 99,5 99 99,5 99,1 92,8 88,5 65,2 56 
Reference IGR 10-fold XV 99,9 99,5 99,5 99,5 99,1 98,6 98,4 92 82 60,5 59,3 

EDS IGR Train/Test 99,9 99,9 98,5 98,3 98,9 98,3 99,1 98 68,9 36,1 36,9 
EDS IGR 10-fold XV 99,9 99,9 99,9 98,8 98 98,4 98,2 97,8 64,7 36 21,2 

Reference EDS FS Train/Test 99,9 99,9 99,9 99,8 99,1 99,1 98,9 98,8 93,6 80,8 67,2 
Reference EDS FS 10-fold XV 99,9 99,6 99,6 99,4 98,6 98,4 98,8 98,3 93,4 78,1 61,6 

EDS EDS FS Train/Test 99,9 99,9 98,9 99,9 99,9 99,6 99,5 99 89,9 88,8 73,8 
EDS EDS FS 10-fold XV 99,9 99,9 98,9 99,7 99,6 99,5 99,4 99 91,3 89,5 73,6 

Figure 3. Results on full sounds. IGR stands for Information Gain Ratio. EDS FS denotes our fea-
ture selection algorithm based on the F-measure. Train/Test denotes the experiment in which the 
classifier is trained on the training database and tested on the test database. 10-fold XV denotes 
the 10-fold cross validation experiment on the test database. 
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   Feature Set Dimension 
Experiment Description 90 75 50 25 15 10 5 3 2 1 

Reference IGR Train/Test 94,8 95,6 93 76,8 76 76,1 73,5 65,9 54,2 44,6 
Reference IGR 10-fold XV 94,8 94,8 92,7 78,8 73,2 72,2 66,2 65,2 48,3 43,3 

EDS IGR Train/Test 94,8 95,6 92,9 81 76,6 76 69,6 65,7 54,2 44,5 
EDS IGR 10-fold XV 95,1 94,5 92,8 78,8 73,2 73,5 66,8 65,3 50,9 45 

Reference EDS FS Train/Test 94,7 94,7 94,8 92,4 90,8 88,7 87,2 84,1 71,4 52,4 
Reference EDS FS 10-fold XV 95,4 94,7 94 91,9 90,8 87,9 85,7 81,5 68,5 51,3 

EDS EDS FS Train/Test 96 95,5 95,1 93,9 93,5 93,4 93 89,9 86,2 71,7 
EDS EDS FS 10-fold XV 95,1 95 95,2 93,3 92,9 92,5 92,5 88,3 84,8 71,6 

Signal   75.8 75.8 72.5 67.6 67.1 46 44 36.6 37 35.5 

Figure 4. Results obtained with on pre-attacks. See above for abbreviations. The “Signal” line 
gives the performance of classifiers using the input signal directly as a feature. 

   Feature Set Dimension 

Experiment Description 90 75 50 25 15 10 5 3 2 1 

Reference IGR Train/Test 91,8 91,3 89,6 76,6 78,3 67,5 64,3 56,1 51,1 49
Reference IGR 10-fold XV 92,6 91,2 88,8 79,9 73,2 67,4 64,7 44,2 42,4 34,5

EDS IGR Train/Test 95,1 93,3 92,3 77,7 72,5 63 61,3 54,7 54,5 56,9
EDS IGR 10-fold XV 94,9 93,8 92,4 80,8 78,9 62,4 61 55,1 55,9 54,9

Reference EDS FS Train/Test 91,9 91,5 91 87,7 86,7 83,4 83,6 71,7 55,6 43,9
Reference EDS FS 10-fold XV 91,9 91,5 90,2 86,1 85,2 78,9 82 68,5 48,6 39

EDS EDS FS Train/Test 94,9 94,4 94 92,1 91,4 87,9 90,1 88,6 80,4 72,1
EDS EDS FS 10-fold XV 94,5 94 93,3 91,4 91,4 89 89,5 88 80,1 69,2

Signal   77.7 76.9 73.3 64.1 64.2 60 59.2 58.1 57.5 44

Figure 5. Results obtained with on post-attacks. See above for abbreviations. 

 

The attack problems are more difficult and interesting. Ana-
lytical features are still better than general ones, in particular 
for small feature sets. For the post-attack problem, 3 analytical 
features perform as well as the 50 best general features.  

We can note that the gain evolution depends on the feature 
selection algorithm used. The standard IGR algorithm does not 
select the best EDS features for small size feature sets (this 
result is already known, see [3]). However, our feature selec-
tion algorithm yields better results for all sizes of the feature 
set, as illustrated in Figure 6. This result shows again, if 
needed, the difficulty in interpreting the precision of classifiers 
directly. 

The performance gain brought by analytical features for 
small feature sets has a lot of advantages, in particular for real-
time applications. For the attack problem, 3 features yield a 
precision greater than that obtained with 50 reference features. 
These features are the following: 

Abs (Log (Percentile (Square (BpFilter (x, 764, 3087)), 64))) 

Centroid (MelBands (Differentiation (HpFilter (Power (Normalize (x), 
3), 100)), 6)) 

Abs (Sum (Arcsin (Mfcc (Hann (HpFilter (x, 19845)), 20)))) 

50
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Figure 6. Analytical vs. reference features on attacks 

This particular result allows us to consider real-time im-
plementations: on a 3GHz Pentium IV PC, the computation of 
the 3 features for a 2,8 ms signal takes about 3 ms, to be com-
pared to the computation of 50 generic features, which takes 
12 ms, that is 4 times slower. 

4. CONCLUSION 

We have presented a method for creating audio features, called 
analytical, by composing basic signal operators, to improve the 
performance of classification algorithms. We have illustrated 
this idea on audio classification problems dealing with 
Pandeiro sounds. In all cases (classifying full sounds, or only 
portions of the attacks) analytical features do improve the per-
formance of classification, as compared to results obtained with 
generic, Mpeg-7 like features, in a bag-of-frame approach. The 
gain is notable both in terms of classification precision and 
feature set size. Moreover, analytical features improve classifi-
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cation algorithms independently of any other optimization 
process (such as boosting, bagging or ad hoc approaches). 
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7. ANNEXES 

All the sounds and results of this study are made avail-
able to interested readers, as well as feature files (Weka 
format): http://SecondAuthorWebSite/pandeiro 

7.1. Annex 1 – Basic EDS operators 

The list of basic operators used by EDS in this study is the 
following: 

Abs 
Arcsin 
AttackTime 
Autocorrelation 
Bandwidth 
BarkBands 
Bartlett 
Blackman 
BpFilter 
Centroid 
Chroma 
Correlation 
dB 
Differentiation 
Division 
Envelope 
Fft 
FilterBank 
Flatness 
Hamming 
Hann 
Hanning 
HarmSpectralCentroid 
HarmSpectralDev 
HarmSpectralSpread 

HarmSpectralVar  
HFC 
HMean 
HMedian 
HMax 
HMin 
HpFilter 
Integration 
Inverse 
Iqr 
Length 
Log10 
LpFilter 
Max 
MaxPos 
Mean 
Median 
MelBands 
Min 
Mfcc0 
Mfcc 
Multiplication 
Normalize 
Nth 
NthColumns 

PeakPos 
Percentile  
Pitch 
PitchBands 
Power 
Range 
RHF 
Rms 
SpectralCentroid 
SpectralDecrease 
SpectralFlatness 
SpectralKurtosis 
SpectralRolloff 
SpectralSkewness 
SpectralSpread 
Split 
SplitOverlap 
Sqrt 
Square 
Sum 
Triangle 
Variance 
Zcr 
Harmonicity(Praat) 
Ltas(Praat) 

 
A precise description of operators can be found in [46]. 

7.2. Annex 2 – Reference features 

The list of general features used as the reference set is the 
following (features preceded by ‘*’ could not be com-
puted on the attack sounds because of their size): 
 
* HarmonicSpectralCentroid(Hanning(x)) 
* HarmonicSpectralDeviation(Hanning(x)) 
* HarmonicSpectralSpread(Hanning(x)) 
Log10(AttackTime(x)) 
*Pitch(Hanning(x)) 
SpectralCentroid(Hanning(x)) 
* SpectralFlatness(Hanning(x)) 
SpectralSpread(Hanning(x)) 
Centroid(x) 
PitchBands(Hanning(x),12.0) 
Mfcc0(Hanning(x),20.0) 
* HarmonicSpectralVariation(SplitOverlap(Hanning(x) ,2048,0.5)) 
Rms(x) 
RHF(Hanning(x)) 
HFC(Hanning(x)) 
SpectralKurtosis(Hanning(x)) 
SpectralSkewness(Hanning(x)) 
SpectralRolloff(Hanning(x)) 
Iqr(x) 
Chroma(Hanning(x)) 
MelBands(Hanning(x),10.0) 
BarkBands(Hanning(x),24.0) 
Zcr(x)   
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ABSTRACT
This paper presents methods for the automatic detection of music
within audio streams, in the fore- or background. The problem
occurs in the context of a real-world application, namely, the anal-
ysis of TV productions w.r.t. the use of music. In contrast to plain
speech/music discrimination, the problem of detecting music in
TV productions is extremely difficult, since music is often used
to accentuate scenes while concurrently speech and any kind of
noise signals might be present. We present results of extensive ex-
periments with a set of standard machine learning algorithms and
standard features, investigate the difference between frame-level
and clip-level features, and demonstrate the importance of the ap-
plication of smoothing functions as a post-processing step. Finally,
we propose a new feature, called Continuous Frequency Activation
(CFA), especially designed for music detection, and show experi-
mentally that this feature is more precise than the other approaches
in identifying segments with music in audio streams.

1. INTRODUCTION

Annotation and tagging of audio data have mainly been human
tasks in the past. The growing amount of digital media, however,
makes manual tagging impractical. One of these tiresome tasks is
to determine whether or not music is present in an audio excerpt.
This problem occurs in many application contexts. A particular
variant of this problem was posed to us by the Austrian National
Broadcasting Corporation (ORF): the task is to automatically de-
termine where in the sound track of a TV production there is mu-
sic being played, in the foreground or in the background. This is
important for the calculation of royalty fees, which are paid to a
national agency according to certain rules. Ideally, the production
team would supply a precise list of all the music segments occur-
ring in a TV production, but in reality these lists are often incorrect
or simply empty, which requires the ORF to more or less guess the
amount of music within a production, since manually annotating
all productions is simply impossible. Thus, it would be desirable
to have a system that automatically detects music segments and
predicts, with high precision, the percentage of time where music
is present within a production.

In this paper, we present our approach to this difficult music
detection problem. First a brief literature review is given out in
Section 2. Section 3 presents an overview of our overall approach
and a detailed description of the features examined. In Section 4.1
we report on the ground truth data that were collected, on extensive
machine learning experiments and the results obtained with them.
We then introduce a new feature in Section 5 and show that this
feature indeed yields further improvement. Finally, we present our
conclusions and discuss future work.

2. RELATED WORK

There has been quite some research recently on the automatic dis-
crimination between speech and music. Even if our problem is
related, it must be pointed out that detecting music within TV pro-
ductions is more complicated than simple music/speech discrimi-
nation. The major reason is that music and other sounds are gen-
erally mixed in TV, and in particular that the musical background
of movies is typically rather soft compared to spoken words or
scene-related sounds in the foreground. That is because music
is normally used to create the atmosphere of a scene and should
not attract the listener’s attention. Interestingly, when people pay
attention to the presence of music in movies, most of them are
surprised at what a high percentage of music is present and how
difficult it is, in many cases, to even tell whether or not music is
being played at all.1 Thus, in contrast to the typical datasets usu-
ally used in speech/music discrimination research, which mostly
consist of relatively distinct cases of the classes music and speech,
we mainly have to deal with soft music signals mixed with other
sound signals.

There has been some previous work that is relevant to our
problem, for example Santo et al. [1], who worked on automatic
video segmentation based on audio track analysis. In contrast to
our problem – deciding whether there is music present or not –
they deal with seven different classes. When aggregating the re-
sults they report for their 7 classes to the two broad classes music
and no_music only, we arrive at a classification accuracy of their
system of approximately 75.86%, which we consider as a quite
good and a useful baseline to evaluate our approach. Khan et al.
[2] give an interesting overview of existing features and methods
for movie audio classification, although the results of the various
approaches are incomparable to each other, due to the lack of com-
mon test databases and different application areas. Minami et al.
[3, 4] focus on the automatic indexing of videos by discriminating
video scenes according to the classes speech, music and music and
speech. Their system is composed of two expert systems, one for
detecting music and the other one for detecting speech. They re-
port an average detection rate of 90% for musical segments. How-
ever their ground truth database seems to be very unrepresenta-
tive – we re-implemented their approach and only achieved a low
55.78% on our real world dataset (see below). Mauclair and Pin-
quier [5] apply their speech/music classification system to record-
ings from radio stations, where they achieve a classification accu-
racy of 86.9% for music/non-music discrimination (which should

1To illustrate the difficulty of this problem we provide, on our home-
page, some audio samples of the television productions we have been anno-
tating — see http://www.cp.jku.at/people/seyerlehner/
md.html.
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be simpler than background music detection in TV shows). Alto-
gether, speech/music discrimination seems to have broad applica-
tion potential and attracted a lot of research attention, but to our
knowledge there is no scientific work focusing specifically on mu-
sic detection.

3. SYSTEM OVERVIEW

The architecture of our music detection system resembles a classi-
cal machine learning process extended by a post-processing stage.
In a first step the audio stream is cut into small frames and features
are extracted for each frame. Second, a classifier is trained on a
distinct training set and learns to distinguish the two classes mu-
sic and no_music. It is then used to predict the class labels for all
the frames in new TV shows. In a final post-processing stage the
classification results are smoothed in such a way that we obtain a
plausible label sequence for longer continuous segments of audio.

Since the choice of features is very critical, we first decided to
test some promising features known from recent work in the field
of speech/music discrimination. The next section gives a detailed
description of the features we have chosen to investigate.

3.1. Features

We focused on four sets of features. A major aspect during the de-
cision process was that a feature must still be able to capture mu-
sical properties, even if speech or any kind of sounds are present.
Thus, for example, we did not consider 4 Hz modulation energy
and zero-crossing rate related features, since they are merely use-
ful in speech/music discrimination to detect speech segments, but
not in the case of music detection alone.

3.1.1. Spectral Entropy (SE)

In general the entropy measures the uncertainty or unpredictabil-
ity of a probability mass function (PMF). The entropy of the spec-
trum of an audio frame is a well-known feature for speech/music
discrimination [6]. To be able to compute the entropy, the power
spectrum is converted into a probability mass function:

xi =
XiPN

j=1 Xj

(1)

where Xj denotes the energy of j-th frequency component of the
STFT spectrum of the current frame. For each frame the entropy
is computed from ~x as:

H =

NX
i=1

−xi log2 xi (2)

In general the spectral entropy should be higher for speech frames
than for music frames.

3.1.2. Chromatic Spectral Entropy (CSE)

The Chromatic Spectral Entropy, as defined in [7], is a variant of
the Spectral Entropy. Instead of computing the entropy directly
based on the normalized power spectrum, the power spectrum is
first mapped onto the Mel-frequency scale and divided into 12 sub-
bands, where the center frequency fi of a band coincides with one
of the 12 semitones of the chromatic scale. For a fixed center fre-
quency f0 of the lowest band, the center frequencies of the other
sub-bands correspond to:

fi = 1127.01048 ∗ log(
f0 ∗ 2

k
12

700
+ 1) (3)

As for the Spectral Entropy the energies of the sub-bands Xi are
normalized according to equation (1), and the entropy of the chro-
matic representation of a frame is again computed as in equation
(2).

3.1.3. Mel Frequency Cepstrum Coefficients (MFCC)

Mel Frequency Cepstrum Coefficients are a compact representa-
tion of the spectral envelope of a frame. After a non-linear map-
ping onto the Mel-frequency scale, to better approximate the fre-
quency resolution of the human ear, the envelope of the log-spec-
trum is compactly represented by the first few coefficients after a
DCT compression. MFCCs are well-known for capturing timbral
aspects of short audio frames. Ezzaidi et al. [8] show the success-
ful application of ∆MFCCs in the area of speech/music classifica-
tion.

3.1.4. Linear predictive Coefficients (LPC)

Linear prediction is used to predict the current value ŝ(n) of the
real-valued time series s(n) based on past p samples [9].

ŝ(n) =

pX
i=1

ais(n− i) (4)

The filter coefficients ai define the p-th order linear predictor (FIR
filter). The optimal filter coefficients are determined by minimiz-
ing the prediction error in the least squares sense. The prediction
error, or residual error, is given by

e(n) = s(n)− ŝ(n) = s(n)−
pX

i=1

ais(n− i). (5)

For the compact representation of an audio frame the time-series
s(n) is the time-domain sample sequence of the current frame.
The prediction error is expected to be significantly higher for im-
pulsive speech compared to steady notes played by instruments.

Additionally, ∆MFCC, ∆LPC, ∆SE and ∆ CSE were also
added to the feature set.

3.2. From frame-level to “clip-level” features

Short-term frame-level features capture essential information about
the sound of an audio frame. Such an audio frame commonly lasts
10-40 ms, which means that it contains little if any temporal in-
formation. Our machine learning approach does not assume any
specific ordering of the training or test examples either and thus
most of the temporal information is lost. For speech/music dis-
crimination temporal information might be useful, because speech
segments tend to be more impulsive than music segments, leading
to a higher variance of the frame-level feature values over time.
To capture some of this temporal information we summarize a
sequence of consecutive feature vectors by computing mean and
standard deviation over a fixed number of frames. The resulting
features – now representing an audio clip of several seconds of
audio – are called clip-level features in accordance with [9]. We
performed dedicated machine learning experiments to investigate
if these clip-level features yield any improvement over frame-level
features. We will report on the results in section 4.1.
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3.3. Smoothing

The result of the classification process is a sequence of class labels
music or no_music, where each label is associated with a short
excerpt of audio. Depending on the type of feature, either frame-
level or clip-level, the labels might change every few milliseconds
or every few seconds. An analysis of our annotated ground truth
material (see section 4.1) shows that there are no music segments
shorter than 3 seconds, and only 14 out of 324 music segments are
shorter than 7 seconds. This indicates that music as used in TV
productions lasts at least several seconds. Consequently, frame-
based class labels should be aggregated into larger continuous seg-
ments of music or no_music in order to get a plausible segmenta-
tion of an audio stream. To come up with a smoothed version of the
label sequence we iteratively apply (twice) a majority filter with a
sliding window length corresponding to 5 seconds. In a final step,
if there are any continuous label segments left that are shorter than
5 seconds, we remove them by swapping first of all the no_music
segments shorter than 5 seconds to music and then the music seg-
ments shorter than 5 seconds to no_music. Altogether we smooth
the label sequence in a fist step and filter out all remaining seg-
ments shorter than 5 seconds by swapping their class label. It is
important to note that smoothing functions might introduce a bias
by slightly favoring one of the classes.

4. EXPERIMENTS AND RESULTS

4.1. Data and Ground Truth

To be able to train our classifiers on real world situations represen-
tative for the later operation at the television station, we recorded a
number of real TV telecasts. Recording was done using the DVB-
T standard, and the digital digital video streams were encoded as
MPEG-2. In a second stage the sound tracks of the 13 TV shows
(approximately 545 minutes of audio) were converted to PCM
mono at 22 kHz with a precision of 16 Bit/sample. Thereafter all
audio files were annotated manually according to the class labels
music and no_music, which turned out to be quite challenging, be-
cause it is often hard to tell when precisely some background mu-
sic starts or stops playing. Consequently, assuming an imprecision
for each change of the label of just one second, we get an upper
bound on the overall classification accuracy of 98%, which is still
a very optimistic estimate. Table 1 shows the distributions of the
two classes for each of the 13 recorded ORF TV productions. Ob-
viously, the amount of music present in a show depends heavily on
the type of show. The baseline for the overall classification accu-
racy is 58.01%, which is the percentage of the more frequent class,
no_music.

To yield a clear separation between training and test data, all
the frames of an entire show must either be in the training or the
test set. The first three shows, which are separated from the others
in table 1, constituted the training set. Such a separation prevents
a bias of learning algorithms towards specific characteristics of a
single broadcast, e.g. the voice of the moderator, which would lead
to too optimistic results.

4.2. Prediction Experiments

One of our interests was to find out if we can achieve any im-
provement by using clip-level features generated out of frame level
features instead of using the frame-level features themselves (see

title type % music min
Der Volksanwalt law show 1.48 % 35

Starmania music show 50.18 % 89
Sturm der Liebe soap opera 70.52 % 49

Alpen Donau Adria documentary 57.08 % 30
Barbara Karlich Show talk show 7.51 % 57

Da wo es noch Treue gibt soap opera 62.90 % 89
Frisch gekocht cooking show 10.01 % 24

Gut beraten Österreich talk show 8.76 % 18
Heilige Orte documentary 54.34 % 44

Heimat fremde Heimat documentary 29.72 % 30
Hohes Haus parliament show 17.50 % 30

Julia soap opera 80.36 % 43
ZIB news show 4.91 % 7
total – 41.99 % 545

Table 1: The ground truth data.

section 3.2). To do so, we extracted both frame-level (with a win-
dow size of 24ms) and clip-level features (with a window size of
1172ms) for all 13 audio streams. Our current framework makes
use of the WEKA[10] machine learning library. We used five (very)
different WEKA classifiers to evaluate the features via machine learn-
ing experiments. The simple nearest-neighbor classifier IBk was
chosen as a representative of instance-based learning methods, Sup-
port Vector Machines (SMO) for kernel-based machine learning
methods, MultilayerPerceptron as the most popular representative
of the neural network family of classifiers, and REPTree and Ran-
domForest for decision tree learners. For each of these classifiers
we computed the overall classification accuracy on the test set (ap-
proximately 372 minutes of audio) after learning from the inde-
pendent training set.

classifiers frame level clip level
IBk 69.94 % 66.47 %

MultilayerPerceptron 69.67 % 65.99 %
SMO 69.48 % 73.27 %

REPTree 64.07 % 64.48 %
RandomForest 70.66 % 73.19 %

Table 2: Frame level versus clip level features.

Table 2 shows the results. They seem to strongly depend on
the type of classifier. No general advantage of clip-level features
compared to frame-level features could be shown by our experi-
ments. All further experiments are based on frame-level features.

The second experiment investigated the benefits of smooth-
ing. The classification results before and after the application of
the smoothing function are compared in table 3. For all of the
five classifiers a substantial improvement of the classification re-
sult could be shown.

In general, applying smoothing functions increases the accu-
racy, but tests with various smoothing functions indicate that more
sophisticated smoothing does not seem to improve the classifica-
tion results any further. Figure 4 shows the classification results of
"Julia" before and after the application of the smoothing function.
Even visually it is quite obvious that the aggregation of the frame
level classifications makes sense.
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classifier no smoothing smoothed
IBk 69.94 % 79.82 %

MultilayerPerceptron 69.67 % 81.21 %
SMO 69.48 % 76.19 %

REPTree 64.07 % 73.48 %
RandomForest 70.66 % 77.20 %

Table 3: Smoothed versus original results.

The best overall result using the machine learning approach
and various standard features was achieved with the smoothing
function applied to the class predictions of the MultilayerPercep-
tron. A total accuracy of 81.21 % can be reached with this configu-
ration. Table 4 shows the classification accuracy for each recorded
show of the test set separately.

title % real % est. diff.
Alpen Donau Adria 57.08 % 19.00 % 38.08

Barbara Karlich Show 7.51 % 12.33 % 4.82
Da wo es noch Treue gibt 62.90 % 63.47 % 0.57

Frisch gekocht 10.01 % 22.73 % 12.72
Gut beraten Österreich 8.76 % 6.42 % 2.34

Heilige Orte 54.34 % 49.82 % 4.52
Heimat fremde Heimat 29.72 % 52.17 % 22.45

Hohes Haus 17.50 % 15.84 % 1.66
Julia 80.36 % 68.01 % 12.35
ZIB 4.91 % 2.84 % 2.07

Table 4: The percentage of music really present versus the percent-
age estimated.

Since in our project we have to determine the percentage of
time where music is present within a production, the difference in
percentage points is our real quality measure. Even if the machine
learning approach yields an overall classification accuracy of more
than 80%, the error, in terms of the difference in percentage points,
is too high for some TV shows to be useful for the ORF. In gen-
eral, a maximal prediction error of 5 percentage points would be
desirable for the planned application, and a prediction error of 10
percentage points may be the maximum that is still considered ac-
ceptable. In table 4 all results exceeding this maximum error of
10 percentage points are highlighted. Consequently, to further im-
prove the obtained results, a new feature especially designed for
the detection of music was developed and will be introduced in the
next section.

5. CONTINUOUS FREQUENCY ACTIVATION (CFA) - A
NEW FEATURE FOR MUSIC DETECTION

Our experiments show that standard speech/music discrimination
features work reasonably well overall, but produce rather large er-
rors in some cases. On the other hand most of these features were
not designed for this particular type of music detection task we
are working on. None of these features accounts for the special
characteristics of music signals. In essence, what makes music
different from other sounds are structural properties. Examples of
higher-level structural properties are rhythm and harmony. Music

Figure 1: Spectogram of an audio excerpt containing music and
speech.

detection might benefit from focusing on such structural proper-
ties, at various levels of the signal.

Consider for example the audio track of a movie containing
some sort of background music. Because of the music being played
in the background the music signal itself will be embedded very
softly in the audio signal, and the global characteristics of the au-
dio signal will more strongly resemble the characteristics of speech
or noise. Features characterizing for example the frequency distri-
bution of an audio frame will tend to model the properties of the
sounds belonging to the foreground and are therefore not useful
for music detection in such a case. However, we still might be
able to reveal structural properties of background music, e.g. the
rhythmic structure, because it is unlikly that all rhythmic events are
completely masked by the foreground signal. Consequently, fea-
tures focusing on the extraction of structural properties especially
attributable to music might be more successful in separating music
from no_music segments. In the following, we develop an intu-
itive feature that is meant to capture a kind of low-level structural
property of musical sounds.

5.1. The basic Idea

In general music tends to have more stationary parts than speech,
resulting in horizontal perceivable bars within the spectrogram rep-
resentation of an audio signal (see figure 1). This property was
already investigated by Hawley, who was interested in the struc-
ture of music [11] and who was the first to propose a simple music
detector based on this. The horizontal bars in the spectrogram are
continuous activations of specific frequencies and are usually the
consequence of sustained musical tones. Minami et al.[3, 4] tried
to construct an improved feature based on this observation. Their
feature seems to work quite well for clearly distinct examples of
music and no_music, but tends to fail when it comes to reliably
detecting music within mixed segments containing for example
speech and music. (We checked that by reimplementing their fea-
ture in our framework.) A deeper analysis of the feature led to
the conclusion that concentrating on absolut energy values of the
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spectogram has a counter-productive effect, because the horizon-
tal bars might be rather soft and the absolute values of foreground
sounds will have a stronger impact. Keum et al. [12] recently
introduced a feature that relies on a binarization step to neglect
the absolute strength of an activation. However, their binarization
threshold is chosen so as to remove the small magnitudes, which
is equivalent to removing all the soft activations corresponding to
the soft musical tones we want to detect. In the next section a new
feature is proposed to make the detection of continuous frequency
activations more reliable, even if other audio signals are present
simultaneously.

5.2. The feature extraction process

The computation of the Continuous Frequency Activation (CFA)
of an audio stream can be subdivided into several steps:

• Conversion of the input audio stream
The input stream is converted to 11 kHz and mono.

• Computation of the power spectrum
We compute the power spectrum using a Hanning window
function and a window size of 1024 samples, corresponding
to approximately 100ms of audio. A hop-size of 256 sam-
ples is used, resulting in an overlap of 75% percent. After
the conversion to decibel, we obtain a standard spectrogram
representation.

• Emphasize local peaks
To emphasize local energy peaks within each frame of the
STFT we subtract from the power spectrum of each frame
the running average using a window size of N = 21 fre-
quency bins:

Xemph
i = Xi − 1

N

N
2X

k=−N
2

Xmin(max(k,1),N) (6)

where Xi denotes the energy of the i-th frequency compo-
nent of the current frame. This step is useful to emphasize
very soft tones, belonging to background music: if a soft
tone is not masked by another signal over its entire duration
(which is unlikely, as non-music signals tend to be less sta-
tionary), the perceivable horizontal bars in the spectogram
are compositions of consecutive local maxima. Thus, we
try to emphasize these soft bars by emphasizing all local
maxima in the spectrum of a frame.

• Binarization
To neglect the absolute strength of activation (energy) in
a given frame j, we binarize each frequency component
Xemph

ij by comparing to a fixed binarization threshold. The
binarization threshold t = 0.1 was chosen in such a way
that even soft activations could be kept in the binarized
spectogram. Only frequency bins which are obviously not
active at all, will be set to 0 using this low threshold. This
is an important difference to Keum et al. [12], who apply a
threshold to remove small magnitudes.

Bij =

(
1 Xemph

ij > t

0 Xemph
ij ≤ t

(7)

Neglecting the actual strength of the activation allows us to
focus on structural aspects of the emphasized spectrogram
only.

• Computation of the frequency activation
We further process the binarized power spectrum in terms
of blocks. Each block consists of F = 100 frames and
blocks overlap by 50%, which means that a block is an
excerpt of the binarized spectrogram corresponding to 2.6
seconds of audio. For each block we compute the frequency
activation function Activation(i). For each frequency bin
i, the frequency activation function measures how often a
frequency component is active in a block. We obtain the
frequency activation function for a block by simply sum-
ming up the binarized values for each frequency bin i:

Activation(i) =
1

F

FX
j=1

Bij (8)

Normalizing the frequency activation by the length of the
block is not necessary, but would make it possible to com-
pare results from different block lengths. Figure 2 shows
the binarized emphasized power spectra of two blocks and
the resulting frequency activation functions. Subplot (b) is
typical of blocks containing music, whereas subplot (a) is
representative for blocks without any musical elements.

• Detect strong peaks
Strongs peaks in the frequency activation function of a given
bock indicate steady activations of narrow frequency bands.
The “spikier” the activation function, the more likely hor-
izontal bars, which are characteristic of sustained musical
tones, are present. Even one large peak is quite a good in-
dicator for the presence of a tone. The peakiness of the
frequency activation function is consequently a good indi-
cator for the presence of music. To extract the peaks we use
the following simple peak picking algorithm.

1. Collect all local peaks, starting from the lowest fre-
quency. Each local maximum of the activation func-
tion is a potential peak (and there are many of them –
cf. Figure 2).

2. For each peak xp, compute its height-to-width index
or peak value pv(xp) = h(xp)/w(xp), where the
height h(xp) is defined as min[f(p)−f(xl), f(p)−
f(xr)], with f(x) the value of the activation function
at point (frequency bin) x and xl and xr are closest
local minima of f to the left and right of xp, respec-
tively. The width w(xp) of the peak is given by:

w(xp) =

�
p− xl f(p)− f(xl) < f(p)− f(xr)
xr − p otherwise

Steps 1 and 2 can be done in one left-to-right scan of the
activation function.

• Quantify the Continuous Frequency Activation
To quantify the Continuous Frequency Activation of the ac-
tivation function of a block, the pv values of all detected
peaks are sorted in descending order, and the sum of the
five largest peak values is taken to characterize the overall
“peakiness” of the activation function.

As a result of this lengthy extraction process we obtain exactly
one numeric value for each block of frames, which quantifies the
presence of steady frequency components within the current audio
segment. For blocks containing music the resulting value should
be higher than for blocks where no music is present.
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Figure 2: Binarized spectogram of a block and the corresponding
activation function. Block (a) contains no music, whereas in block
(b) music is present.

5.3. Results using the new feature

Returning just a single numeric value, the newly proposed feature
simplifies the classification process a lot. The separation of the two
classes music and no_music can be done by a simple comparison
with a threshold t. Optimising the threshold on our training set
(the top 3 shows in Table 1) yielded a value of t = 1.24.

Table 5 shows the percentage predictions on the test set with
this threshold value, after the application of the smoothing func-
tion introduced in section 3.3. Only two estimates, highlighted in
bold face, exceed the error level of 10 percentage points. To il-
lustrate the effectiveness of the CFA, Figure 5 once more shows
the automatic segmentation of “Julia”. It is clearly visible that
the CFA feature makes far fewer mistakes even before smoothing.
The classification accuracy of 81.21% obtained with the machine
learning approach improves to 89.93%, although now just one fea-
ture and simple thresholding is used. This compares favorably to
the 75.86% we reconstructed from the results reported by [1] on a
related problem (see section 2 above).

Figure 3 compares the real percentages of music present, the
percentages predicted by the machine learning approach, and the
percentages estimated using CFA alone. There are still some cases
where the CFA feature fails. Especially when the continuous fre-

title % real % est. diff.
Alpen Donau Adria 57.08 % 48.61 % 8.47

Barbara Karlich Show 7.51 % 6.64 % 0.87
Da wo es noch Treue gibt 62.90 % 63.50 % 0.60

Frisch gekocht 10.01 % 6.69 % 3.32
Gut beraten Österreich 8.76 % 5.74 % 3.02

Heilige Orte 54.34 % 42.70 % 11.64
Heimat fremde Heimat 29.72 % 17.33 % 12.39

Hohes Haus 17.50 % 9.26 % 8.24
Julia 80.36 % 76.88 % 3.48
ZIB 4.91 % 0 % 4.91

Table 5: The percentage of music really present versus the percent-
age estimated using Continuous Frequency Activation.

Figure 3: Comparison of the real percentage of music, the machine
learning estimate and the CFA estimate (see tables 4 and 5; The
numbering of the television productions corresponds to the rows
in these tables.)

quency activations are a consequence of continuous noise signals,
such as e.g. helicopter noise, the CFA feature wrongly detects mu-
sic segments. Again, some examples of those misclassifications
can be found at ( http://www.cp.jku.at/people/seyerlehn
er/md.html).

We also tested the CFA feature on a different set of reference
data, namely, the Scheirer-Slaney database [13], which consists of
245 samples of radio recordings (which are presumably easier to
classify than our data). To our knowledge, this is currently the
only dataset of this kind that is publicly available.2 The dataset
was split into a training and a test set by Dan Ellis and is described
in detail in [15]. The only change we made was to reduce the
classes to music and no_music only. Based on this training set
of 184 examples, we found an empirical threshold of t = 1.05.
Using this threshold, 60 out of the 61 examples of the test set were
classified correctly – a classification accuracy of 98.36%, which is

2We hope to get the permission by the Austrian National Broadcasting
Corporation (ORF) to make our ground truth data available online.

DAFX-6

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

226 DAFX-07



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

roughly comparable to the results reported in [14].

6. CONCLUSIONS

In this paper we introduced a new music detection application,
namely music detection in TV productions, and pointed out that
this application differs from common speech/music classification
problems. Our experiments show that standard speech/music dis-
crimination features in combination with standard machine learn-
ing algorithms yield interesting, but highly varying results. There-
fore we focused on the development of more reliable features.

Extending standard frame-level features to clip-level features,
thus incorporating some rudimentary temporal information, seems
not to be a successful strategy. On the other hand, our experiments
show that the application of an appropriate smoothing function re-
sults in plausible segmentations and improves the overall accuracy
considerably.

We then introduced a new feature which was especially de-
signed to detect music in an accurate and robust way. This raised
the total accuracy on our highly non-trivial test set to 89.93%.
Surprisingly, a simple thresholding approach based on this new
feature alone outperforms the machine learning approach. This
supports the thesis that music detection can be further improved
if one makes use of the structural aspects of music, which even
allows the detection of background music.

We have plans to further optimize the parameter settings of
the Continuous Frequency Activation and to develop other features
exploiting structural properties of music signals. One interesting
direction might be to focus on rhythmic properties, as Scheirer and
Slaney [13] and Jarina et al. [16] have already tried. With respect
to the current application, we will also investigate combinations
of speech/music discrimination features and the CFA feature and
hope to deploy an operational music detection system at the Aus-
trian National Broadcasting Corporation (ORF) in the near future.
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Figure 4: Visualization of the classification results for the machine learning approach of 40 minutes of the soap opera "Julia". Each line
represents 20 minutes of audio and is split to compare the class prediction with the true class. The class "music" is represented by a lighter
color, whereas "no_music" is in the form of dark regions. The lower subplot illustrates the results after the application of the smoothing
function.

Figure 5: Visualization the classification results for the new CFA feature of 40 minutes of the soap opera "Julia". Each line represents 20
minutes of audio and is split to compare the class prediction with the true class. The class "music" is represented by a lighter color, whereas
"no_music" is shown in the form of dark regions. The lower subplot illustrates the results after the application of the smoothing function.
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ABSTRACT 

A computationally efficient method for detecting a chorus section in 

popular and rock music is presented. The method utilizes a distance 

matrix representation that is obtained by summing two separate 

distance matrices calculated using the mel-frequency cepstral coef-

ficient and pitch chroma features. The benefit of computing two 

separate distance matrices is that different enhancement operations 

can be applied on each. An enhancement operation is found benefi-

cial only for the chroma distance matrix. This is followed by detec-

tion of the off-diagonal segments of small distance from the dis-

tance matrix. From the detected segments, an initial chorus section 

is selected using a scoring mechanism utilizing several heuristics, 

and subjected to further processing. This further processing involves 

using image processing filters in a neighborhood of the distance 

matrix surrounding the initial chorus section. The final position and 

length of the chorus is selected based on the filtering results. On a 

database of 206 popular & rock music pieces an average F-measure 

of 86% is obtained. It takes about ten seconds to process a song 

with an average duration of three to four minutes on a Windows XP 

computer with a 2.8 GHz Intel Xeon processor. 

1. INTRODUCTION 

Music thumbnailing refers to the extraction of a characteristic, rep-

resentative excerpt from a music file. Often the chorus or refrain is 

the most representative and “catchiest” part of a song. A basic ap-

plication is to use this excerpt for previewing a music track. This is 

very useful if the user wishes to quickly get an impression of the 

content of a playlist, for example, or quickly browse the songs in an 

unknown album. In addition, the chorus part of a song would often 

make a good ring tone for a mobile phone, and automatic analysis 

of the chorus section would thus facilitate extraction of ring tone 

sections from music files. 

 

Western popular music is well suited for automatic thumbnailing as 

it often consists of distinguishable sections, such as intro, verse, 

chorus, bridge, and outro. For example, the structure of a song may 

be intro, verse, chorus, verse, chorus, chorus. Some songs do not 

have as clear verse-chorus structure but there still are separate sec-

tions, such as section A and section B that repeat. In this case the 

most often repeating and energetic section is likely to contain the 

most recognizable part of the song.  

 

Peeters et al. ([1]) divide the methods for chorus detection and mu-

sic structure analysis into two main categories: the “state approach” 

which is based on clustering feature vectors to states having distinc-

tive statistics, and the “sequence approach” which is based on com-

puting a self-similarity matrix for the signal. One of the first exam-

ples of the state approach was that of Logan and Chu [2]. Recently, 

e.g. Levy et al. [3] and Rhodes et al. [4] have studied this approach. 

Similarity-matrix based approaches include the ones by Wellhausen 

& Crysandt [5] and Cooper & Foote [6]. Bartsch & Wakefield [7] 

and Goto [8] operated on an equivalent time-lag triangle representa-

tion. There are also methods utilizing many different cues, including 

e.g. segmentation into vocal / nonvocal sections, such as [9], or 

methods that iteratively try to find an optimal segmentation [10]. 

 

Here we present a method for detecting the chorus or some other 

often repeating and representative section from music files. The 

method is based on the self-similarity (distance) representation. The 

goal was to device a computationally efficient method that still 

would produce high quality music thumbnails for practical applica-

tions. Thus, iterative methods based on feature clustering or compu-

tationally intensive optimization steps could not be used. The fol-

lowing summarizes the novel aspects of the proposed method: 

The self-distance matrix (SDM) used in the system is ob-

tained by summing two distance matrices calculated using MFCC 

and chroma features. This improves the performance compared to 

the case when either of the features would be used alone. Although 

the MFCC features are sensitive to changing instrumentation be-

tween the occurrences of the chorus, the fact that the instrumenta-

tion and expression during the chorus is often different than in other 

parts of the song seems to overweigh this, at least with our pop & 

rock dominated data. The benefit of the proposed distance-matrix 

summing approach instead of merely concatenating the features into 

one, longer vector is that different enhancement operations can be 

applied for each matrix. 

An initial chorus section is obtained from the repetitions 

detected from the SDM by utilizing a novel heuristic scoring 

scheme. The heuristics consider aspects such as the position of a 

repetition in the self-distance matrix (SDM), the adjustment of a 

repetition in relation to other repetitions in the SDM, average en-

ergy and average distance in the SDM during the repetition, and 

number of times the repetition occurs in the musical data. 

The system performs the chorus determination in two 

steps: first a preliminary candidate is found for the chorus section, 

and then its final location and duration is determined by filtering 

with a set of image processing filters, selecting the final chorus 

position and duration according to the filter which gives the best fit. 

 

Evaluations are presented on a database of 206 popular and rock 

music pieces. The method is demonstrated to provide sufficient 

accuracy for practical applications while being computationally 

efficient. 
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2. METHOD 

2.1. Overview 

Figure 1 shows an overview of the proposed method, which consists 

of the following steps. First the beats of the music signal are de-

tected. Then, beat synchronous mel-frequency cepstral coefficient 

(MFCC) and pitch chroma features are calculated. This results in a 

sequence of MFCC and chroma feature vectors. Next, two self-

distance matrices (SDM) are calculated, one for the MFCC features 

and one for the chroma features. Each item in the SDM represents 

the distance of feature vector at beat i to a feature vector at beat j. In 

the distance matrix representation, choruses or other repeating sec-

tions are shown as diagonal lines of small distance. The diagonal 

lines of the chroma distance matrix are then enhanced. Next we 

obtain a summed distance matrix by summing the chroma and 

MFCC distance matrices. This is followed by binarization of the 

summed distance matrix, which attempts to detect the diagonal 

regions of small distance (or high similarity). From the detected 

 

 

Figure 1: Overview of the proposed method.  

diagonal segments, the most likely chorus section candidate (diago-

nal stripe) is selected, and subjected to further processing. This 

further processing involves using image processing filters in a 

neighbourhood of the similarity matrix which surrounds the most 

likely chorus candidate. The final position and length of the chorus 

is selected based on the image processing results.  

2.2. Beat tracking 

The feature extraction step begins by finding the beats in the acous-

tic music signal. We utilize the efficient beat tracking method de-

scribed in [11] to produce an initial set of beat times and an accent 

signal )(nv . The accent signal measures the change in the spectrum 

of the signal and exhibits peaks at onset locations. An additional, 

non-causal postprocessing step was implemented to prevent the beat 

interval from changing significantly from one frame to another, 

which might cause problems with the beat synchronous self-

distance matrices. The postprocessing is performed with a dynamic 

programming method described by Ellis [12]. The dynamic pro-

gramming step takes as input the accent signal and median beat 

period produced by the method described in [11], performs smooth-

ing of the accent signal with a Gaussian window, and then finds the 

optimal sequence of beats through the smoothed accent signal. The 

method iterates through each sample of the smoothed accent signal, 

and finds the best previous beat time for each time sample. The 

selection is affected by the strength of the accent signal at the previ-

ous beat position, and the difference to the ideal beat interval. The 

indices of best previous beats are stored for each time sample, and 

in the end the single best sequence is obtained by backtracking 

through the previous beat records. For more details see [12]. 

2.3. Feature calculation 

Next, beat synchronous MFCC and chroma features are calculated. 

Analysis frames are synchronized to start at a beat time and end 

before the next beat time, and one feature vector for each beat is 

obtained as the average of feature values during that beat. Beat 

synchronous frame segmentation has been used earlier e.g. in [7]. It 

has two main advantages: it makes the system insensitive to tempo 

changes between different chorus performances, and significantly 

reduces the size of the self-distance matrices and thus computational 

load. Prior to the analysis, the input signal is downsampled to 

22050 kHz sampling rate.  

 

The MFCC features are calculated in 30 ms hamming windowed 

frames during each beat, and the average of 12 MFCC features 

(ignoring the zeroth coefficient) for each beat is stored. We use 36 

frequency bands spaced evenly on the mel-frequency scale, and the 

filters span the frequency range from 30Hz to the nyquist frequency. 

Chroma features are calculated in longer, 186 ms frames to get a 

sufficient frequency resolution for the lower notes. In our imple-

mentation, each bin of the discrete Fourier transform is mapped to 

exactly one of the twelve pitch classes C, C#, D, D#, E, F, F#, G, 

G#, A, A#, B, with no overlap. The energy is calculated from a 

range of six octaves from C3 to B8 and summed to the correspond-

ing pitch classes. The chroma vectors are normalized by dividing 

each vector by its maximum value. 

 

After the analysis, each inter-beat interval is represented with a 

MFCC vector and chroma vector, both of which are 12-

dimensional. 
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2.4. Distance matrix calculation 

The next step is to calculate the self-distance matrix (SDM) for the 

signal. Each entry D(i, j) in the distance matrix indicates the dis-

tance of the music signal at time i to itself at time j. As we are using 

beat synchronous features, time is measured in beat units. Two 

distance matrices are used, one for the MFCC features and one for 

the chroma features. The entry Dmfcc(i, j) of the MFCC distance 

matrix is calculated as the Euclidean distance of MFCC vectors of 

beats i and j. Correspondingly, in the chroma distance matrix 

Dchroma(i, j) each entry corresponds to the Euclidean distance of the 

chroma vectors of beats i and j. Figures 2 and 3 show examples of a 

chroma and MFCC distance matrices, respectively. As the Euclid-

ean distance is symmetric, the distance matrix will also be symmet-

ric. Thus, the following operations consider only the lower triangu-

lar part of the distance matrix.  

 

Alternatives to calculating two different distance matrices would be 

to concatenate the features before calculating the distances, or com-

bine the features in the distance calculation step. The benefit of 

keeping the distance matrices separate is that different enhancement 

operations can be applied to the chroma and MFCC matrices. Based 

on our experiments, it seems beneficial to apply an enhancement 

only for the chroma distance matrix and not for the MFCC distance 

matrix. When long chords or notes are played during several adja-

cent beats, the chroma distance matrix will exhibit a square area of 

small distance values. An enhancement operation similar to the one 

described in [8] was found to be beneficial in removing these. The 

MFCC distance matrix does not exhibit similar areas as the MFCC 

features are insensitive to pitch information, so this would explain 

the MFCC distance matrix does not benefit from the enhancement. 

Moreover, summing the distance matrices first and then enhancing 

the summed matrix did not perform as well as enhancing the 

chroma matrix only and then summing with the MFCC matrix. The 

next section describes the used enhancement and SDM summing 

steps. 

2.5. Enhancing and summing the distance matrices 

Ideally, the distance matrix should contain diagonal stripes of small 

distance values at positions corresponding to repetitions of the cho-

rus or refrain section. However, due to variations in the perform-

ance of the chorus at different times (articulation, improvisation, 

changing instrumentation), the diagonal stripes are often not very 

well pronounced. In addition, there may be additional small distance 

regions which do not correspond to chorus sections. To make di-

agonal segments of small distance values more pronounced in the 

distance matrix, an enhancement method similar to the one pre-

sented in [8] is utilized.  

 

The chroma distance matrix Dchroma(i, j) is processed with a 5 by 5 

kernel. For each point (i, j) in the chroma distance matrix, the kernel 

is centred to the point (i, j). Six directional local mean values are 

calculated along the upper-left, lower-right, right, left, upper, and 

lower dimensions of the kernel. If either of the means along the 

diagonal is the minimum of the local mean values, the point (i, j) in 

the distance matrix is emphasized by adding the minimum value. If 

some of the mean values along the horizontal or vertical directions 

is the smallest, it is assumed that the value at (i, j) is noisy and it is 

suppressed by adding the largest of the local mean values. After the 

enhancement the diagonal lines corresponding to repeating sections 

are more pronounced.  

 

Figure 2: The chroma distance matrix Dchroma(i, j) of the 

song “Like a virgin” by Madonna. 

 

Figure 3: The MFCC (timbre) distance matrix Dmfcc(i, j) of 

the song “Like a virgin” by Madonna. 

 

Figure 4. The final distance matrix D(i, j) of the song “Like 

a virgin” by Madonna obtained after summing the en-

hanced chroma distance matrix and MFCC distance ma-

trix. 
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After the enhancement step the chroma and MFCC distance matri-

ces are summed. This gives the final distance matrix D, where the 

entries ),(),(
~

),( jiDjiDjiD mfccchroma += , where chromaD
~

 is the 

chroma distance matrix after the above described enhancement 

operation. Figure 4 shows the summed distance matrix for 

Madonna’s “Like a virgin”. Weighted summation was also at-

tempted for the different matrices with certain weight combinations, 

but equal weights (i.e. no weighting) seem to perform well. A 

slightly related approach to our distance matrix summing was pre-

sented by Marolt [13]. He constructed several beat synchronous 

melodic representations by comparing excerpts of different length, 

and then combined the representations by pointwise multiplication. 

This was reported to help in reducing noise in the self-similarity 

representation. 

2.6. Detecting repetitions from the self-distance matrix 

The following step attempts to detect which parts of the distance 

matrix correspond to a repetitive segment and which do not. The 

binarization method used here is similar to the one presented by 

Goto in [8], except that we operate on the low-triangular part of a 

distance matrix whereas Goto operated on the time-lag triangle. In 

addition, the filtering operations are simplified here and the thresh-

old selection operations differ slightly. 

 

When a sum is calculated along a diagonal segment of the distance 

matrix, a smaller value indicates a larger likelihood that the particu-

lar diagonal contains one or more line segments with small similar-

ity values. A sum is calculated along the low-left diagonals k of the 

distance matrix, giving the values 

 ∑
−

=

+
−

=
kM

c

ckcD
kM

kF
1

),(
1

)( , 1,...,1 −= Mk  (1) 

where M  is the number of beats in the song. Thus, )1(F corre-

sponds to the first diagonal below the main, )2(F  to the second 

below the main diagonal, and so on. The values of k corresponding 

to the smallest values of F(k) indicate diagonals which are likely to 

have repetitions in them. With Eq. 1 there exists a possibility that 

some small-distance values are masked by high distance values that 

happen to locate at the same diagonal. Thus, it might be worth 

studying whether special methods to remove the effect of high-

distance values would improve the performance. However, this was 

left for future research as the simple summing seems to work well. 

 

A certain number of diagonals corresponding to minima in F(k) are 

then selected. Before looking for minima in F(k), it is “detrended” 

to remove cumulative noise from it. This is done by calculating a 

lowpass filtered version of F(k), using a FIR lowpass filter with 50 

taps, the value of each coefficient being 1/50. The lowpass filtered 

version of F(k) is subtracted from F(k). 

 

The minima correspond to zero-crossings in the differential of F(k). 

The smoothed differential of F(k) is calculated by filtering F(k) with 

an FIR filter having the coefficients b1(i) = K-i, i = 0, …, 2K, with 

K = 1. The minima candidates are obtained by finding the points 

where the smoothed differential of F(k) changes its sign from nega-

tive to positive. The values of the minima are dichotomized into two 

classes with the Otsu method presented in [14], and the values 

smaller than the threshold are selected. We observed that sometimes 

it may happen that only a few negative peaks are selected using this 

threshold. This would mean that the following binarization would 

examine only a few diagonals of the distance matrix, increasing the 

possibility that some essential diagonal stripes are left unnoticed. To 

overcome this, we raise the threshold gradually until at least 10 

minima (and thus diagonals) are selected. The subset of indices 

selected from all the diagonal indices [ ]1,1 −∈ Mk  to search for 

line segments is denoted by Y.  

 

The diagonals of the SDM selected for the line segment search are 

denoted by  

 ),()( cycDcg y += , yMc −= ,...,1  (2) 

where Yy∈ . The diagonals )(cg y  of the distance matrix are 

smoothed by filtering with a FIR with coefficients b2(i) = ¼, i = 

1, …, 4. Goto ([8]) performed another threshold selection with the 

Otsu method ([14]) to select a threshold to be used for detecting the 

line segments from the diagonals. However, we found it better to 

define a threshold such that 20% of the values of the smoothed 

diagonals )(~ cg y  are left below it, and thus 20% of values are set to 

correspond to diagonal repetitive segments. This threshold is ob-

tained in a straightforward manner by concatenating all the values 

of )(~ cg y , yMc −= ,...,1  and Yy∈  into a long vector, sorting the 

vector, and selecting the value such that 20 % of the values are 

smaller. Points where )(~ cg y  exceeds the threshold are then set to 

one, others are set to zero. This gives the binarized distance matrix.  

 

Next the binarized matrix is enhanced, such that diagonal segments 

where most values are ones (i.e. detected small distance segments) 

are enhanced to be all ones under certain conditions. This is done in 

order to remove gaps of few beats in such diagonal segments that 

are long enough. These kinds of gaps occur if there is a point of 

high distance within a diagonal segment (due to e.g. a variation in 

the musicians’ performance). The enhancement process processes 

the binarized distance matrix with a kernel of length 25 (beats). 

Thus, at the position (i, j) of the binarized distance matrix B(i, j), the 

kernel analyzes the diagonal segment from B(i, j) to B(i+25-1, j+25-

1). If at least 65 % of the values of the diagonal segment are ones, 

B(i, j) = 1 and either B(i+25-2, j+25-2) = 1 or B(i+25-1, j+25-1) = 1, 

all the values in the segment are set to one. This removes short gaps 

in the diagonal segments. The length of the kernel is a parameter to 

the system, the value 25 was found to work well. Goto ([8]) did not 

report a need for such an enhancement process but we found it nec-

essary. 

2.7. Locating interesting segments  

The result of the previous steps is an enhanced binarized matrix 

Be(i, j) where the value one indicates that that point corresponds to a 

repetitive section and zero corresponds that there is no repetition at 

that point. The next step is to find diagonal segments that are inter-

esting, i.e. likely correspond to a chorus.  

 

There may be repetitions that are too short to correspond to a cho-

rus, such as those that occur e.g. when the same pattern of notes are 

repeatedly played with some instrument. By default, segments 

longer than four seconds are searched and used for further process-

ing. In the case no segments longer than four seconds are found, the 

system tries to extend the segments until at least some segments 

longer than four seconds are detected. If this does not help, the 

length limit is relaxed and all segments are used.  
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With some songs there may be a very large number of repetitive 

diagonal segments at this point. Therefore, some of the segments 

are removed. For each diagonal segment found in the binarized 

matrix, the method looks for diagonal segments which are located 

close to it. Let us denote a diagonal segment which starts at ),( ji  

and ends at ),( ji ′′  with [ ]jijix
p

′′= ,,, . Furthermore, the length 

1)( +−′=∆ jjx
p

 is the duration of the segment in beats. Given 

two segments 
1x  and 

2x , the segment 
2x   is defined to be close to 

1x  iff 

)5)1(()1(
12

−≥ xx  and )20)3(()3(
12

+≤ xx  and  

20)2()2(
12

≤− xx  and )5)4(()4(
12

+≤ xx  

where |.| denotes absolute value. The parameters were obtained by 

experimentation and may be changed.  

 

For each segment, the method then lists its close segments fulfilling 

the conditions above, finds the segments that have more than three 

close segments, and removes the extra segments. If some segment 

with more than three close segments is in the removal list of some 

other segment, then it is not removed. The result of this step is a 

collection of the diagonal segments ,
p

x Pp ,...,1=  in the binarized 

matrix.  

2.8. Selecting the diagonal segment most likely corresponding 

to a chorus 

Next the method selects the segment most likely corresponding to a 

chorus. This is done by utilizing a novel heuristic scoring scheme 

which considers aspects such as the position of a repetition in the 

self distance matrix, the position of a repetition in relation to other 

repetitions in the SDM, average energy and average distance in the 

SDM during the repetition, and number of times the repetition oc-

curs in the musical data. 

 

 
Figure 5: Notations when giving scores to a group of three diagonal 

segments (detected stripes of small distance of the distance matrix). 

The units are measured in beats. 

2.8.1. Position of a repetition in the distance matrix 

The first criterion used in making the decision is how close a diago-

nal segment is to an expected chorus position in the song. This is 

based on the observation that often in pop music there is a chorus at 

time corresponding to approximately one quarter of the song length. 

A partial score  )(1 p
xs  measures the difference of the middle col-

umn of segment  [ ]jijix
p

′′= ,,,  to one quarter of the song length:  

 
( )

( )4/

4/)2/)((
1)(1

Mround

Mroundxj
xs

p

p

−∆+
−= , (3) 

where M is the length of the song in beats. The partial score )(2 p
xs  

measures the difference of the middle row of segment 
p

x to three 

quarters of the song length:  

 
( )

( )4/

4/3)2/)((
1)(2

Mround

Mroundxi
xs

p

p

⋅−∆+
−= . (4) 

With )(1 p
xs  and )(2 p

xs  we give more weight to such segments 

that are close to the position of the diagonal stripe on the low left 

hand corner of Figure 4, which corresponds to the first occurrence 

of a chorus (and match to the third occurrence) and is often the most 

prototypically performed chorus, i.e. no articulation or expression.  

2.8.2. Adjustment in relation to other repetitions 

The second criterion relates to the adjustment of a segment within 

the distance matrix in relation to other repetitions. Motivated by the 

approach presented in [5], we look for possible groups of three 

diagonal stripes that might correspond to three repetitions of the 

chorus. See Figure 5 for an example of an ideal case. The search for 

possible groups of three stripes is done as follows: the method goes 

through each found diagonal segment 
u

x , and looks for possible 

diagonal segments below it. If a segment below 
b

x , ub ≠ , is 

found, it looks for a segment 
r

x  ur ≠ , br ≠ , on the right from 

the segment 
b

x . In order to qualify as a below segment, we require 

that )3()1( ub xx > , and that there must be some overlap between 

the column indices of 
u

x  and 
b

x . To qualify as a right segment 

r
x , there must be some overlap between the row indices of seg-

ments 
b

x  and 
r

x . The groups of three segments fulfilling the 

above criteria are denoted with [ ]rbum
z

,,= , Zz ,...,1= . In theory 

there could be at maximum of )2)(1( −− PPP  such groups of 

three segments, in practice the number is much less. An arbitrary 

segment may belong to zero or several groups. 

 

The groups of three stripes are then scored based on how close to 

ideal the group of three stripes is. This scoring affects the scores of 

some of the segments belonging to these groups. Four partial scores 

are calculated to measure the quality of each group of three stripes 

[ ]rbum
z

,,= . The first partial score measures how close is the end 

point of the above segment 
u

x  and below segment 
b

x :  

 ))()(/()4()4(21)(1 ubbu
xxxxz ∆+∆−−=σ , (5) 

 

(xu(1), xu(2)) 

Column index  

(beats) 

Row index  

(beats) 

(xu(3), xu(4)) 

(xr(3), xr(4)) 

(xr(1), xr(2)) (xb(1), xb(2)) 

(xb(3), xb(4)) 

∆(xb) ∆(xr) 

∆(xu) 

xb 

xu 

xr 
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where )4(
u

x and )4(
b

x  are the column indices of the end points of 

upper and below segments, respectively. The second partial score 

depends on the vertical alignment of upper and below segments: 

 








∆−−

∆−−

=

1

)(/))4()2((1

)(/))2()2((1

)(2 bub

bbu

xxx

xxx

zσ
otherwise

xx

xx

if

if

ub

ub

)4()2(

)2()2(

>

<

 (6) 

The next score measures whether the segments 
b

x  and 
r

x  are of 

equal length:  

 )(/)()(1)(3 bbr
xxxz ∆∆−∆−=σ . (7) 

The final partial score depends on the difference in the position of 

left and right segments: 

 
)()(

))3()3(,)1()1(min(2
1)(4

rb

rbrb

xx

xxxx
z

∆+∆

−−⋅
−=σ , (8) 

where ‘min’ denotes minimum operator. 

 

The final score for the group of three segments [ ]rbum
z

,,=  is the 

average of )(1 zσ , )(2 zσ , )(3 zσ , and )(4 zσ  denoted )(ˆ zσ . 

Since this score considers a segment group, we need to decide 

whether all the segments in the group receive a score, or whether 

only certain segments. It was found beneficial to give the score to 

segment 
b

x . The score could also be given to segment 
u

x  as it 

may also correspond to the first instance of the chorus. However, 

the diagonal stripe corresponding to 
u

x  is often longer than the 

actual chorus, it often consist e.g. of the repeating verse and chorus. 

It was observed that it gives better results to score the segment 
b

x  

as its length often more closely corresponds to the correct chorus 

length. Thus, depending on whether each found segment belong to 

at least one group of three segments, it will receive a score 

)(ˆmax)(3 yxs
p

σ= , })2(|{ pmy
y

= . The maximum is taken as 

each segment may belong to more than one group. If a segment 
p

x  

does not belong to any group of three segments, .0)(3 =
p

xs  

2.8.3. Average energy and distance of a segment 

The next criterion )(4 p
xs  is the average logarithmic energy of the 

portion of the music signal defined by the column indices of seg-

ment 
p

x  normalized with the average energy over the whole signal. 

Using the energy as one criterion gives more weight to such seg-

ments that have high average energy, which is often a characteristic 

of chorus sections. The partial score )(5 p
xs  takes into account the 

average distance value during the segment: the smaller the distance 

during the whole segment the more likely it is that the segment 

corresponds to a chorus:  

 Φ−= /)(1)(5 pp
xxs φ , (9) 

where )(
p

xφ  is the median distance value of the diagonal segment 

p
x  in the distance matrix, and Φ  is the average distance value 

over the whole distance matrix.  

2.8.4. Number of times the repetition occurs 

The last partial score )(6 p
xs  considers the number of times the 

repetition occurs. Other diagonal segments locating on top of or 

below segment 
p

x  are indications that the segment defined by the 

column indices of 
p

x  is repeating more than once. To get a score 

for this, a search is done for all segment candidates 
p

x , and a count 

is made of all those other segments 
q

x  which fulfill the condition  

)(2.0)2()2(
qqp

xxx ∆⋅≤−  and )(2.0)4()4(
qqp

xxx ∆⋅≤− . 

The count of other segments 
q

x  fulfilling the above criterion is 

stored as the score for all segment candidates 
p

x . When these 

counts for all segment candidates have been obtained, the values are 

normalized by dividing with the maximum count, giving the final 

values for a score )(6 p
xs  for each segment. 

2.8.5. Selecting the most likely chorus segment 

The remaining task is to select the most likely chorus segment based 

on the various criteria. For each segment 
p

x , a score is given as  

 
).(5.0)()(5.0)(

)(5.0)(5.0)(

6543

21

pppp

ppp

xsxsxsxs

xsxsxS

⋅++⋅++

⋅+⋅=
 (10) 

There is a possibility to optimize the weights in Eq. 10, which we 

did not fully explore in the fear of over fitting data but just manually 

selected weights that gave good performance on a small set of mu-

sic files. The segment 
p

x  maximizing the score S is selected as the 

most likely chorus segment. If at least one group of three diagonal 

stripes fulfilling the criteria of section 2.8.2 has been found, the 

choice is made among such segments 
o

x  for which 0)(3 ≠
o

xs , i.e. 

those that have been at an appropriate position in at least one group 

of three diagonal stripes. If no sets of three stripes is found, the 

selection is made among all the segments by maximizing S. In this 

case the group score 0)(3 =
p

xs  for all segment candidates. The 

result of this step is an initial chorus segment 
c

x . 

2.9. Finding the exact location of the chorus 

Next the exact location and length of the chorus section is refined 

using filtering in two or one dimensions. 2D kernels have earlier 

been used by Shiu et al. to analyze local similarity of the signal by 

detecting repeated chord successions from a measure-level self-

similarity matrix [15]. Here, we use 2D filters to get the exact posi-

tion for a chorus segment. Often, the time signature in western pop 

and rock music has a 4/4 time signature, and the length of a chorus 

section is 8 or 16 measures (32 or 64 beats, respectively) [9]. In 

addition, the chorus may consist of two repeating subsections of 

equal length. Two dimensional filter kernels are constructed to 

model the pattern of ideal small-distance stripes that would be 

caused by a chorus of 8 or 16 measures long, with two repeating 

subsections. Figure 6 shows the filter of dimension 32 by 32 beats, 

with two 16 by 16 beats long repeating subsections. This is the 

idealized shape of the small-distance stripes occurring in the dis-

tance matrix if the song has this kind of chorus. The second filter is 
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similar but of dimension 64 by 64, and with diagonals modeling the 

32 beat long subsections.  

 

The area of the distance matrix surrounding the chorus candidate is 

filtered with these two kernels. The chorus candidate start column is 

denoted with )2(
c

x  and the end column )4(
c

x . The columns of the 

low triangular distance matrix starting from )2/)2(,1max( fc
Nx −  

to ),2/)4(min( MNx fc
+  are selected as the area from which to 

search for the chorus. Nf is the dimension of the filter kernel, either 

32 or 64, and M is the length of the song in beats. min and max are 

applied to prevent over indexing. If the length of the area above in 

the column dimension is shorter than the filter dimension, this step 

is omitted. The area is limited to lessen the computational load and 

to prevent the refined chorus section from departing too much from 

the initial chorus candidate. 

 

When the upper left-hand side corner of the filter with dimension Nf 

is positioned in (i, j) at the distance matrix, the following values are 

calculated: mean distance ),,( fNjiα  along the diagonals (marked 

with black color in Figure 6), mean distance ),,( fNjiβ  along the 

main diagonal  and mean distance ),,( fNjiλ  of the surrounding 

area (white color in Figure 6). The ratio 

),,(/),,(),,( fff NjiNjiNji λαρα =  indicates how well the posi-

tion matches with a chorus with two identical repeating subsections, 

and the ratio ),,(/),,(),,( fff NjiNjiNji λβρβ =  how well the 

position matches a strong repeating section of length Nf with no 

subsections. The smaller the ratio, the smaller the values on the 

diagonal compared to the surrounding area. The smallest value of 

),,( fNjiαρ  and ),,( fNjiβρ  and the corresponding indices are 

stored for both filters, i.e. with Nf=32 and Nf =64. These smallest 

values are denoted by )( fNαρ ′  and )( fNβρ ′ . 

 

Several heuristics are then used to select the final chorus position 

and length based on the filtering results, or if the conditions are not 

met then another filtering in one dimension along the initial chorus 

segment is performed. The final chorus section is selected according 

to the two dimensional filtering, if the smallest ratios are small 

enough. The following heuristics are used, although many other 

alternatives would be possible. These rules below have been ob-

tained via trial and error by experimenting with a subset of 50 songs 

from our music collection. 

 

If )64(αρ ′ < )32(αρ ′ , it indicates a good match with the 64 beat 

long chorus with two 32 beat long subsections. The chorus starting 

point is selected according to the column index of the point which 

minimized )64(αρ ′ , and its length is taken as 64 beats. Else, if the 

length of the initial chorus section is less than 32, the chorus section 

is adjusted according to the point minimizing )32(αρ ′  only if the 

chorus beginning would change at maximum one beat from the 

initial location. Finally, if the length of the initial chorus section is 

closer to 48 than 32 or 64 and )32(αρ ′  < )64(αρ ′  and 

)32(βρ ′  < )64(βρ ′ and the column index of the point minimizing 

)32(αρ ′  is the same as the point minimizing )32(βρ ′ , the chorus is  

 

Figure 6. Two dimensional filter kernel modelling the 

stripes occurring if the song has a chorus of 32 beats in 

length with two 16 beat repeating subsections. The average 

distance is calculated along the entries marked with black 

colour, and compared to the average distance of locations 

corresponding to rest of the kernel (white entries). 

set to start at the point minimizing both )32(αρ ′  and )32(βρ ′  and 

its length is set to 32. Thus, these are special rules to adjust the 

chorus section if it seems likely that there song has either a 32 or 64 

beats long chorus with identical subsections half its size. 

 

In many cases, the above conditions are not met, and the chorus 

section is adjusted by performing filtering along the diagonal values 

of the initial chorus section and a small offset of five beats before 

and after its beginning and end. Thus, if the row and column indices 

of the initial chorus section are denoted with ))2(),1((
cc

xx  (the 

beginning) and ))4(),3((
cc

xx  (the end), the values to be filtered are 

found along the line from )5)2(,5)1(( −−
cc

xx  to 

)5)4(,5)3(( ++
cc

xx . 

 

The filtering is done with two kernels of length 32 and 64, but now 

on one dimension along the diagonal distance values of the initial 

chorus section and its immediate surroundings. The ratio r(32) is the 

smallest ratio of mean of distance values on the 32 point kernel to 

the values outside the kernel. If r(32) < 0.7 and the length of the 

initial chorus section is closer to 32 than 64, the chorus starting 

point is set according to the location minimizing r(32) and its length 

is set to 32. If the length of the initial chorus section is larger than 

48, the final chorus start location and length is selected according to 

the one giving the smaller score. This step in our method looks for 

the best position of the chorus section e.g. in the case the diagonal 

stripe selected as the chorus section consists of a longer repetition of 

a verse and chorus, for example. Note that the method is not limited 

to 4/4 time signature and chorus lengths of 32 or 64: if the condi-

tions above are not met, the chorus section is kept as the one re-

turned from the binarization process. In these cases its length does 

not have to be 32 or 64.  

3. EVALUATION 

The method was evaluated on database consisting of 206 popular 

and rock music pieces. Most of the pieces have a clear verse-chorus 

structure, although there are some instances where the structure is 
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less obvious. The chorus sections were annotated manually from the 

pieces. The annotations were made with a dedicated tool, which 

showed the beat synchronized SDM of the signal aligned with the 

signal itself. The self-distance matrix visualization significantly 

speeded up the annotation work as the different sections were more 

easily found.  

 

Performance of the system is measured with the F-measure, defined 

as the harmonic mean of the recall rate (R) and precision rate (P): 

F = (2RP) / (R + P). To calculate R and P, we find the annotated 

chorus section with maximum overlap with the detected chorus 

section, and calculate the length lcorr of the section where the de-

tected chorus section overlaps with the annotated section. R is cal-

culated as the ratio lcorr to the length of the annotated chorus section, 

and P is the ratio of lcorr to the length of the detected chorus section. 

The F-measure is calculated for each track, and the reported overall 

F-measure is the average of the F-measures over all tracks. 

 

Table 1 shows the chorus detection results. Baseline is the normal 

system. The most common error is small offsets in the beginning 

and/or end locations of the chorus section that reduce the score. The 

second row represents the results when the output chorus section 

length is fixed to 30 seconds. Being able to output a fixed length 

segment may be desirable in some applications, such as music pre-

view. If the initial chorus section is shorter than 30 seconds, ex-

panding is done by following the diagonal chorus segment into the 

direction of minimum distance in the SDM. Correspondingly, short-

ening is done by dropping in turn the point with larger distance 

value from either end. As the recall rate increases when the 30 s 

limit is applied, the method has not always captured the whole cho-

rus section. If it is desirable that the thumbnail section captures the 

chorus and it’s acceptable if the section extends beyond the chorus, 

the 30s option can be used. The method is efficient; it takes about 

ten seconds to process a song with an average duration of three to 

four minutes on a Windows XP computer with a 2.8 GHz Intel 

Xeon processor.  

 

Method P R F 

Baseline 89% 83% 86% 

30s length 70% 92% 79% 

Table 1: Chorus detection results. 

4. CONCLUSIONS 

A method for chorus detection from popular and rock music was 

presented. The method utilizes a novel feature analysis front-end 

where the MFCC and chroma distance matrices are summed and a 

two step procedure of initial chorus selection and section refine-

ment. A novel heuristic scoring scheme was proposed to select the 

initial chorus candidate from the binarized distance matrix, and a 

novel approach utilizing image processing filters is used to refine 

the final position and length of the chorus candidate. Evaluations on 

a manually annotated database of 206 songs demonstrate that the 

performance of the method is sufficient for practical applications, 

such as previewing playlists of popular and rock music. Moreover, 

the method is computationally efficient. 
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ABSTRACT

We present MIRtoolbox, an integrated set of functions written in
Matlab, dedicated to the extraction of musical features from audio
files. The design is based on a modular framework: the different
algorithms are decomposed into stages, formalized using a mini-
mal set of elementary mechanisms, and integrating different vari-
ants proposed by alternative approaches – including new strategies
we have developed –, that users can select and parametrize.

This paper offers an overview of the set of features, related,
among others, to timbre, tonality, rhythm or form, that can be ex-
tracted with MIRtoolbox. Four particular analyses are provided as
examples. The toolbox also includes functions for statistical anal-
ysis, segmentation and clustering. Particular attention has been
paid to the design of a syntax that offers both simplicity of use and
transparent adaptiveness to a multiplicity of possible input types.
Each feature extraction method can accept as argument an audio
file, or any preliminary result from intermediary stages of the chain
of operations. Also the same syntax can be used for analyses of
single audio files, batches of files, series of audio segments, multi-
channel signals, etc. For that purpose, the data and methods of the
toolbox are organised in an object-oriented architecture.

1. MOTIVATION AND APPROACH

MIRToolbox is a Matlab toolbox dedicated to the extraction of
musically-related features from audio recordings. It has been de-
signed in particular with the objective of enabling the computation
of a large range of features from databases of audio files, that can
be applied to statistical analyses.

Few softwares have been proposed in this area. The most im-
portant one, Marsyas [1], provides a general architecture for con-
necting audio, soundfiles, signal processing blocks and machine
learning (see section 5 for more details). One particularity of our
own approach relies in the use of the Matlab computing environ-
ment, which offers good visualisation capabilities and gives access
to a large variety of other toolboxes. In particular, the MIRToolbox
makes use of functions available in recommended public-domain
toolboxes such as the Auditory Toolbox [2], NetLab [3], or SOM-
toolbox [4]. Other toolboxes, such as the Statistics toolbox or the
Neural Network toolbox from MathWorks, can be directly used for
further analyses of the features extracted by MIRToolbox without
having to export the data from one software to another.

Such computational framework, because of its general objec-
tives, could be useful to the research community in Music Infor-
mation Retrieval (MIR), but also for educational purposes. For
that reason, particular attention has been paid concerning the ease
of use of the toolbox. In particular, complex analytic processes can
be designed using a very simple syntax, whose expressive power
comes from the use of an object-oriented paradigm.

The different musical features extracted from the audio files
are highly interdependent: in particular, as can be seen in figure 1,
some features are based on the same initial computations. In order
to improve the computational efficiency, it is important to avoid
redundant computations of these common components. Each of
these intermediary components, and the final musical features, are
therefore considered as building blocks that can been freely artic-
ulated one with each other. Besides, in keeping with the objec-
tive of optimal ease of use of the toolbox, each building block has
been conceived in a way that it can adapt to the type of input data.
For instance, the computation of the MFCCs can be based on the
waveform of the initial audio signal, or on the intermediary rep-
resentations such as spectrum, or mel-scale spectrum (see Fig. 1).
Similarly, autocorrelation is computed for different range of delays
depending on the type of input data (audio waveform, envelope,
spectrum). This decomposition of all the set of feature extraction
algorithms into a common set of building blocks has the advan-
tage of offering a synthetic overview of the different approaches
studied in this domain of research.

2. FEATURE EXTRACTION

2.1. Feature overview

Figure 1 shows an overview of the main features implemented in
the toolbox. All the different processes start from the audio signal
(on the left) and form a chain of operations proceeding to right.
The vertical disposition of the processes indicates an increasing
order of complexity of the operations, from simplest computation
(top) to more detailed auditory modelling (bottom).

Each musical feature is related to one of the musical dimen-
sions traditionally defined in music theory. Boldface characters
highlight features related to pitch, to tonality (chromagram, key
strength and key Self-Organising Map, or SOM) and to dynam-
ics (Root Mean Square, or RMS, energy). Bold italics indicate
features related to rhythm, namely tempo, pulse clarity and fluc-
tuation. Simple italics highlight a large set of features that can be
associated to timbre. Among them, all the operators in grey ital-
ics can be in fact applied to many others different representations:
for instance, statistical moments such as centroid, kurtosis, etc.,
can be applied to either spectra, envelopes, but also to histograms
based on any given feature.

One of the simplest features, zero-crossing rate, is based on a
simple description of the audio waveform itself: it counts the num-
ber of sign changes of the waveform. Signal energy is computed
using root mean square, or RMS [5]. The envelope of the audio
signal offers timbral characteristics of isolated sonic event.

FFT-based spectrum can be computed along the frequency do-
main or along Mel-bands, with linear or decibel energy scale, and
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Figure 1: Overview of the musical features that can be extracted with MIRToolbox.

applying various windowing methods. The results can be multi-
plied with diverse resonance curves in order to highlight different
aspects such as metrical pulsation (when computing the FFT of
envelopes) or fluctuation [6].

Many features can be derived from the FFT:

• Basic statistics of the spectrum gives some timbral charac-
teristics (such as spectral centroid, roll-off [5], brightness,
flatness, etc.).

• The temporal derivative of spectrum gives the spectral flux.

• An estimation of roughness, or sensory dissonance, can be
assessed by adding the beating provoked by each couple of
energy peaks in the spectrum [7].

• A conversion of the spectrum in a Mel-scale can lead to the
computation of Mel-Frequency Cepstral Coefficients (MFCC)
(cf. example 2.2), and of fluctuation [6].

• Tonality can also be estimated (cf. example 2.3).

The computation of the autocorrelation can use diverses nor-
malization strategies, and integrates the improvement proposed by
Boersma [8] in order to compensate the side-effects due to the win-
dowing. Resonance curve are also available here. Autocorrelation
can be "generalized" through a compression of the spectral repre-
sentation [9].

The estimation of pitch is usually based on spectrum, autocor-
relation, or cepstrum, or a mixture of these strategies [10].

A distinct approach consists of designing a complete chain of
processes based on the modelling of auditory perception of sound
and music [2] (circled in Figure 1). This approach can be used in
particular for the computation of rhythmic pulsation (cf. example
2.4).

2.2. Example: Timbre analysis

One common way of describing timbre is based on MFCCs [11,
2]. Figure 2 shows the diagram of operations. First, the audio
sequence is loaded (1), decomposed into successive frames (2),
which are then converted into the spectral domain, using the mir-
spectrum function (3). The spectra are converted from the fre-
quency domain to the Mel-scale domain: the frequencies are rear-

ranged into 40 frequency bands called Mel-bands1. The envelope
of the Mel-scale spectrum is described with the MFCCs, which are
obtained by applying the Discrete Cosine Transform to the Mel-
scale spectrum. Usually only a restricted number of them (for in-
stance the 13 first ones) are selected (5).

a = miraudio(’audiofile.wav’) (1)
f = mirframe(a) (2)

s = mirspectrum(f) (3)
m = mirspectrum(s,’Mel’) (4)

c = mirmfcc(s,’Rank’,1:13) (5)

The computation can be carried in a window sliding through
the audio signal (this corresponded to the code line 1), resulting
in a series of MFCC vectors, one for each successive frame, that
can be represented column-wise in a matrix. Figure 2 shows an
example of such matrix. The MFCCs do not convey very intuitive
meaning per se, but are generally applied to distance computation
between frames, and therefore to segmentation tasks (cf. para-
grapn 2.5).

The whole process can be executed in one single line by call-
ing directly the mirmfcc function with the audio input as argument:

mirmfcc(f,’Rank’,1:13) (6)

2.3. Example: Tonality analysis

The spectrum is converted from the frequency domain to the pitch
domain by applying a log-frequency transformation. The distribu-
tion of the energy along the pitches is called the chromagram. The
chromagram is then wrapped, by fusing the pitches belonging to
same pitch classes. The wrapped chromagram shows therefore a
distribution of the energy with respect to the twelve possible pitch
classes [12].

Krumhansl and Schmuckler [13] proposed a method for es-
timating the tonality of a musical piece (or an extract thereof)

1The Mel-scale conversion is available as an option of the mirspectrum
function (4). Note how it is possible to recall a function using one of its
previous output as input (here, s), in order to perform some additional op-
tional operations.
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Figure 2: Successive steps for the computation of MFCCs, illustrated with the analysis of an audio excerpt decomposed into frames.
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by computing the cross-correlation of its pitch class distribution
with the distribution associated to each possible tonality. These
distribution have been established though listening experiments
[14]. The most prevalent tonality is considered to be the tonality
candidate with highest correlation, or key strength. This method
was originally designed for the analysis of symbolic representa-
tions of music but has been extended to audio analysis through an
adaptation of the pitch class distribution to the chromagram rep-
resentation [12]. Figure 3 displays the successive steps of this ap-
proach. For instance the following command estimates the three
most probable key candidates for each frame.

mirkey(f,’Total’,3) (7)

A richer representation of the tonality estimation can be drawn
with the help of a self-organizing map (SOM), trained by the 24
tonal profiles [15]. The configuration of the trained SOM reveals
key relations that correspond to music theoretical notions. The es-
timation of the tonality of the musical piece under study is carried
by projecting its wrapped chromagram onto the SOM. Figure 4
shows the resulting activity pattern in the SOM.

2.4. Example: Rhythm analysis

One common way of estimating the rhythmic pulsation, described
in figure 6, is based on auditory modelling [5]. The audio signal is
first decomposed into auditory channels using a bank of filters. Di-
verse types of filterbanks are proposed and the number of channels
can be changed, such as 20 for instance (8). The envelope of each

Figure 4: Activity pattern of a self-organizing map representing
the tonal configuration of the first two seconds of Mozart Sonata
in A major, K 331. High activity is represented by bright nuances.

channel is extracted (9)2. As pulsation is generally related to in-
crease of energy only, the envelopes are differentiated, half-wave
rectified, before being finally summed together again (10). This
gives a precise description of the variation of energy produced by
each note event from the different auditory channels.

After this onset detection, the periodicity is estimated through
autocorrelation (12)3. However, if the tempo varies throughout the
piece, an autocorrelation of the whole sequence will not show clear
periodicities. In such cases it is better to compute the autocorrela-

2Note how the analysis of multi-channel signal (such as fb) follows
exactly the same kind of syntax than for mono-channel signal.

3For the sake of clarity, several options in the following functions have
been omitted.
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tion for a frame decomposition (11)4. This yields a periodogram
that highlights the different periodicities, as shown in figure 6. In
order to focus on the periodicities that are more perceptible, the
periodogram is filtered using a resonance curve [16] (12), after
which the best tempos are estimated through peak picking (13),
and the results are converted into beat per minutes (14). Due to the
difficulty of choosing among the possible multiples of the tempo,
several candidates (three for instance) may be selected for each
frame, and a histogram of all the candidates for all the frames,
called periodicity histogram, can be drawn (15).

fb = mirfilterbank(a,20) (8)
e = mirenvelope(fb,’Diff’,’Halfwave’) (9)

s = mirsum(e) (10)
fr = mirframe(s,3,.1) (11)

ac = mirautocor(fr,’Resonance’) (12)
p = mirpeaks(ac,’Total’,1,’NoEnd’) (13)

t = mirtempo(p) (14)
h = mirhisto(t) (15)

The whole process can be executed in one single line by call-
ing directly the mirtempo function with the audio input as argu-
ment:

mirtempo(a,’Frame’) (16)

In this case, the different options available throughout the process
can directly be specified as argument of the tempo function. For
instance, a computation of a frame-based tempo estimation, with a
selection of the 3 best tempo candidates in each frame, a range of
admissible tempi between 60 and 120 beats per minute, an estima-
tion strategy based on a mixture of spectrum and autocorrelation
applied on the spectral flux will be executed with the syntax:

mirtempo(a,’Frame’,’Total’,3,

’Min’,60,’Max’,120,’Spectrum’,

’Autocor’,’SpectralFlux’) (17)

4The mirframe function can accept both audio signal and envelope as
argument. Here, the frame size is 3 seconds and the hop factor .1.

2.5. Segmentation

More elaborate tools have also been implemented that can carry
out higher-level analyses and transformations. In particular, audio
files can be automatically segmented into a series of homogeneous
sections, through the estimation of temporal discontinuities along
diverse alternative features such as timbre in particular [17]. First
the audio signal is decomposed into frames (18) and one chosen
feature, such as MFCC (19), is computed along these frames. The
feature-based distances between all possible frame pairs are stored
in a similarity matrix (20). Convolution along the main diago-
nal of the similarity matrix using a Gaussian checkerboard kernel
yields a novelty curve that indicates the temporal locations of sig-
nificant textural changes (21). Peak detection applied to the nov-
elty curve returns the temporal position of feature discontinuities
(22) that can be used for the actual segmentation of the audio se-
quence (23)5.

fr = mirframe(a) (18)
fe = mirmfcc(fr) (19)

sm = mirsimatrix(fe) (20)
nv = mirnovelty(sm) (21)
ps = mirpeaks(nv) (22)

sg = mirsegment(a,ps) (23)
(24)

The whole segmentation process can be executed in one sin-
gle line by calling directly the mirsegment function with the audio
input as argument:

mirsegment(a,’Novelty’) (25)

By default, the novelty curve is based on MFCC, but other features
can be selected as well using an additional option:

mirsegment(a,’Novelty’,’Spectrum’) (26)

A second similarity matrix can be computed, in order to show
the distance – according to the same feature than the one used for

5The first argument of the mirsegment function is the audio file that
needs to be segmented. It is possible for instance to compute the novelty
curve using a downsampled version of a (18) and to perform the actual
segmentation using the original audio file.
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Figure 6: Successive steps for the segmentation of an audio sequence based on timbral novelty. In the similarity matrix, high similarity
values are represented by bright nuances.

the segmentation – between all possible segment pairs (28).6

fesg = mirmfcc(sg) (27)
smsg = mirsimatrix(fesg) (28)

2.6. Data analysis

The toolbox includes diverse tools for data analysis, such as a peak
extractor, and functions that compute histograms, entropy, zero-
crossing rates, irregularity or various statistical moments (centroid,
spread, skewness, kurtosis, flatness) on data of various types, such
as spectrum, envelope or histogram.

The mirpeaks functions can accept any data returned by any
other function of the MIRtoolbox and can adapt to the different
kind of data of any number of dimensions. In the graphical rep-
resentation of the results, the peaks are automatically located on
the corresponding curves (for 1D data) or bit-map images (for 2D
data).

The mirpeaks functions offers alternative possible heuris-
tics. It is possible to define a global threshold that peaks must
exceed for them to be selected. We have designed a new strategy
of peak selection, based on a notion of contrast, discarding peaks
that are not sufficiently contrastive (based on a certain threshold)
with the neighbouring peaks. This adaptive filtering strategy hence
adapts to the local particularities of the curves. Its articulation
with other more conventional thresholding strategies leads to an
efficient peak picking module that can be applied throughout the
MIRtoolbox.

Supervised classification of musical samples can also be per-
formed, using techniques such as K-Nearest Neighbours or Gaus-
sian Mixture Model. One possible application is the classification
of audio recordings into musical genres.

3. DESIGN OF THE TOOLBOX

3.1. Data encapsulation

All the data returned by the functions in the toolbox are encapsu-
lated into types objects. The default display method associated to
all these objects is a graphical display of the corresponding curves.

6Note how the computation of a feature along the successive segments
of an audio sequence (27) follows exactly the same kind of syntax that for
the computation of a feature along successive frames (19).

In this way, when the display of the values of a given analysis is re-
quested, what is printed is not a listing of long vectors or matrices,
but rather a correctly formatted graphical representation.

The actual data matrices associated to those data can be ob-
tained by calling a method called mirgetdata, which constructs
the simplest possible data structure associated to the data (cf. para-
graph 4.1).

3.2. Frame analysis

Frame-based analyses (i.e., based on the use of a sliding window)
can be specified using two alternative methods. The first method is
based on the use of the mirframe function, which decomposes
an audio signal into successive frames. Optional arguments can
specify the frame size (in seconds, by default), and the hop factor
(between 0 and 1, by default). For instance, in the following code
(line 29), the frames have a size of 50 milliseconds and are half
overlapped. The results of that function could then be directly sent
as input of any other function of the toolbox (30):

f = mirframe(a,.05,.5) (29)
mirtempo(f) (30)

Yet this first method does not work correctly for instance when
dealing with tempo estimation as described in section 2.4. Follow-
ing this first method, as shown in figure 7, the frame decomposition
is the first step performed in the chain of processes. As a result,
the input of the filterbank decomposition is a series of short frames,
which induces two main difficulties. Firstly, in order to avoid the
presence of undesirable transitory state at the beginning of each
filtered frame, the initial state of each filter would need to be tuned
depending on the state of the filter at one particular instant of the
previous frame (depending of the overlapping factor). Secondly,
the demultiplication of the redundancies of the frame decomposi-
tion (if the frames are overlapped) throughout the multiple chan-
nels of the filterbank would require the use of consequent memory
space. The technical difficulties and waste of memory induced by
this first method can be immediately overcome if the frame de-
composition is performed after the filterbank decomposition and
recomposition, as shown in figure 8.

This second method, more successful in this context, cannot be
managed using the previous syntax, as the input of the mirtempo
function should not be frame-decomposed yet. The other alterna-
tive syntax consists in proposing the frame decomposition option
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as a possible argument (’Frame’) of the mirtempo function
(31). This corresponds to what was presented in section 2.4 (code
lines 16 and 17).

mirtempo(a,’Frame’,.05,.5) (31)

The frame decomposition option is available as a possible ar-
gument to most of the functions of the toolbox. Each function
can then specify the exact position of the frame decomposition
within its chain of operations. Besides, if not specified, the de-
fault parameters of the frame decomposition – i.e., frame size and
hop factor – can be adapted to each specific function. Hence,
from a user’s point of view, the execution and chaining of the
different operators of the MIRtoolbox follow the same syntax, be
there frame decomposition or not, apart from the additional use
of either the command mirframe or the option ’Frame’ for
frame decomposition. Of course, from a developer’s point of view,
this requires that each feature extraction algorithm should adapt to
frame-decomposed input. More precisely, as will be explained in
section 4.1, input can be either a single vector or a matrix, where
columns represent the successive frames. Conveniently enough, in
the Matlab environment, the generalization of vector-based algo-
rithms to matrix-based versions is generally effortless.

3.3. Adaptive syntax

As explained previously, the diverse functions of the toolbox can
accept alternative input:

• The name of a particular audio file (either in wav or au for-
mat) can be directly specified as input:

mirspectrum(’myfile’) (32)

• The audio file can be first loaded using the miraudio
function, which can perform diverse operations such as re-
sampling, automated trimming of the silence at the begin-
ning and/or at the end of the sequence, extraction of a given
subsequence, centering, normalization with respect to RMS
energy, etc.

a = mirtempo(’myfile’,’Sampling’,11025,

’Trim’,’Extract’,2,3,

’Center’,’Normal’) (33)
mirspectrum(a) (34)

• Batch analyses of audio files can be carried out by sim-
ply replacing the name of the audio file by the keyword
’Folder’.

mirspectrum(’Folder’) (35)

• Any vector v computed in Matlab can be converted into a
waveform using, once again, the miraudio function, by
specifying a specific sampling rate.

a = miraudio{v,44100) (36)
mirspectrum(a) (37)

• Any feature extraction can be based on the result of a pre-
vious computation. For instance, the autocorrelation of a
spectrum curve can be computed as follows:

s = mirspectrum(a) (38)
as = mirautocor(s) (39)

• Product of curves [10] can be performed easily:

mirautocor(a)*mirautocor(s) (40)

In this particular example, the waveform autocorrelation
mirautocor(a) is automatically converted to frequency
domain in order to be combined with the spectrum autocor-
relation mirautocor(s).
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4. IMPLEMENTATION DETAILS

4.1. Data representation

All data returned by the toolbox is represented using the same gen-
eral framework:

• The one-dimensional analysis of a given frame or of a whole
signal is stored in a column vector, which corresponds to the
first dimension in Matlab convention.

• The multiple columns corresponding to successive frame
analyses are arranged row-wise (along the second dimen-
sion in Matlab convention), forming a matrix. Respectively,
any two-dimensional data (such as a self-organizing map) is
stored in a same matrix using the first two Matlab dimen-
sions.

• The multiple matrices corresponding to multiple channels,
when applicable (9), are arranged along the third dimension
in Matlab convention, forming a 3D-matrix.

• The fourth Matlab dimension is sometimes used for more
complex data. For instance, the keystrength function re-
turns two sets of data – one for major keys, one for minor
keys - that are arranged following the fourth dimension.

• These matrices (one to four-dimensional) are computed for
each successive segments of a segmented audio file, when
applicable (27), and stored in a Matlab cell array.

• The multiple cell arrays corresponding to the analyses of
the multiple audio files of a batch of audio files are stored
in another cell array.

Figure 9 shows the overall structure.
This complex data structure, although enabling to grasp all

the potentiality offered by the toolbox, is rarely used in its plain
capacity. Therefore, a particular mechanism has been designed
in order to automatically simplify the structure, when calling the
mirgetdata function that return the numerical data associated to
a given feature analysis.

4.2. Object-oriented architecture

The organization of the data and functions of the mirtoolbox is
founded on an object-oriented architecture. The superclass from
which all the data and methods are based is called mirdata. It
contains all the information commonly used by all data.A hierar-
chy of classes is contructed from the mirdata hyperclass. The mi-
raudio and mirenvelope classes inherit from the mirtemporal class,
which contains particular data and methods adapted to waveforms
of diverse sampling rates. For instance, the mirplay method plays
back the audio signal. When applied to an envelope, mirplay actu-
ally produces a white noise featuring the same envelope.

A large number of features actually returns a single scalar
value per analysed frame. They are all members of the mirscalar
class, which features all the necessary methods for their process-
ing, such as their graphical display in particular. The non-scalar
features, on the contrary, are organized into a set of different spe-
cialised classes (mirautocor, mirspectrum, mirhisto, mirmfcc, etc.).

4.3. Memory optimization

The flexibility of the syntax requires a complex data representation
that can handle alternative configurations (frame and/or channels

decompositions, segmentation, batch analysis). This data structure
could in theory become very extensive in terms of memory usage,
especially if entire folders of audio files are loaded into the mem-
ory in one go. We have designed new methods allowing a better
management of memory without deterioration of the syntactical
simplicity and power. Audio files are loaded one after the other in
the memory, and if necessary, long audio files are also divided into
a series of successive blocks of frames that are loaded one after the
other. We plan to further optimise the computational efficiency of
the toolbox by proposing the possibility of distributing the compu-
tational loads among a network of computers, with the help of the
Distributed Computing Toolbox and Engine proposed by Matlab.

4.4. Software Development Kit

The different feature extraction algorithms will be progressively
refined and new features will be added in future versions of MIR-
toolbox. Users are encouraged to write their own functions, us-
ing the building blocks offered by the current version. A set of
meta-functions have been designed that enable the writing of ad-
ditional algorithms using very simple function templates. As the
meta-functions take care of all the complex management of the
data structure and methods, the development of new algorithms
can concentrate simply on the purely mathematical and DSP con-
siderations. This may result in a computational environment where
large-scale MIR systems could be developed, articulated one with
each other, and compared.

5. MIRTOOLBOX COMPARISON TO MARSYAS

Marsyas is a framework written in C++ and Java for prototyp-
ing and experimentation with computer audition applications [1].
It provides a general architecture for connecting audio, sound-
files, signal processing blocks and machine learning. The architec-
ture is based on dataflow programming, where computation is ex-
pressed as a network of processing nodes/components connected
by a number of communication channels/arcs. Users can build
their own dataflow network using a scripting language at run-time.
Marsyas provides a framework for building applications rather than
a set of applications [1] 7 Marsyas executables operate either on
individual soundfiles or collections which are simple text files that
contain lists of soundfiles. In general collection files should con-
tain soundfiles with the same sampling rate as Marsyas doesn’t
perform automatic sampling conversion (except between 44100Hz
and 22050Hz). The results of feature extraction processes are
stored in Marsyas as text files that can be used later in the Weka
machine learning environment. In parallel, Marsyas integrates some
basic machine learning components.

Also MIRtoolbox offers the possibility of articulating process
one after the other in order to construct complex computation, us-
ing a simple and adaptive syntax. Contrary to Marsyas though,
MIRtoolbox does not offer real-time capabilities. On the other
hand, its object-based architecture (paragraph 4.2) enables a sig-
nificant simplification of the syntax. MIRtoolbox can also analyse
folders of audio files, and can deal with folder of varying sampling
rates without having to perform any conversion. The data com-
puted by the MIRtoolbox can be further processed directly in the

7The main features currently proposed are spectral moments, flux, and
rolloff, pitch and harmonicity estimation, MFCC and LPC, zero-crossing
and RMS.
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Figure 9: Structure of the data representation used for each feature results.

Matlab environment with the help of other toolboxes, or can be
exported into text files.

6. AVAILABILITY OF THE MIRTOOLBOX

Following our first Matlab toolbox, called MIDItoolbox [18], ded-
icated to the analysis of symbolic representations of music, the
MIRtoolbox is offered for free to the research community. It can
be downloaded from the following URL:

http://www.cc.jyu.fi/~lartillo/mirtoolbox
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ABSTRACT 

We propose a set of design criteria for visualising loudness fea-
tures of an audio signal, measured along different time scales. A 
novel real-time loudness meter, based on these criteria, is pre-
sented. The meter simultaneously shows short-term loudness, 
long-term loudness and peak level. The short-term loudness is 
displayed using a circular bar graph. The meter displays the long-
term loudness by means of a circular envelope graph, organized 
according to an absolute time-scale – looking similar to a radar 
display. Typically, the loudness measured during the past hour is 
visible. The algorithms underlying the meter's loudness and peak 
level measurements take into account recent ITU-R recommenda-
tions and research into loudness modelling.  

1. INTRODUCTION 

Time-varying features of an audio signal can be visualised in dif-
ferent ways. Such features can be objective measures or they may 
represent perceptual properties of the signal. The features dis-
cussed in this paper are one of both kinds: 1) the perceptual fea-
ture loudness, and 2) the objective measure true peak value.   

In the measurement of the features, the analysis of the audio 
signal is done over time such that the features are represented by 
time-varying scalars (i.e. vectors) – one for each feature. The basic 
time resolution of the analysis should be adapted to perceptually 
or technically relevant granularity. This aim might be in conflict 
with the possibilities of a suitable visualisation. The big challenge 
of visualisation is to present the desired amount of information in 
such a way that it is easy to comprehend – and without losing 
access to details.  

1.1. Time scales for display 

For our application, simultaneous display along three different 
time scales is desirable. One time scale is instantaneous value, 
reacting quickly to the measured feature and typically holding the 
indication of a possible alarm condition (e.g. overload) for a short 
while, to allow an operator to see it. 

A more slowly moving indication is useful to assist an opera-
tor in adjusting the sound system, typically the gain. This indica-
tion should react and move with a speed similarly to an overall 
perception of the feature. For example, speech from a trained 
speaker may be considered to be of constant loudness even though 
short-term fluctuations occur. The display should reflect this fact. 

Finally, a log or history of the fluctuations of a feature may be 
desirable. Such a log could, for instance, be used to verify that the 
loudness is aligned appropriately between different segments of a 
broadcast. 

This paper presents a prototype of a novel real-time loudness 
meter, simultaneously showing short-term loudness, long-term 
loudness and peak level. The three metering functions have been 
chosen to fulfil needs in broadcasting, as well as in other produc-
tion environments where a diversity of program material needs to 
be aligned in perceived level while also being kept within techni-
cal limits. A meter in itself does not align the levels – an operator 
is (ideally) present to attend to the adjustments, assisted by visual 
tools like meters.  

In our design of the meter display, the analogue clock and ra-
dar displays were used as inspiration for the visualisation of mag-
nitude and time dimensions.  

1.2. Standardisation 

Within the ITU-R (International Telecommunication Unit – Radio 
Communications Sector), a study group has been working on the 
methods of loudness and true peak level metering, and recently 
come up with two new recommendations: [1] and [2]. The former 
describes the measurement algorithms, whereas [2] describes the 
visual presentation of the measurements. The need for a short-term 
as well as a long-term loudness measure is recognized, but with 
only the long-term measurement method specified at present. Fur-
thermore, methods to reliably estimate the true peak value are 
described. 

The visualisation paradigm presented in this paper is an alter-
native – or supplement – to the one described in [2]. 

2. THE NEED FOR LOUDNESS MEASUREMENT  

The audio content in the numerous formats in use, is dynamically, 
spectrally, and sometimes even spatially processed according to 
the properties of the media, format, and playback conditions, see 
e.g. [3, 4]. Each format requires different optimum settings of 
bandwidth, dynamic range etc., based on the expected listening 
conditions and also on the properties of the available transmission 
channel or storage medium such as data rate. 

These different optimum settings come in addition to the dy-
namics processing needed to reduce undesired loudness variations. 
Therefore, a loudness meter is required as a complement to tradi-
tional level metering.  

In many cases, a fully automatic way of setting processing pa-
rameters according to the different requirements would be desir-
able. This goal may not be trivial to achieve, but in all cases a 
monitoring function is needed: A meter which can display the 
relevant perceptual properties, i.e. the short-term and the long-
term loudness. Furthermore, a function to monitor the measured 
peak level is required as an aid to avoid clipping. Such a technical 
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measure is required, in addition to the perceptual measures (of 
loudness), due to the limitations of the transmission channel.  

2.1. Previous level meters: VU and PPM 

Traditionally, the primary purpose of level meters has been of 
technical nature: They serve as an aid in fulfilling certain technical 
criteria, such as obtaining a good signal-to-noise ratio on an ana-
logue medium. Here, the standardised VU- and PPM-types of 
level meters are discussed [5, 6, 7].  

The VU (volume unit) meter [5] measures the full-wave recti-
fied (i.e., absolute value) level with a relatively slow time con-
stant. The response time of the meter to rising and falling levels is 
(ideally) identical. For judging the overall level the VU meter can 
be quite useful, but due to its measurement algorithm the VU me-
ter is not suitable for loudness measurement. With the soft satura-
tion characteristics of analogue tape recordings in mind, the VU 
meter has been successfully used for years to set the right re-
cording level – often supplemented by a peak-indicating lamp, as 
the meter is too slow to react on short transients. The scale of the 
VU meter is shown in Figure 1. A mechanical instrument with a 
thin indicator needle is typically employed. Note the contrast in 
the meter, and the curved scale with approximately linear voltage 
scale and thus non-linear intervals on the dB scale. The overload 
section (above 100%) is coloured red. 

 
Figure 1: VU meter scale from [5]. 

For more precise control of peak levels, such as needed in ra-
dio and TV broadcast for technical and legal reasons, another type 
of meter was created: the peak programme meter (PPM) [6], [7]. 
Actually, two generations of PPMs exist: One with instantaneous 
response to rising levels and another with a short response time (a 
few milliseconds). The measurement algorithm consists of taking 
the peak value of the full-wave rectified signal. The decay time is 
chosen to be long enough that an operator may notice even brief 
peaks – yet not be disturbed by meter flickering. Very short peaks, 
which may cause problems in digital transmission and storage 
systems, are underestimated in the original PPM due to the re-
sponse time, so for peak measurements in the digital domain, the 
peak sample value is measured [7].  

Although the PPM was not designed for – and not really suit-
able for – loudness measurement and alignment, some rules can be 
made to help an operator use the PPM for that purpose anyway 
[8], sect. 5.2. A major disadvantage of these rules is that they re-
quire knowledge of the actual type or genre of the source material. 
The standards describe different appropriate display scales, their 
contrast, brightness, colour etc. The human factor is taken into 
account in the specifications for decay time and peak-hold time. 
Meter scales for both mechanical and opto-electronic displays 

have been specified. Figure 2 shows one of the scales for the me-
chanical display; note the linear dB-scale. 

 
Figure 2: PPM scale from [6]. 

The opto-electronic display, as shown in Figure 3, features a 
non-linear correspondence between length of the bar and dB, but 
different from the VU meter with its linear voltage scale. Instead 
the bar-type of PPM takes advantage of the digital technology and 
adapts the scale graduation to the needs of the users, by providing 
a fine resolution at high levels and a large dynamic range. A mini-
mum of 100 segments are specified for the bar-type instrument in 
order to give a smoothly changing length of the bar.  

 
Figure 3: Bar-type PPM scale from [7]. 

The displays of traditional level meters, as described above, 
were determined by a mixture of technical and human factors, 
some of which have a scientific basis, whereas others are based on 
experience from their application domain. Although none of these 
meters are particularly suitable for measuring loudness, parts of 
their display properties have been applied to our presented loud-
ness meter and associated display described in section 3. 

2.2. Loudness meter standardisation within the ITU 

Measurement algorithms and display requirements for loudness 
and true peak level meters have recently been described in the ITU 
recommendations [1] and [2]. Although the algorithms specified 
may not be the best ones available they have now been standard-
ised so that new meters, providing a better estimate of the per-
ceived loudness than a VU or PPM meter, can be made. In fact, 
the loudness measurement specified in [1] is not really measuring 
loudness, but rather an estimate of the gain offset required to 
match the loudness of one sound clip to that of a reference sound. 
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Due to the non-linear aspects of hearing, this gain offset and the 
corresponding change in loudness can differ. This issue is recog-
nised in the recommendation. For operational purposes, however, 
the gain offset can be quite useful, as the operator has gain ad-
justment tools readily available. 

The loudness measurement algorithm consists of a frequency-
weighted RMS value, developed with measurement time intervals 
in the order of 10-30 seconds, i.e. an Leq (equivalent level). In the 
case of a multi-channel input, a single loudness value is computed 
based on a weighted energy-sum. A measurement period of 10s of 
seconds is long-term rather than short-term, and not directly suit-
able for a real time meter. But as no reference data for continu-
ously varying loudness matching was available, the accuracy of a 
short-term measurement could not be tested. 

Three different displays have been specified in [2], one of 
which is depicted in Figure 4. Compared to the VU and PPM me-
ters notice the relatively few segments and the linear scale in LU 
(Loudness Units – equivalent to dB). Furthermore, the range of the 
scale is rather small – which is in accordance with the primary 
purpose of the meter as an aid in aligning loudness, and not a gen-
eral-purpose level meter. 

 
Figure 4: Loudness meter display, according to [2]. 

Having followed the ITU process of creating these two rec-
ommendations closely since 2003, we would like to make a few 
remarks: The contents of recommendations are not always that of 
the most solid science – but rather a combination of science, per-
sonal (or institutional/company) interests and political negotia-
tions. On the positive side, [1] contains an opening for improved 
loudness measurement algorithms which are not as easily fooled 
as the simple frequency-weighted energy measure. Unfortunately, 
the statistics describing the results are insufficient to enable a sci-
entifically valid comparison between the recommended method 
and alternative methods. Information on the statistical uncertainty, 
the variability of the listeners etc. are missing [9, 10]. Further-
more, the standard [1] calls for a short-term loudness measurement 
algorithm – which is certainly needed for real-time metering (and 
control).  

3. A NOVEL LOUDNESS METER 

In the loudness meter that we present here, we have employed 
successful visualisation principles of previous level meters, in 
combination with a new type of visualisation of long-term loud-
ness history. The meter displays the short-term loudness, and the 
long-term loudness over a period of time, together with signal and 
overload indications. Our design of the meter’s measurement algo-
rithms and display has evolved as a mixture between science, 
intuition and empirical experience.  

3.1. Measurement Algorithms 

3.1.1. Loudness measurement 

Loudness, as such, is a perceptual property of sound but can be 
modelled using different algorithms – and can thus be measured as 
an objective property of the sound.  

Research into psychoacoustic models of loudness perception 
has been taking place for decades. Most prominently, Zwicker’s 
loudness model has been standardised as ISO-532B [11]; however 
these models were developed for measuring loudness of sounds 
with stationary properties, such as noise and tones, and are thus 
unsuitable for meter applications [10]. More recently, Glasberg 
and Moore have presented research on modelling time-varying 
loudness of certain classes of signals [12, 13]. For loudness meter 
applications, simplified measurement algorithms have been devel-
oped, e.g. [14].  

The present meter measures the loudness of the input signal by 
means of a simple model of loudness perception, but does not 
require any particular loudness model. For multi-channel input 
signals, a single loudness measurement is computed, combining 
the contribution from each channel.  

The loudness meter uses the measurement unit of LU (Loud-
ness Units). The LU is a measurement in dB, with 0 LU corre-
sponding to a reference loudness level. The reference loudness 
level, and the acceptable range of fluctuation around it, might 
depend on the policy concerning the particular broadcast channel 
that the meter is monitoring.  

In our meter prototype, the TC LARM algorithm [10] was em-
ployed, although other algorithms could alternatively be used. The 
accuracy of the TC LARM algorithm was evaluated in [10], 
against a set of subjective reference data, using a wide selection of 
speech and music material. Compared to the weighted Leq meas-
urement algorithm in [1], the accuracy of TC LARM was found to 
be at least as good.  

The short-term and long-term loudness measurements that the 
meter displays, use the same underlying measurement algorithm. 
However, the length of the analysis window and the visualisation 
of the measurements, differ for the short-term and long-term loud-
ness. The temporal properties of the short-term loudness meas-
urement were developed with several practical criteria in mind. 
For example: How much does the short-term loudness drop, in the 
'silent' periods that are present in normal speech? How much does 
the short-term loudness rise, at the snare drum beat in pop/rock 
music? Similarly, the long-term measurement was developed to 
provide a constant measurement – within plus/minus a couple of 
LU – for material with an overall constant perceived loudness (see 
also section 3.2.4). In the current implementation of our loudness 
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meter prototype, we used the following lengths of the analysis 
windows: Short-term loudness: 0.5 s; Long-term loudness: 2.5 s.  

3.1.2. Peak level 

It is well established [15, 1] that the true peak value of a digital 
signal may be significantly above the magnitude of the actual 
samples. Especially signals that have been clipped or otherwise 
processed nonlinearly exhibit this property. When staying within 
the digital domain, and performing no subsequent processing, this 
will pose no problems (except from the distortion inherent in the 
non-linear processing). When changing domain or sample rate, 
however, the true – and possibly higher – peak value can appear in 
the new domain. That way, overload and additional audible distor-
tion can result.  

The peaks not directly represented by the samples can be es-
timated easily and accurately by using an interpolation technique, 
as used in oversampling and D-to-A conversion [1]. A short (FIR) 
lowpass filter near the Nyquist frequency and an interpolation 
factor of 4-8 will yield good estimates of the true peak value. Such 
a technique is employed in the presented meter.  

In our loudness meter prototype, only the essential overload- 
and “signal present”-indications are displayed, for each input 
channel.  

3.2. Visualisation of Measurements 

3.2.1. Short-term loudness display 

Figure 5 shows the display of the developed loudness meter, in a 
greyscale version (for better printing). In the loudness meter, a 
circular bar graph displays the short-term loudness of the input 
signal, as measured by the underlying loudness algorithm. This 
bar graph corresponds to the ‘current’ loudness that a listener 
would perceive. If the sound has a fairly constant loudness, the bar 
graph remains fairly constant (as opposed to traditional meters, 
that might change as a function of signal amplitude alone). The 
acceptable region of loudness is colour-coded: If the short-term 
loudness of a programme segment remains within the green region 
then the operator can easily determine that the material was nei-
ther too loud nor too soft.  

-20

-40
-60

0

+15

+10-10

+5-5

 
Figure 5: A greyscale version of the developed loudness 
meter display. 

The range of the short-term loudness scale is larger than in the 
ITU meter, cf. Figure 4. The upper region from -20 to +15 LU use 
a linear scale, similar to the ITU recommendation. The scale tics 
in the upper region corresponds to the minutes on an analogue 
clock, and depending on the technology used, a display resolution 
of 0.1-0.5 LU is achievable. This resolution enables a smoothly 
changing display without perceivable flicker. The lower-level 
region of the display can be useful as a more detailed “signal pre-
sent” indication, like in the PPM bar-type display (Figure 3). 

Several properties of the short-term loudness display are in 
accord with knowledge about human visual perception, e.g., chap-
ters 6 and 8 in [16]. One such property is redundancy, which in-
creases the robustness of the readings. The short-term loudness is 
signalled not only by a position (of the end of the arc/curved bar) 
but also the size of the arc, i.e. the angle covered. Furthermore, the 
end of the arc changes angle according to the present loudness. As 
the eye is more sensitive to angular movement than to ‘linear’ 
movement this increases the readability of the display. Finally, 
colours are used to code relevant regions. Together, these proper-
ties also help ensuring that the short-term loudness is evident, 
even if a human operator was presented with several simultaneous 
displays, or if reading the meter from a distance.  

3.2.2. Long-term loudness display  

The long-term loudness is displayed in the centre of the loudness 
meter, by means of a circular envelope graph. The envelope graph 
is organized according to an absolute time-scale, similar to famil-
iar analogue clocks. Thereby, the long-term loudness of the input 
signal during the past hour is displayed at all times. In Figure 5, 
the time is 9:13, hence the current long-term loudness is being 
displayed at the “13 minutes past the hour” position. The ‘older’ 
the long-term loudness entry is, the more it is faded into the back-
ground (white in Figure 5, black in Figure 6). Thus, the long-term 
loudness display appears like a “radar display” which is scanning 
clock-wise.  

 
Figure 6: A colour version of the developed loudness me-
ter display, with a mono input signal. 
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The further away from the centre the long-term loudness 
graph is, the louder the sound was at that time. The different col-
our regions correspond to “below reference loudness”, …, “above 
reference loudness” (Figure 6).  

As an extra feature, the displayed long-term loudness could 
cover any period of time, from the past minute (time is zoomed in) 
to the past 12 hours (time is zoomed all the way out). Furthermore, 
a single loudness meter could record or log the loudness history of 
several simultaneous sources, which the operator could then 
switch between while monitoring the sources.  

We have implemented the loudness meter as a virtual proto-
type (software). Figure 6 shows the display of the prototype.  

3.2.3. Signal level and Overload display  

The loudness meter’s signal level indicator consists of a column of 
LED-type components for each audio channel of the input source. 
The red indicator is turned on, for a short period, when signal 
overload is detected. Typically overload is indicated when the 
level is close to or above 0 dBFS, but lower levels could alterna-
tively be used, depending on policy concerning the particular 
source. The green indicator is turned on when the signal level is 
above (say) -50 dBFS, to indicate that a signal is present on the 
corresponding channel – conversely to indicate a signal drop-out.  

In addition, the signal overload indicator could display, using 
a coloured dot, any signal overloads (on any channel) that have 
occurred during the past hour (Figure 5). These dots are displayed 
along the circumference of the long-term loudness display, where 
their locations are used to indicate that certain events occurred at 
the corresponding time. Different colours could even be used to 
indicate (other) technical problems that happened in the past, such 
as signal drop out, or loss of clock sync for a digital input.  

3.2.4. Example 

Although a loudness meter is inherently an instrument to be used 
in real-time, for purposes of illustration the loudness measurement 
data can be extracted and plotted. The three graphs in Figure 7 
show the short-term and long-term loudness measurements and the 
signal amplitude, as a function of time, using a test signal as input 
to the meter. This demonstrates how (much) the two loudness 
measures fluctuate for different types of audio material.  

A test signal was made up of two audio segments, each of 15 
seconds duration, representing characteristic signals: speech and 
pop music (Table 1). Whereas the speech signal is a fairly ‘dry’ 
recording, the pop track has undoubtedly been processed with 
dynamics compression and other mastering techniques. Each of 
the segments were ‘level-normalised’ individually, i.e. scaled to 
peak at 0 dBFS.  

 
In test 
signal 

CD Track Start 
time 

End 
time 

0-15 s  EBU SQAM: Sound Quality 
Assessment Material 

#49: Speech - 
Female, English 

0:00 0:15 

15-30 s  Madonna: Confessions On 
A Dancefloor 

#1: Hung Up 0:45 1:00 

Table 1: The contents of the test signal, displayed in 
Figure 7. 

The short-term loudness graph reveals that the speech segment 
consists of two spoken sentences, but also that the speaker 

achieves a fairly constant loudness, with variations within +/− 5 
LU. Even though both segments were peak-normalised, the long-
term loudness graph shows that the pop segment is consistently 
louder that the speech segment. In fact, the pop segment manages 
to stay 6-8 LU above the reference loudness level, with virtually 
no variation.  

Imagine these two segments had been broadcast on the radio, 
with no further processing, while the loudness meter was ‘listen-
ing’ to the signal. The meter’s long-term loudness history could 
then suggest that the pop segment should have been attenuated by 
say 5 dB, in order to spare the listeners for a noticeable increase in 
loudness. Lund describes the loudness meter’s application in the 
context of broadcast for Digital TV and other media [17]. 

 
Figure 7: The short-term loudness, long-term loudness and 
amplitude of a test signal consisting of 2 segments. First 
15 sec: Female speech; Last 15 sec: Madonna - Hung Up. 

4. TOWARDS EVALUATION 

The effectiveness of any loudness meter will depend on both the 
graphical appearance and dynamic behaviour of its display, as 
well as on its underlying measurement algorithms. All of these 
factors must be taken into account, when assessing the meter's 
overall quality and usability.  

Formal evaluation of a visualisation system, such as the one 
described in this paper, is challenging: First of all, one or more 
metrics must be defined by which the display should be evaluated. 
The correspondence between the sound heard and the picture seen 
is one aspect to be evaluated. Another metric could characterise 
the speed of reading the meter reliably. A very high-contrast and 
flashing meter could cause eye fatigue (even though such a display 
might be immediately more readable). The usefulness of having 
several types of loudness measurements available at one glance 
may be hard to measure directly, but has to do with the compact-
ness of the display, which again determines where the display can 
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fit in the application, and how many independent sources can be 
displayed on individual meters, in a given workspace.  

So far our loudness meter has only been verified informally – 
we have received positive response from potential users in differ-
ent application areas. No systematic experimental assessment of 
the proposed meter has been attempted yet.  

4.1. An example of an evaluation method 

A method for designing and evaluating a short-term loudness me-
ter has been proposed in [18]. The purpose of that study was to 
address the need expressed by the ITU in [1]. At least two chal-
lenges are described in [18]: First, a way of creating a continu-
ously varying measure of the perceived loudness must be found – 
i.e., a set of reference data for evaluating the measurement by the 
meter. Second, these time-varying reference data must be com-
pared to the meter display. As a result of the evaluation, the tech-
nical parameters of the meter (or its measurement algorithm) can 
be set to appropriate values. 

Rather than tracking the time-varying loudness itself, the task 
of the subjects in [18] was to continuously adjust a gain control to 
keep the loudness constant, that is, a continuously varying gain 
correction factor was registered. A couple of difficulties using this 
method were found: 1) When subjects adjusted the gain they 
tended to overshoot a bit. This must be taken into account when 
analysing the data. 2) The subjects tended to drift in their loudness 
reference. This means that their gain correction factor for identical 
sound segments changed over time. 

To evaluate variations of a short-term loudness meter, the out-
put of the ITU loudness measurement algorithm using different 
lengths of the analysis time window was plotted against the sub-
jective gain adjustment data. The evaluation consisted of a visual 
inspection of these plots, and based on that a time window of 3 
seconds was chosen as optimum for a “short-time loudness” 
measurement. 

4.2. A proposed evaluation method 

A loudness meter with its underlying measurement algorithms and 
display methods contains many parameters – more than could 
easily be adjusted in a traditional adjustment-type of experiment. 
Furthermore, the task of evaluating the complete meter in an ex-
periment would require a considerable amount of time, as the 
inclusion of a signal history depends on listening to several sound 
segments within a single session.  

One way to overcome the difficulties of performing a multi-
parameter adjustment experiment would be to present a number of 
different complete meters, with pre-set variations of the underlying 
algorithms and their parameters, and maybe even display types. 
The task of the test subjects would in that case be to rate the dif-
ferent meters according to specific criteria (as the metrics men-
tioned above), as well as the subjective overall impression.  

5. CONCLUSION 

We have proposed some design criteria for visualising loudness 
features of an audio signal, measured along different time scales. 
We then presented a novel loudness meter, simultaneously show-
ing three time-varying features of an audio signal: short-term 
loudness, long-term loudness history and a overload indicator. Our 

meter displays the short-term loudness using a circular bar graph. 
The long-term loudness is displayed by means of a circular enve-
lope graph, organized according to an absolute time-scale – look-
ing similar to a radar display. The presented real-time loudness 
meter thus provides one complete solution to the requirements for 
an effective loudness meter. The algorithms underlying the meter 
prototype's loudness and peak-level measurement take into ac-
count recent ITU-R recommendations and research into loudness 
modelling. Finally, different aspects of evaluating a loudness me-
ter were discussed.   
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ABSTRACT 

DAFX is an established conference that has become a reference 
gathering for the researchers working on audio signal processing. 
In this presentation I will go back ten years to the beginning of 
this conference and to the ideas that promoted it. Then I will jump 
to the present, to the current context of our research field, differ-
ent from the one ten years ago, and I will make some personal 
reflections on the current situation and the challenges that we are 
encountering. 

1. ORIGINS OF DAFX 

The International Conference on Digital Audio Effects is celebrat-
ing its 10th anniversary. None of the researchers that more than 
ten years ago were involved in the creation of the conference 
would have ever expected to be celebrating this anniversary. In 
the name of the promoters of DAFX I would like to thank all the 
participants to these conferences for supporting it and especially I 
want to congratulate the organizers of these ten meetings for 
making it happen. 
    The DAFX was started as part of a European project for co-
operation and scientific transfer, named Digital Audio Effects, 
which lasted from 1997 to 2001. The project was coordinated by 
the French researcher Daniel Arfib and its main objective was to 
provide a synthesis of what can be done in the digital processing 
of sounds, and its application to music. The project resulted in 
two successful initiatives, the DAFX book [1] and the DAFX 
Conferences (more information can be found in 
http://www.dafx.de/).  
    The DAFX book, edited by Udo Zölzer, came out in 2002 and 
in a short time it became a major reference. It covers the main 
topics of digital audio effects, such as the basics for digital filters, 
modulations, non-linear processing, spatial effects, the more 
advanced topics in audio processing based on time-segment, time-
frequency, source-filter, spectral analysis, time-frequency warp-
ing and also a topic on control issues and another on the new 
techniques of bitstream processing. One of the main reasons for 
its success lies in its practical approach and in all the MATLAB 
code, which makes it easy for someone getting into the filed to try 
out the algorithms while understanding the theory behind them. 
Udo Zölzer did a great job in promoting a unified style from all 
the contributors and also in carrying out a careful overall editing. 
    The DAFX conference was started as an international meeting 
of researchers interested in the theory and practice of digital 
sound processing and its applications. The goal of the conference 
was to offer both an overview of the field and an in-depth discus-

sion of current research and future directions. The first scientific 
committee of the conference included the partners of the EU 
project. I became the chairman of the DAFX-98 in Barcelona, and 
since then the chairmen have been: Jan Tro (DAFX-99, Trond-
heim), Davide Rocchesso (DAFX-00, Verona), Mikael Fernström 
(DAFX-01, Limerick), Udo Zölzer (DAFX-02, Hamburg), Mark 
Sandler (DAFX-03, London), Gianpaolo Evangelista (DAFX-04, 
Naples), F. Javier Casajús (DAFX-05, Madrid), Philippe Depalle 
(DAFX-06, Montreal) and Sylvain Marchand (DAFX-07, Bor-
deaux). Each organizer has taken the previous conference a step 
further and thus this year conference is quite different from the 
first one. 
    Going back to the beginning, the first major discussion within 
the scientific committee was in defining the scope of the term 
Digital Audio Effects. With a narrow perspective it would only 
include what is commercially known as “Digital Audio Effects 
Processors” and the technologies behind them. But we found it 
more appropriate to widen the perspective, including all the digi-
tal processes that have a sound as input and their output is a signal 
useful for audio and music applications. We decided that topics 
that could be covered in the conference included: Filtering, 
Modulation, Delay, Non linear processing, Time/Frequency scal-
ing, Spatialisation, Sound analysis, Spectral processing, Audio 
coding, Hardware, and Software implementations. We were 
particularly interested in the new research development, that are 
extending the traditional low level sound processing found in 
most commercial products towards higher level processing tech-
niques, techniques that could be described by the term “Content 
Based Processing”. 
    Looking at the call for papers and the final proceedings of all 
the ten conferences we can observe that it has evolved. The scope 
of the conference has expanded, new topics have been incorpo-
rated and new challenges are being tackled. It is important that 
DAFX reflects the state of the art of the field and it continues to 
evolve by being sensitive of its context.  

2. SOUND AND MUSIC COMPUTING CONTEXT 

The topics being presented and discussed at DAFX can be con-
sidered part of what is now called Sound and Music Computing 
(SMC). A good overview of this research field is the Roadmap 
funded by the EU and elaborated by the S2S2 consortium [2]. The 
Roadmap document covers quite a number of issues but one of 
the main contributions is the definition of the actual field of re-
search. In the Roadmap it is stated that the SMC research ap-
proaches the whole sound and music communication chain from a 
multidisciplinary point of view, and that by combining scientific, 
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technological and artistic methodologies it aims at understanding, 
modeling and generating sound and music through computational 
approaches. 

The sound and music communication chain covers all aspects 
of the relationship between sonic energy and meaningful informa-
tion, both from sound to sense (as in musical content extraction or 
perception), and from sense to sound (as in music composition or 
sound synthesis). The disciplines involved in SMC cover both 
human and natural sciences. Its core academic subjects relate to 
musicology, physics (acoustics), engineering (including computer 
science, signal processing and electronics), psychology (including 
psychoacoustics, experimental psychology and neurosciences) 
and music composition. Most SMC research is quite applied and 
current areas of application include digital music instruments, 
music production, music information retrieval, digital music 
libraries, interactive multimedia systems, auditory interfaces and 
augmented action and perception (e.g. bionic ears, digital prosthe-
sis and multimodal extensions of the human body). 

 

Figure 1: SMC research areas (from [3]). 

Figure 1 depicts the relationships between the different SMC 
research areas. It makes a basic distinction between research that 
focuses on sound (left hand side), research that focuses on music 
(right hand side) and the research fields that address the interac-
tion between the two. For each research field, there is an analytic 
and a synthetic approach. The analytic approach goes from en-
coded physical (sound) energy to meaning (sense), whereas the 
synthetic approach goes in the opposite direction, from meaning 
(sense) to encoded physical (sound) energy. Accordingly, analytic 
approaches to sound and music pertain to analysis and under-
standing, whereas synthetic approaches pertain to generation and 
processing. In between sound and music, there are multi faceted 
research topics that focus on interactional aspects. These are 
performance modeling and control, music interfaces, and sound 
interaction design. 

DAFX covers quite a big part of the SMC field, and together 
with the International Computer Music Conference (ICMC), the 
International Conference in Music Information Retrieval (ISMIR) 
and the International Conference on New Interfaces for Musical 
Expression (NIME), DAFX represents quite well the core of the 
SMC research community.  

The development of audio systems cannot be approached just 
from a signal processing perspective and the needed inderdisci-
plinarity approach to solve the problems discussed at DAFX is 
quite clear. The disciplines involved in SMC range from the 
natural sciences like physics and acoustics through mathematics, 
statistics and computing, all the way to physiology, psychology 
and sociology. The increased recognition of SMC and of the 
multidisciplinarity fields in general should help DAFX to position 
itself as a research conference with a specific personality. 

3. SOME CHALLENGES 

The SMC Roadmap identifies two broad research challenges: 
(1) To design better sound objects and environments and (2) To 
understand, model, and improve human interaction with sound 
and music.  

The first challenge relates to the fact that many current elec-
tronic devices, not just the audio ones, incorporate sound systems 
in them and thus the improvements in the sounds produced by all 
these devices present in our environment will enhance our quality 
of life. Thus our society will benefit from the development of new 
musical instruments, new technologies for delivering sounds, new 
sound modeling strategies, new sonic spaces, an also from a better 
control of the environmental sound and its pollution conse-
quences. The DAFX community should be proactive in develop-
ing the core technologies to face this challenge. 

The second challenge is concerned with the issue that truly 
useful and rewarding machine-mediated sonic environments and 
services will require a better understanding of human interaction 
with sound and music in all its breadth, including perceptual, 
cognitive, emotional, bodily and social aspects. We need to de-
velop computational models of auditory perception and cognition, 
new perception paradigms and technologies for bridging the 
semantic gap in music. We also need to better understand the 
expressive issues of sound communication and the relation be-
tween perception and action. 

The SMC Roadmap also identifies more contextual chal-
lenges of relevance here. Beyond the research issues, the DAFX 
community needs to worry about education, social aspects and 
also about technology transfer. The increasing need for specialists 
in our field requires a decisive growth in the size and quality of 
existing educational programs and the creation of appropriate new 
ones. Thus we need to appropriately educate our future research-
ers. Also social concerns have to play an important role in our 
research decisions. For example we must be able to empower 
users, putting the relevant choices and decisions into the hands of 
the individual. Finally the improvement of the technology transfer 
requires especial efforts. A large part of our research is devoted to 
applications that can be directly exploited in the arts, in industry 
and in society at large. Proper knowledge transfer can lead to 
successes whose size and impact are bound to be very large.  

4. CONCLUSIONS 

DAFX and its community have played an important role in the 
development of the Sound and Music Computing field and it 
definitely has the potential for continuing to do so. This 10th 
anniversary is a good moment to reflect on what we are, on our 
role within the larger research community and on the challenges 
that we have in front of us. I have tried to give my personal view 
on this and I just hope to have triggered some discussion within 
our research community. 
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ABSTRACT

For interactive sound synthesis, we would like to change the shape
of a finite element model of an instrument and rapidly hear how
the sound changes. Using modal synthesis methods, we would
need to compute a new modal decomposition with each change
in the geometry, making the analysis too slow for interactive use.
However, by using modes computed for one geometry to estimate
the frequencies for nearby geometries, we can hear much more
quickly how changing the instrument shape changes the sound.
In this paper, we describe how to estimate resonant frequencies
of an instrument by combining information about the modes of
two similar instruments. We also describe the balance between
computational speed and accuracy of the computed resonances.

1. INTRODUCTION

With fast computers and modern techniques, we can synthesize
realistic instrumental sounds in real time. The goal of the work we
describe here is to design realistic instruments in real time. That
is, we would like to know precisely how changing the shape of
an instrument, or the materials that make up the instrument, will
change the instrument’s sound.

In modal synthesis, the motion of an instrument is expressed
as a combination of modes, each of which oscillates independently
of the others. To use modal synthesis, though, we must first com-
pute a partial eigenvalue decomposition of the system matrices.
This eigenvalue problem is relatively expensive, but we only need
to compute the decomposition once for a given instrument. How-
ever, the eigenvalues and eigenvectors depend strongly on the in-
strument’s shape. Therefore, to design new instrument shapes with
standard modal analysis, we would need to recompute the modes
for each new design – a prohibitively expensive step for an interac-
tive tool. Our goal in this paper is to show how to quickly estimate
the modes of a new instruments from the modes of one or more
similar instruments.

This paper describes one method that can be used to predict
how the eigenvalues and eigenvectors will move when the geome-
try changes. The method exploits properties of parameter-dependent
linear systems by tracking an invariant subspace as modifications
are made. Using this method, one avoids recomputing modes
while still providing an accurate representation of the timbre of an
object. The results show very high accuracy for moderate changes.
Moreover, our algorithm runs in a modest linear time for standard
finite element discretizations.

1.1. Mathematical preliminaries

For a system of n degrees-of-freedom (DOFs), the governing equa-
tions of motion are a set of n coupled ordinary differential equa-
tions of second order. The solution of these equations becomes
complicated when the size of the system is large or when the forc-
ing functions of the system are non-periodic. In such cases, it is
convenient to express the deformation of the object as linear com-
binations of normal modes of the system. Such a transformation
uncouples the equations of motion into a set of n uncoupled differ-
ential equations. In this form it is trivial to solve for the vibration
of an object under various loading conditions.

Even when the motion of the object is large, or other nonlinear
behaviors occur that violate the assumptions of modal superposi-
tion, the techniques presented in this paper can be used to build
the basis that captures object motion [1], [2]. As such, this paper
provides a general technique for approximating modal parameters
as objects undergo shape change. It is used to aid in modal decom-
position and is applied before excitation and modal superposition
are performed.

The canonical system of equations resulting from discretiza-
tion using the finite element method is as follows:

Mü+ Cu̇+Ku = f(t) (1)

where M is the matrix representing the distribution of mass in the
system, C is a measure of damping and K is the stiffness matrix.
This equation expresses the balance of forces generated by the ac-
celeration, velocity and displacement of the object. In this form the
equations are coupled and thus the solution involves manipulation
of these large system matrices.

Alternatively, modal analysis seeks to decouple this system
into single degree-of-freedom (DOF) oscillators. Without damp-
ing, the procedure for uncoupling these equations is straight for-
ward using the general eigenvalue decomposition Kx = λMx.
However, with damping, decoupling these equations requires some
assumptions to be made [3]. Normally proportional damping is as-
sumed such that:

C = α1M + α2K (2)

Substituting this expression back into Equation 1, we have:

M(ü+ α1u̇) +K(α2u̇+ u) = f(t) (3)

This is the general form of the system before eigendecomposition.

1.2. Model reduction

The eigenvalue problem that we want to solve then is:

Ax = λBx (4)
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where A and B are the positive semi-definite symmetric stiffness
and mass matrices respectively (i.e. K andM ), and x is the vector
of nodal displacements of the mode with natural frequency λ =
ω2. One means of formulating approximate equations for freely
vibrating discrete systems is via the Rayleigh’s quotient:

λR =
x̂TAx̂

x̂TBx̂
(5)

where x̂ is an approximation to x [4]. The relative accuracy of
methods based upon this formulation results from the fact that
eigenvalues λ are stationary with respect to perturbations in the
elements of A,B, and the eigenvectors x. Thus, if a transforma-
tion for the n physical node displacements, x̂, into fewer (m < n)
generalized coordinates is available, say

x̂ = V y
n× 1 n×m m× 1

(6)

then the corresponding Rayleigh quotient becomes

λR =
yTV TAV y

yTV TBV y
. (7)

Making λR stationary to arbitrary variations in the m elements of
y yields the reduced eigenproblem

V TAV y = λRV
TBV y. (8)

We can view this reduction as imposing n−m constraints on the
original system thus giving the following result using the Cauchy
Interlace Theorem

λ(i) ≤ λ
(i)
R ≤ λ(j+n−m) j ≤ m. (9)

Thus all the λR are contained between λ(i) and λ(n) and the ap-
proximations become exact for m = n.

The essence of the reduction scheme lies in the definition of
the transformation matrix V . Some researchers have used matrices
comprised from vectors that span a Krylov subspace [5], [4]; we
choose to use a matrix that is made from exact modal vectors [6].

2. METHODS

For most systems, only the first few natural frequencies and asso-
ciated natural modes greatly influence the dynamic response, and
the contribution of higher natural frequencies and the correspond-
ing mode shapes is negligible. If only the fundamental natural
frequency of the system is required, the Rayleigh method can be
used. However, if a small number of lowest natural frequencies of
the system is required, the Rayleigh-Ritz method can be used.

The Rayleigh-Ritz method then, can be considered an exten-
sion of the Rayleigh method [7]. In the Rayleigh-Ritz method,
the shape of deformation of the continuous system, v(x) is ap-
proximated using a trial family of admissible functions that satisfy
some geometric boundary condition of the problem:

v(x) =

nX
i=1

ciφi(x) (10)

where ci are unknown constant coefficients and φi are the known
trial family of admissible functions. The functions can be a set of
assumed mode shapes, polynomials, or eigenfunctions.

The accuracy of the method depends on the value of n and the
choice of trial functions φi(x) used in the approximation. By using
a larger n, the approximation can be made more accurate, and by
using trial functions which are close to the true eigenfunctions, the
approximation can be improved.

2.1. Approximations from a subspace

Let s denote a geometric parameter. For a given finite element
model, we have a generalized eigenvalue problem:

(K(s)− λ(s) ∗M(s))u(s) = 0, (11)

where K(s) is the stiffness matrix of the system and M(s) is the
mass matrix at the given state of the geometry, and λ(s) and u(s)
are an eigenvalue and its corresponding eigenvector for the system.

If w(s) is accurate to O(h) as an estimate for u(s), then

µ(s) = (w(s)∗K(s)w(s))/(w(s)∗M(s)w(s)) (12)

is accurate to O(h2) as an estimate for λ(s). This is the accuracy
boost we want to utilize.

Suppose that we have computed eigenpairs (λ(s0), u(s0)) and
(λ(s1), u(s1)), and now want to compute the pair (λ(s2), u(s2)).
Then we can use the initial approximation µ(s) drawn from a
Rayleigh-Ritz approximation on the pencil:

(U∗K(s2)U,U
∗M(s2)U) (13)

where U = [u(s0), u(s1)] (or if several of the lowest eigenvalues
are desired then simply replace u(s0) with u1(s0), u2(s0), ... and
u(s1) with u1(s1), u2(s1), etc.).

If the step size isO(h), then the error in approximating ui(s2)
by extrapolating through ui(s0) and ui(s1) should beO(h2) – the
approximation is good through the linear term – and the eigen-
value approximation should be O(h4). More generally, if you use
invariant subspaces computed at k points, you should get O(hk)
accuracy in the eigenvector, and a correspondingO(h2k) accuracy
in the computed eigenvalue.

Therefore, by building a basis from n eigenvectors sampled at
k locations in parameter space, we can predict the same n eigen-
vectors and the corresponding eigenvalues at nearby points. In
essence, by looking at a couple of steps, we can capture the be-
havior of the eigenvectors rotating as the geometry changes and by
solving a smaller eigenproblem, we can reduce the time to com-
pute the original system in order to determine a subset of eigenval-
ues and eigenvectors.

2.2. Expected behavior

Instead of solving the entire eigenvalue problem, we will be mak-
ing approximations to the solutions by projecting onto the sub-
spaces formed by analyzing nearby shapes. We can measure how
well our method approximates the true eigenvectors of the sys-
tem by measuring the angle between the actual and approximated
eigenvectors [8], [6], [9]. One can approximate the angle by:

‖ sinψ‖ ≤ ‖r(y)‖
gap(θ)

(14)

where θ = y∗Ay is the Rayleigh quotient given by projection of
the matrixA onto the vector y. The residual r(y) = Ay−yθ mea-
sures how well the vector y approximates an eigenvector. Also
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the gap(θ) = min|λi[A] − θ| over all λi 6= αi measures how
well-separated a given eigenvalue is. This result combines several
important facts. Firstly, it says that the larger the gap between an
eigenvalue and the neighboring eigenvalues in the same spectrum,
the better the approximation one can make to its eigenvector. The
next fact is more straightforward; it states that the better the vec-
tor y acts like a solution to the eigenproblem Ax − λx = 0, the
better it approximates an eigenvector. From these results we know
that systems with repeated or tightly clustered eigenvalues will be
a problem, and we will give an example on the effect of approxi-
mation techniques on these systems in Section 3.2. However, for
general parameter dependent matrices, we can see that approxima-
tion using projections onto a subspace show promise.

We will try the Rayleigh-Ritz technique on several examples
to see how well we can approximate the spectrum after modifica-
tions to the geometry.

3. RESULTS

We tested the usefulness of this approach on a variety of exper-
iments. The geometries tested do not represent full instruments
per-se, but instead are arbitrary shapes that can be formed using
the parametric method described in [10]. We use these shapes for
examination of the method.

For each geometry, we used a linear shell finite element for-
mulation as described in [11]. Each element consists of four nodes
each with six degrees-of-freedom. We use shells to make the ax-
isymmetric example easier to visualize. However this method can
be used with any geometric discretization that can be defined para-
metrically, including solid models.

3.1. Separated spectrum

First, we examined a shell whose curvature is defined by four con-
trol points as shown in Figure 1. The large dots indicate the points
modified directly and the smaller dots represent the points which
are interpolated using cubic B-spline interpolation to define the
curve. By changing the location of these control points, we change

Figure 1: Parametric curve.

the geometry parametrically.
The control points define a curve which is then revolved by

a small amount around the z-axis to form the geometry shown
in Figure 2. We use this geometry to highlight one aspect of the

method that occurs when the curve is revolved all the way around
the z-axis.

Figure 2: Simple shell model.

We examined changing a 1m tall by 0.5m radius shell’s out-
ermost radius by 10cm, 1cm, and 1mm and examined the error in
eigendecomposition. We considered using only one sample point
in parameter space, s, and examined the accuracy in prediction of
the Ritz values. The results show prediction errors of 1% for the
smallest step size and 100% for the largest step size. As expected,

Figure 3: Error for different size h. One sample point.

smaller changes in geometry allowed for better prediction of the
new eigensolution. In each of the plots, we consider the first n
non-zero eigenvalues.

Next, we examined using two sample points. Figure 4 shows
the results for the different step sizes. As expected, using more
points in parameter space increased the accuracy of the predic-
tions. In fact, the accuracy of the two-subspace version is almost
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Figure 4: Error for different size h. Two sample points.

twice as many digits as the one-subspace version which agrees
with the theoretical bounds in Section 2.2.

Figure 5 shows that using two subspaces versus one also gives
much faster convergence. Notice how the two point version has
a steeper slope than the one point version, following the expected
O(h2k) convergence, (where k is the number of points).

Figure 5: Error for different size h. Two sample points.

We also investigated using a larger subspace. So instead of us-
ing the first 50 eigenvectors, we used the first 100. Figure 6 shows
how using more eigenvectors from each of the two subspaces im-
proves the estimate of the eigenvalues.

We also confirmed that the error is proportional to the size of
the object, i.e. making a 10cm change in a 1000cm object should
produce smaller errors than the same absolute change to a 10cm
object. By examining Figure 7, we can see when that the error is
proportional to the size of the object, as expected.

Figure 6: Error for h = 10cm. Larger subspaces.

3.2. Repeated eigenvalues and other difficulties

As we would expect for a model with a high degree of rotational
symmetry, our test problem exhibits many repeated eigenvalues.
For an eigenvalue with multiplicity m, we cannot uniquely iden-
tify m mode shapes. Even for nearly-symmetric objects, the mode
shapes associated with a cluster of eigenvalues can vary wildly
under small perturbations. Only the m-dimensional invariant sub-
space spanned by all the shapes for the eigenvalue cluster is uniquely
defined.

The sensitivity of the mode vectors does not, on its own, im-
ply that our method will behave poorly in the presence of repeated
eigenvalues. If every vector in the invariant subspace for a clus-
ter of m eigenvalues can be approximated well by some vector in
the projection basis U , then we expect Rayleigh-Ritz approxima-
tion with U to produce a cluster of m eigenvalues near the orig-
inal eigenvalues, and a corresponding subspace which is a good
approximation to the true invariant subspace. However, the single-
vector Lanczos iteration we use to find mode shapes sometimes
fails to find a complete basis for each invariant subspace. When
this occurs, we can overlook some of the eigenvalues and eigenvec-
tors that we would like to capture in our projection space. When
this occurs, the missing mode shapes represent a significant failure
in our method.

For example, when analyzing the 1m high by 1m radius ax-
isymmetric geometry shown in Figure 8 we found very large er-
rors. Figure 9 shows the degeneracy that arises using a very ax-
isymmetric geometric formulation.

We were able to resolve the some of the eigenvalues more ac-
curately with a larger subspace, but not the eigenvalues at the be-
ginning of the spectrum (see Figure 10).

The large errors at the beginning of the spectrum are not ex-
pected on their own, however when examining the eigenvalues we
can see that the large errors can be attributed to the rapid change in
eigenvectors for even a small perturbation. Figure 11 shows how
the principle angles between the subspaces at two iterations can be
very large for even small modifications.

In fact we found that the higher number of repeated eigen-

DAFX-4

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

256 DAFX-07



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

Figure 7: Error for different sized objects.

values, the worse the overall approximations. Figure 12 shows
a geometry similar to Figure 8 but with 4 radial slices, and Fig-
ure 13 shows the error in eigenvalue approximations using this ge-
ometry. Figure 14 shows a geometry with 8 radial slices, and Fig-
ure 15 shows the error in eigenvalue approximations on this model.
Figure 16 shows a geometry with 16 radial slices, and Figure 17
shows the resulting error in eigenvalue approximations. These re-
sults leads us to believe that more radial slices creates more blocks
of symmetry in the system matrix, thus making it harder it is to
approximate the motion of the eigenvectors.

We know two methods to address the difficulty of completely
resolving the the invariant subspaces corresponding to repeated
eigenvalues. The first method is to use a block version of the stan-
dard Lanczos algorithm [6]. Unlike the ordinary Lanczos itera-
tion we use, block Lanczos iteration can find an invariant subspace
for an eigenvalue in a single step, provided the block size is the
same or greater than the multiplicity of the eigenvalue. The second
method is the radial decomposition technique described in [10],
which uses analytical knowledge of the symmetry group leading
to the multiple eigenvalue in the first place.

Another source of problems is when a structure is much stiffer
in some directions than in others. For example, our shell struc-
ture is much less resistant to out-of-plane bending than to in-plane
compression. A vector that represents pure bending motion for one
geometry may represent a mixture of bending and in-plane com-
pression in a nearby geometry, so that a Rayleigh-Ritz approxi-
mation based on that vector will overestimate the frequency at the
new geometry.

3.3. Performance

The speedup gained by using this method over traditional reanaly-
sis is the difference between modest linear and super-linear com-
puting time once the initial k samples have been computed. Fig-
ure 18 shows the speedup using this method over using reanalysis
for increasing resolution of the object shown in Figure 2.

Figure 8: Axisymmetric shell model.

4. CONCLUSIONS

The aim of this investigation is to determine if our tracking method
method can be used to predict the changes in the frequency spec-
trum of an object as parametric changes are made. The results of
these experiments show that for moderate changes, it is possible
to avoid recomputing the eigendecompositions in order to resolve
the resonant frequencies of interest.

By exploiting the properties of the system matrices, we have
a bound on the errors produced using different step sizes. For an
interactive design tool, this would mean that the software could
alert the user when errors above a given threshold have been made
and signal the need for a full reanalysis.

For systems with many repeated eigenvalues, such as axisym-
metric systems, it is more beneficial to use analysis techniques that
will handle the multiple eigenvalue problem.

This investigation demonstrates that for interactive design ap-
plications, it is beneficial to track the spectrum for moderate changes
in geometry to avoid computing a partial eigendecomposition. By
using this method, we can maintain a moderate linear time algo-
rithm with increasing system size.
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Figure 9: Error for different size h. Axisymmetric geometry.
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Figure 11: Cosine of angle between subspaces at two different
steps.

Figure 12: Whole bell geometry, 4 planes of symmetry.

Figure 13: Error for different size h. 4 planes of symmetry.

Figure 14: Whole bell geometry, 8 planes of symmetry.
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Figure 15: Error for different size h. 8 planes of symmetry.

Figure 16: Whole bell geometry, 16 planes of symmetry.

Figure 17: Error for different size h. 16 planes of symmetry.

Figure 18: Time to compute new spectrum.
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ABSTRACT 

A novel filter configuration for the analysis of harmonic musical 
signals is proposed. The method is based on inverse comb filtering 
that allows for the extraction of selected harmonic components or 
the background noise component between the harmonic spectral 
components. A highly accurate delay required in the inverse comb 
filter is implemented with a high-order allpass filter. The paper 
shows that the filter is easy to design, efficient to implement, and 
it enables accurate low-level feature analysis of musical tones. We 
describe several case studies to demonstrate the effectiveness of 
the proposed approach: isolating a single partial from a synthetic 
signal, analyzing the even-to-odd ratio of harmonics in a clarinet 
tone, and extracting the residual from a bowed string tone. 

1. INTRODUCTION 

Analysis of the amplitude envelope of harmonic components of a 
musical tone is a fundamental operation in musical signal process-
ing. We discuss the harmonic extraction using the digital filtering 
approach. This is an old technique that has been proposed in dif-
ferent forms by Moorer in the 1970s for pitch detection of speech 
signals [1] and for analyzing music data for additive synthesis [2]. 
The basic idea is to use a multi-notch filter to extract individual 
harmonic components as signals. The filter structure may be ob-
tained as the inverse transfer function of a comb filter (i.e., a delay 
line in a feedback loop). 

In this paper we expand on a recently proposed idea that the 
delay line can be replaced with a high-order allpass fractional-
delay filter to obtain very accurate cancellation of neighboring 
harmonics to extract a single harmonic [3]. The proposed signal 
analysis method is useful for many practical cases. Numerous 
musical instruments, including all woodwind, brass, and bowed 
string instruments, produce a sound signal that is inherently har-
monic, i.e., the spectral components are integral multiples of a 
fundamental frequency. This follows from the sound-production 
mechanism of these self-excited systems, which involves mode 
locking in the time domain [4]. It forces the sustained tones of 
such instruments to be periodic. There is often a noise component 
in these musical tones making them pseudo-periodic in practice. 

Another method for this kind of signal decomposition is sinu-
soidal modeling [5], [6], [7]. In this method the signal is analyzed 
using the windowed FFT, and the frequency and amplitude tracks 
are obtained by connecting data in the neighboring analysis 
frames. This approach has its roots in the phase vocoder technique 
and its efficient transform-domain implementation. For periodic or 
pseudo-periodic musical tones it is unnecessary to get down to an 
overly generic analysis method, because the frequencies of the 

harmonic components are known after the estimation of the fun-
damental frequency. Advantages of the proposed filter-based 
analysis method – compared with the more general FFT-based 
techniques – are simplicity, which follows mainly from the small 
number of parameters, and the possibility of designing filter coef-
ficients in closed form. Additionally, the resulting decomposition 
is obtained directly as a set of time-domain signals, and no sepa-
rate synthesis stage is required. 

Other signal processing methods proposed for analyzing the 
harmonic structure of musical signals include wavelets [8] and 
high-resolution tracking methods [9], [10]. These methods provide 
excellent frequency accuracy at the expense of a complicated algo-
rithm and a high computational cost. The method proposed in this 
paper can also provide amplitude and frequency accuracy that is 
sufficient for musical signal analysis but at the same time the 
analysis method remains easy to apply. 

This paper is organized as follows. Section 2 discusses the fil-
ter structure for canceling harmonics of a musical signal, and Sec-
tion 3 introduces a filter structure for extracting a single harmonic 
component and another structure for separating even and odd 
harmonics. In Section 4, three test cases are presented to demon-
strate the power of this approach in musical signal analysis. 

2. FRACTIONAL-DELAY INVERSE COMB FILTERS 

The inverse comb filter1 (ICF) is an FIR filter where the input 
signal is delayed by L samples and is then subtracted from the 
original input signal, see Fig. 1(a). The corresponding transfer 
function is H(z) = (1 – z–L)/2, where the scaling factor ½ sets the 
gain to unity in the passband (i.e., between the notches). The mag-
nitude response of this filter features periodic notches at the multi-
ples of fs/L, where fs is the sampling rate (Hz) and L is the delay 
line length in samples, or multiples of the sampling interval. 

When the delay line length is restricted to be an integral mul-
tiple of the sample interval, the accuracy of the notch frequencies 
can be poor. An example is shown in Fig. 2 where the fundamen-
tal frequency is 4186 Hz and the corresponding period length is 
10.5351 samples. Practical ICF implementations employ a frac-
tional-delay filter that replaces the delay line [11], [13], [14]. Al-
ternatively, an FIR [15], [16] or an IIR notch filter [17], [18] can 
be designed to approximate the overall ICF characteristics. 

Figure 1(b) shows the block diagram of a fractional-delay 
ICF, where the delay line is replaced with an allpass filter, as pro-

                                                           
1 Following the convention of [11], the term ‘inverse comb filter’ is used 
for the feedforward system with a delay line. The ‘comb filter’ has a 
delay line inside a feedback loop. 
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posed previously [3]. The transfer function of this system can be 
written as Hfd(z) = [1 – A(z)]/2, where A(z) is the transfer function 
of the allpass filter used for delay approximation. A magnitude 
response of this structure with an 11th-order allpass filter that ap-
proximates the delay of 10.5351 sampling intervals is displayed in 
Fig. 2 (solid line). 

 

Figure 1: (a) Conventional ICF and (b) a fractional-delay 
allpass-filter based ICF (after [3]). 

The transfer function of a digital allpass filter is 
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where N is the order of the filter and D(z) = 1 + a1z–1 + a2z–2 + ... + 
aNz–N is the denominator polynomial with real-valued coefficients 
ak, and the numerator polynomial is a reversed version of the de-
nominator. The symmetry of the numerator and denominator coef-
ficients guarantees the exact allpass property even for rounded 
coefficients. In this application, the allpass filter order is typically 
N = round(L), which is also approximately the period length (in 
samples) to be cancelled. Therefore, the filter order N can be very 
high, such as N = 1000 for a low fundamental frequency of 44.1 
Hz when the sampling rate is 44.1 kHz. Evidently, a method is 
needed that allows for the design of high-order filters. 

We propose two new structures, which are presented in Fig. 3. 
These filter structures offer freedom in the selection of the allpass 
filter order, which was related to the fundamental period in a pre-
vious work [3]. We have found experimentally that the order of 
A(z) may be kept constant (e.g., N = 80), so when the fundamental 
period (T0 = fs/f0) is longer than N samples, L extra samples of 
delay are required in the lower signal path in Fig. 3(a). However, 
when the fundamental period is shorter than N samples, K extra 
samples are required in the upper signal path to synchronize sig-
nals for subtraction, see Fig. 3(b). Thus, we propose to use the 
transfer function 

 [ ])(1
2
1)(low zAzzH L−−=  (2) 

when the fundamental period T0 is larger than (or about the same 
as) the allpass filter order N, and the transfer function 
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Figure 2: Magnitude response of the conventional (dashed 
line) and the allpass-based (solid line) ICF. The thick ver-
tical lines indicate the harmonic frequencies to be can-
celled (f0 = 4186 Hz). 

 

Figure 3: Fractional-delay ICF structures that allow the 
use of an allpass filter A(z) of arbitrary order for signals 
with both (a) low and (b) high fundamental frequency. 
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when the fundamental period T0 is smaller than the allpass filter 
order N. The delay-line lengths L and K are determined as follows: 
 dNTL −−= 0 , when T0 ≥ N (4) 
 0TdNK −+= , when T0 < N (5) 

where – 1 < d < 1 is the fractional-delay parameter used in design-
ing the allpass filter. 

2.1. Properties of allpass fractional-delay inverse comb filters 

Let us consider the properties of the allpass-based ICF structure of 
Fig. 3. For simplicity, we will consider the case where K = L = 0, 
i.e., no additional delay is present in either branch, as in Fig. 1(b). 
We can express the transfer function (2) in the form 

 [ ] ⎥
⎦

⎤
⎢
⎣

⎡ −
=−=

−−

)(
)()(

2
1)(1

2
1)(

1

zD
zDzzDzAzH

N
 (6) 

where the numerator polynomial can be written as 
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and 
 Nkaab kNkk ,...,1,0, =−= − . (8) 

It is easy to verify that B(z) is an antisymmetric polynomial, i.e., bk 
= –bN–k. In fact, the ICF is a special case of the parallel connection 
of two allpass filters discussed by Saramäki in [18]. As shown in 
this seminal paper, under general assumptions (stable allpass func-
tions) the overall numerator polynomial of this structure is either 
symmetric or antisymmetric (mirror-image or anti-mirror-image 
polynomial, respectively). These polynomials are known to have 
their zeros exactly on the unit circle. Hence, our filter is known to 
have accurate zeros also in the fractional-delay ICF case. Note that 
the allpass filters are exactly allpass (unity magnitude at all fre-
quencies) even if the phase (or phase delay, or group delay) is 
only approximately as desired.  

The zeros of the conventional ICF (integer delay L = L0) are 
known to be uniformly distributed on the unit circle: 

  1,...,1,0,0)1(
2
1)( /2 −==⇔=−= − LnezzzH Ljn

n
L π  (9) 

In addition, there are L poles at z = 0. The frequency response of 
the ICF is obtained in the form 

 )()2/sin()( 0
2/ ωωω ω jLjj eHLjeeH ≡= −  (10) 

which will be used as a reference when comparing against another 
ICF structure. 

For the fractional-delay ICF (L = L0 + d, d real-valued) the ze-
ros are difficult to express in general, as they depend on the ap-
proximating allpass filter of (6). However, the following notation 
is useful: 
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where the latter term represents the error due to the allpass filter 
approximation. Note that in the z-transform formulation (11), the 
term z–L with a noninteger power is non-realizable. A more practi-
cal expression is the frequency-domain for 
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The latter term utilizes the exact unit magnitude property of the 
allpass functions, which enables the expression with the corre-
sponding phase function only. Hence, (12) illustrates the error 
term in the fractional-delay ICF frequency response caused by 
allpass phase approximation and the deviation from the ideal lin-
ear phase. As the phase approximation errors of the allpass filter 
tend to accumulate with increasing frequency, also the zeros of the 
corresponding ICF are more off the ideal places at higher frequen-
cies. 

2.2. Allpass fractional-delay filter design 

Three closed-form design methods are known for fractional-delay 
allpass filters: the Thiran allpass filter design [20], [19], [11], the 
truncated Thiran allpass filter [21], and the Pei-Wang method 
[22]. Such methods are needed to increase the allpass filter order 
to be large enough for good wideband approximation in audio 
applications. Both the standard and the truncated Thiran methods 
allow the filter order to be increased up to N = 1029 (when d = –
0.5) using 64-bit double floating-point computing. 

The Thiran design formula can be expressed as 

 ∏
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where N is the filter order and d is the fractional delay parameter 
(–0.5 < d ≤ 0.5). At low frequencies, this filter has the phase delay 
of N + d samples. This design method was used to produce Fig. 2 
and Fig. 4(b) with parameter values N = 11 and d = –0.4649. 

The truncated Thiran design is obtained by modifying (13): 
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where M is the prototype filter order (M > N) [21]. By using a 
value for M that is much larger than N in (14), it is possible to 
extend the bandwidth of good approximation. This comes at the 
expense of losing quality at low frequencies: the approximation 
error is larger than in the original allpass filter. This design tech-
nique allows a useful tradeoff between approximation accuracy 
and bandwidth, as discussed in [21] and [3]. 

Figure 4 compares the standard and truncated Thiran allpass 
filters. The design parameters are N = 80 and d = –0.5 for both 
filters, and the prototype filter order for the truncated Thiran filter 
is M = 9N = 720. The magnitude response, which is exactly flat in 
both cases, the phase delay (i.e., the negative phase function di-
vided by angular frequency), and the frequency-response error 
(i.e., difference between frequency responses of the allpass filter 
and the ideal fractional delay element e–jωD) are displayed. It is 
seen that the difference between the fractional-delay approxima-
tion of the two filters is microscopic below about 17 kHz, see Fig. 

4(b), but the relaxed accuracy allows for the truncated Thiran filter 
to perform significantly better above 17 kHz, see Fig. 4(c). 

A comparison of two ICFs based on allpass filters is shown in 
Fig. 5. The same design parameters were used as in Fig. 4, and the 
delay-line lengths were chosen to be L = K = 0. The impulse re-
sponses of the two ICFs are very similar, but not identical (see 
Fig. 5(a)). The magnitude responses in Fig. 5(b) are also nearly 
identical except at frequencies close to the Nyquist limit. In Fig. 
5(c) it is seen that below 17 kHz the ICF using the truncated all-
pass filter is worse than the ICF using the standard Thiran filter, 
but both are sufficiently good, because the attenuation is more 
than 140 dB. Above 17 kHz the performance of the Thiran ICF 
collapses, but with the truncated version of the allpass filter the 
ICF offers an attenuation of 140 dB up to 20 kHz. 
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Figure 4: (a) Magnitude response, (b) phase delay (in 
samples), and (c) frequency-response error of the Thiran 
allpass filter (dashed line) and the truncated Thiran all-
pass filter (solid line). The parameter values are N = 80, 
M = 720, and d = –0.5. 
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Figure 5: (a) Impulse responses, (b) magnitude responses, 
and (c) harmonic attenuation of ICFs with the Thiran (‘.’, 
dashed line in (b)) and truncated Thiran allpass filters 
(‘+’, solid line in (b)). 
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3. EXTRACTING HARMONIC COMPONENTS 

Instead of canceling all the harmonic components, single harmon-
ics can be extracted. This is achieved by cascading with an ICF a 
second-order all-pole filter that cancels a zero at a given harmonic 
frequency. This section describes the design of such a filter, which 
we call the harmonic extraction filter (HEF). 

3.1. Harmonic extraction filter 

It is not recommended to place a pole exactly on the unit circle in 
the z plane, because the resulting second-order filter is marginally 
stable and the hidden pole may cause numerical problems. A bet-
ter approach is to move the zeros of the ICF slightly inside the unit 
circle by defining the radius of all zeros of the transfer function to 
be r = 1 – ε, where ε is a very small non-negative constant. Con-
sequently, the pole of the second-order filter can also have the 
same radius, so that the stability of the recursive filter can be as-
sured. 

To place all the zeros at radius r, the coefficient of an ICF 
with a delay-line of length L must have a filter coefficient r L [23]. 
Consequently, a scaling coefficient 

 )1(10
Lrg +=  (15) 

must be used to ensure the maximum gain of the filter to be unity 
(i.e., 0 dB). Then, the minimum gain of the filter, which occurs at 
the bottom of the notches at harmonic frequencies, is g0(1 – rL), 
which we call Α. We can now solve for the required g0, and con-
sequently the required r, when the gain A is set to a given value. 
From 

 )1()1()1(0
LLL rrrgA +−=−=  (16) 

it follows that 

 )1()1( AAr L +−= . (17) 

Since the radius of all zeros is r, the pole radius must also be se-
lected to be r. Based on (17) the radius can be determined to be 

 L AAr )1()1( +−= . (18) 

The HEF transfer function can be written as 
 HHEF(z) = g1R(z)[1 – rLA(z)] (19) 
where the scaling coefficient g1 that sets the maximum gain at the 
bottom of the notches (without the resonator) to be unity is 

 [ ])1(11
Lrrg −=  (20) 

and the transfer function of the resonant filter is 

 )1()( 2
2

1
10

−− ++= zazabzR  (21) 

with coefficients b0 = (1 – r2)sin(2πfres/fs), which scales the maxi-
mum gain of the resonant filter to be unity (see, e.g., [11]), a1 = –
2rcos(2πfres/fs), a2 = r2, and fres is the resonance frequency that 
determines which harmonic component is retained. The filter that 
has the transfer function (19) with the given scaling coefficients 
has a maximum gain of 0 dB at the peak of the passband. 

When the delay-line length is an integer, the allpass filter A(z) 
is reduced to a delay line. The zeros of this integer-delay HEF are 
inside the unit circle, on a smaller circle with radius r: 
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The transfer function can be given in the form 

 [ ])1()1()()( 1HEF
LLL rzrzRgzH −+−= −  (23) 

which enables the frequency-domain expression 

 [ ])1()(2)()( 01HEF
LjLjj reHreRgeH −+= ωωω  (24) 

This illustrates the constant (frequency-independent) term due to 
the zeros being placed inside the unit circle. Since all the zeros are 
inside the unit circle, the overall magnitude never reaches zero 
exactly. 

Finally, we obtain the expressions 

 [ ]))(()1()1()()( 1HEF zAzrrzrzRgzH LLLLL −+−+−= −−  (25) 

and 
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where both the constant and allpass phase dependent errors in the 
fractional-delay HEF response are visible. 

3.2. Design of parameter values 

For good attenuation, it is required that A is sufficiently small and 
that the resonant filter R(z) accurately cancels one of the zeros of 
the ICF. For example, when it is required that the inverse comb 
filter attenuates the harmonic frequencies by 100 dB, the value of 
Α must be set to 10–5, since 20log10(10–5) = –100 dB. 

In practice, the high-order allpass filter does not provide a per-
fect phase approximation. Thus, it may be necessary to set A to a 
smaller value, such as 10–6. However, when the filter structure for 
selecting a single harmonic is used, the resonant filter provides 
additional attenuation at frequencies away from the resonance, 
which further improves the attenuation at the notches. 

It was reported in [3] that for some musical instrument tones 
with strong low-indexed harmonics, the filtering of the signal with 
the transfer function HHEF(z) is insufficient. Listening to the fil-
tered signal reveals that the fundamental frequency is still per-
ceived although one of the high-frequency partials is strongly 
emphasized. Filtering the signal twice with transfer function (19) 
adequately attenuates the rest of the harmonics in this case. 

There is a minor mismatch in the cancellation of the mth trans-
fer function zero with the pole of the resonant filter with the reso-
nance frequency fres = mf0, because the frequency of the mth zero 
is offset by the inaccuracy of the phase approximation of the all-
pass filter. In practice, this mismatch produces a kink around the 
main lobe of the bandpass filter, and the gain at the resonance 
frequency becomes larger than 0 dB. A correction to the pole fre-
quency is required to reduce this error. 

One way to correct the resonance frequency of the all-pole fil-
ter is to search for the minimum of the ICF’s magnitude response 
around the mth notch. For example, computing the magnitude 
response at 10,000 points between 0.999990mf0 and 1.000010mf0, 
and selecting fres as the frequency, where the minimum occurs, 
reduces the mismatch sufficiently. To reduce the number of mag-
nitude response evaluations, the local minimum can be estimated 
by using interpolation. After a local minimum on a coarse grid of 
spectral points has been found, two straight lines can be fit 
through it and its neighboring points. It may be assumed that the 
slopes of the notch are symmetrical, so that the frequency of the 
actual minimum can be found where the two lines cross. This 
method gives accurate enough results at low computational costs, 
and considerably improves the performance of the algorithm. 
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Figure 6: Attenuation of harmonic partials using the sin-
gle-harmonic canceling filter when the resonance fre-
quency is the nominal mf0 (‘x’), and the corrected one 
(‘.’). Notice that the largest difference between these data 
occurs at the frequency of the harmonic #285 at 19.7 kHz. 

Fig. 6 gives an example of the attenuation obtained without 
and with the proposed correction of the resonance frequency when 
the fundamental frequency is 69.2957 Hz, the harmonic #285 at 
19749.2 Hz is selected, the allpass filter orders used are N = 80 
and M = 720, and attenuation is A = 10–5. In this case, the pole 
radius is r = 1 – 31.4 × 10–9 = 0.999999969. The difference be-
tween the nominal (mf0) and the corrected resonance frequency is 
13.5 × 10–3 Hz, but the attenuation of the partial is 1.4 dB without 
and 0.0051 dB with the correction. This difference is enough to 
make the correction worth the effort, since it makes the analysis 
filter an accurate tool for signal analysis. 

For comparison, we designed a linear-phase FIR bandpass fil-
ter that imitates the obtained magnitude response. The filter was 
designed by using the Chebyshev window with a sidelobe level of 
–100 dB. To extract the harmonic #285 and to obtain an attenua-
tion of more than 100 dB for all other harmonics, the smallest 
filter order is 4657. The proposed allpass-filter based ICF of order 
80 is computationally much less expensive. Its number of filter 
coefficient is 1.7% of that of the FIR filter. 

3.3. Separation of odd and even partials 

While it is possible to cancel the harmonic components one by one 
by applying the above HEF structure multiple times, alternatively 
even and odd harmonics may be separated using a single filtering 
operation, as suggested in [3]. The odd and even harmonics can be 
separated by first canceling the even harmonics using the frac-
tional-delay inverse comb filter and then subtracting the resulting 
signal from the original. 

The structure of Fig. 3 can be used, but the delay to be ap-
proximated is half of that used in canceling all harmonics, i.e., 
fs/2f0 samples. With this delay, the notches are located at the mul-
tiples of the second harmonic, and the filter now cancels the even 
harmonics and preserves the odd harmonics. The signal containing 
even harmonics is then obtained by subtracting the estimated odd 
harmonics from the original signal, as shown in Fig. 7: 
 ).()()( oddorigeven nsnsns −=  (27) 

 

Figure 7: Structure for separating the even and odd har-
monics of a musical signal using one allpass filter. 

4. CASE STUDIES 

This section presents how the proposed filtering algorithms per-
form with synthetic signals and recorded instrument tones. In 
addition, the proposed filter is compared against two techniques: a 
fractional-delay FIR filter using the well known Lagrange interpo-
lation [11] and sinusoidal modeling [5], [6], [7]. The sampling 
frequency is 44.1 kHz in all the test cases. 

4.1. Harmonic extraction from a synthetic test signal 

The following example illustrates how the algorithm works with a 
synthetic test signal. The signal is determined to be the sum of 
sinusoids: 
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where Asc(n) is an envelope function, K is the number of harmon-
ics present in the signal, f0 is the fundamental frequency of the 
signal, and φk is the phase of the kth harmonic. In this case, the 
parameters were chosen as follows: K = 84, f0 = 261.626 Hz (C4), 
which corresponds to the cycle length of 168.562 samples. The 
initial phases φk are uniformly distributed random numbers in the 
range [0, 2π]. In order to examine the temporal smearing resulting 
from the harmonic component extraction, the envelope of the 
signal is chosen to be rectangular, containing sharp transitions.  

As an example, two components, the fundamental frequency 
component and the 76th overtone, have been extracted from the 
signal (28). This is done with the HEF structure (19). The order of 
the truncated Thiran filter was chosen to be N = 80 and the order 
of the prototype filter was set to M = 9N. The attenuation coeffi-
cient A was determined to be equal to 10–6. A comparison against 
a Lagrange FIR filter and sinusoidal modeling technique was car-
ried out. The order of the Lagrange FIR filter NL was set to 80 so 
that the amount of coefficients is the same as that of the proposed 
filter. In sinusoidal modeling, the following parameters were used. 
The short-time FFT was computed using a Blackman window of 
length 4fs/f0, and the FFT size was 2048. The hop size was set to 
be one-fourth of the window length. 

The results are presented in Figs. 8 and 9. Figs. 8(a) and (b) 
present the spectrum of the original signal (28), and Figs. 8(c) and 
(d) present the spectrum of the partials #1 and #76 that are ex-
tracted with the proposed method. Figs. 8(e) and (f) present the 
corresponding result obtained with the Lagrange FIR filter, and 
Figs. 8(g) and (h) represent the result obtained with sinusoidal 
modeling. All spectra were calculated from a 0.5 s excerpt taken 
between 0.1 s and 0.6 s of the signals. The Hamming window was 
used, and the spectra were computed using the discrete-time Fou-
rier transform at 851 equally spaced points so that every 10th point 
matched one harmonic. This choice of parameters yields a clear 
visual representation of the sharp spectral peaks. 
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Figure 8: Results of comparison in the frequency domain. 
(a), (b) Synthetic test signal and harmonic components #1 
and #76 obtained with (c), (d) with the proposed method, 
(e), (f) with Lagrange FIR filter, and (g), (h), with sinusoi-
dal modeling. 
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Figure 9: The effects of temporal smearing. (a) and (b), an 
excerpt of the original synthetic test signal, (c) and (d) ex-
cerpts of the 1st and 76th harmonic obtained with the pro-
posed allpass filter, (e) and (f) with the Lagrange FIR fil-
ter, and (g) and (h), with sinusoidal modeling. 

As can be seen in Figs. 8(c) and (e), the proposed filter and 
Lagrange filter are able to extract the first harmonic efficiently, 
and the other harmonics are properly attenuated. In the case of the 
76th harmonic component, some of the uppermost harmonics are 
not properly attenuated because of the error in the phase delay 
near the Nyquist limit (see Fig. 4) and its effect on the attenuation 
of the inverse comb filter. The Lagrange FIR filter in Figs. 8(e) 
and (f), the error near the Nyquist limit is greater, and moreover, 
the lowpass nature of the magnitude response has to be taken into 
account in the analysis in order to maintain the level of the origi-
nal signal at high frequencies. The sinusoidal modeling technique 

depicted in Figs. 8(g) and (h), suffers from sidelobes of the win-
dow function, and the attenuation of the neighboring harmonics is 
not as efficient as with the other methods. 

The effects of temporal smearing are illustrated in Fig. 9. The 
signals are zoomed to the window 0.98 – 1.06 s. Figs. 9(a) and (b) 
show the original signal and Figs. 9(c) and (d) present the cases 
where the first harmonic and the 76th harmonic have been ex-
tracted with the proposed method, respectively. The performance 
of the Lagrange FIR filter is depicted in Figs. 9(e) and (f). It can 
be seen in Fig. 9(e) that in the case of the first harmonic the effect 
of temporal smearing is about same as with the proposed method. 
However, the smearing is greater in higher frequencies, which is 
visible in Fig. 9(f), since the lowpass nature of the filter compli-
cates the usage of the resonator. In this case, the magnitudes of the 
resonator and the Lagrange filter do not compensate each other, 
which leads to improper attenuation. The temporal smearing in 
sinusoidal modeling technique depicted in Figs. 9(g) and (h) is 
slightly greater than that of the other methods.  

4.2. Even-to-odd ratio calculation 

In the case of the clarinet, the relation of even and odd harmonics 
and its effect to the timbre has been studied by Barthet et al. [27]. 
They have derived new descriptors for the clarinet timbre by 
constructing a simple but efficient parametric model for the 
clarinet to control certain parameters: the dimensionless mouth 
pressure γ and the embouchure parameter ζ, in addition to the 
fundamental frequency of the bore fb and the reed resonance 
frequency fr. The γ parameter defines the ratio between the 
pressure inside the player’s mouth and the static beating reed 
pressure. The ζ parameter, in turn, takes the lip position and the 
section between the mouthpiece opening and the resonator into 
account. By varying these parameters Barthet et al. derived a 
relation between the parameters and the timbre characteristics.  

We have examined the synthetic sounds generated by Barthet 
et al. [27] with the proposed algorithm in the case where the 
parameter γ varies between 0.40 and 0.50. As the relation of the 
odd and even harmonics has an effect on the spectum and timbre 
of the sound, the odd and even harmonics were separated with the 
structure presented in Fig. 7. The original signal and the 
separation results are shown in Fig. 10 for γ = 0.40. The other 
parameters, ζ, fb,and fr, are equal to 0.33, 170 Hz and 2500 Hz, 
respectively. The magnitude response is calculated with a 512-
point FFT from an excerpt taken from 0.5 – 1.0 s. A Hamming 
window is used in the computation.  

As Fig. 10 shows, the magnitude of the odd harmonics is 
greater than that of the even harmonics, which is typical for the 
clarinet sound. The odd-to-even ratio is determined by first 
calculating the envelopes of both signals. This is done by 
averaging the full-wave rectified signal over a window of 500 
samples. The ratio between the magnitude of the odd and even 
harmonics is obtained by dividing the envelopes. The result seems 
to depend on the parameter γ. This relation is illustrated in Fig. 11 
for four different values of γ (0.40, 0.42, 0.47, and 0.50). 

Fig. 11 shows that the difference between the player’s mouth 
pressure and the static beating reed pressure affects the odd-to-
even ratio. That is, with larger pressure differences, the proportion 
of the odd harmonics in the tone is greater than in the case when 
the pressure difference is smaller (smaller γ value). Also the static 
state is reached faster with a larger pressure difference. 
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Figure 10: (a) and (b) The synthetic clarinet tone in time 
and frequency domains, respectively, (c) and (d) the 
separated odd harmonics in time and frequency domains, 
respectively, and (e) and (f) even harmonics in the time 
and frequency domains ,respectively. 
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Figure 11: The ratio of even and odd harmonics with four 
different γ values. 

4.3. Residual signal extraction 

In order to investigate how the proposed algorithm works with 
recorded tones, a double bass tone was analyzed with the proposed 
method. In Figs. 12(a) and (b), the tone is presented in the time 
and frequency domains, respectively. The fundamental frequency 
of the tone was measured to be f0 = 58.2670 Hz. 

It is now desired to remove all the harmonics instead of 
preserving one. A modified form of the transfer functions (2) or 
(3) can be used, depending on the fundamental frequency, 

 [ ])(1)( 1HEF zArgzH L−= , (29) 

where the coefficients g1 and rL are determined in the same 
manner as described in Sec. 3.1. A(z) written is as in (1). The order 
of the truncated Thiran filter is N = 80 and the order of the 
prototype filter is M = 9N. The attenuation coefficient A is set to 
10–6. The filtered residual signal is presented in Figs. 12(c) and (d) 
in time- and frequency domains, respectively. When comparing 
Figs. 12(b) and (d), it is seen that the harmonic components are 
attenuated efficiently. Moreover, the noise between the harmonics 
is preserved.  
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Figure 12: Time- and frequency-domain presentations of 
(a), (b) the double bass tone and (c), (d) the extracted 
residual signal. 

5. CONCLUSIONS AND FUTURE WORK 

Digital filtering techniques were proposed to obtain useful 
decompositions of harmonic musical signals. The basic approach 
taken here is to subtract a delayed copy of the signal from itself to 
cancel the harmonic components. A high-order digital allpass 
filter implements an accurate approximation of the required time 
delay. A harmonic extraction filter is obtained by cascading a 
second-order all-pole filter with the inverse comb filter. Division 
of a musical signal into two signals, one containing the even and 
the other the odd harmonics, and the extraction of the background 
noise or residual were also suggested as promising operations that 
are easy to realize using the proposed filter structures. 

Case studies were presented to show how the techniques 
perform in the feature analysis for musical tones. Single harmonic 
components were extracted from a synthetic test tone. The 
neighboring harmonics were attenuated more than 100 dB. The 
harmonic even-to-odd ratio was determined for synthetic clarinet 
tones. Finally, the residual noise component was extracted from a 
bowed string tone by suppressing all the harmonics. 

Future research includes developing a useful method to ac-
count for varying fundamental frequency of the signal, such as 
vibrato. In practice, this problem calls for a time-varying delay 
line to be used in the inverse comb filter. There are known meth-
ods for modulation of the delay-line length for example in effects 
processing, such as flanging and chorus algorithms. Which inter-
polation technique should be used and for how fast and wide de-
lay-length modulation can this method be accurate? A further 
application of the time-varying inverse comb filter would be the 
separation of harmonic audio signals, such as musical tones or 
voiced speech, as discussed by de Cheveigné [28]. 

Another interesting special case is the analysis of inharmonic 
tones, such as piano tones or other instrument sounds with regular 
inharmonicity caused by dispersion. A filter-based analysis tool 
for such tones requires an allpass filter that approximates the dis-
persion in cascade with the delay line. This is a known method in 
digital waveguide synthesis of string sounds, see, e.g., [29], [30]. 
A more accurate approximation of dispersion characteristics is 
needed for the analysis tool than for sound synthesis. 
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ABSTRACT

Frequency warping is a modifier that acts on sound signals by
remapping the frequency axis. Thus, the spectral content of the
original sound is displaced to other frequencies. At the same time,
the phase relationship among the signal components is altered,
nonlinearly with respect to frequency. While this effect is inter-
esting and has several applications, including in the synthesis by
physical models, its use has been so far limited by the lack of an
accurate and flexible real-time algorithm. In this paper we present
methods for frequency warping that are based on local approxima-
tions of the warping operators and allow for real-time implemen-
tation. Filter bank structures are derived that allow for efficient
realization of the approximate technique. An analysis of the error
is also presented, which shows that both numerical and perceptual
errors are within acceptable limits. Furthermore, the approximate
implementation allows for a larger variety of warping maps than
that achieved by the classical (non-causal) first-order allpass cas-
cade implementation.

1. INTRODUCTION

This paper is concerned with the computation of the frequency
warping operation on signals, such as a musical tone of duration of
about one second or longer. In other audio applications, frequency
warping is often applied to filters and to filter design, in which
case the computation presents little or no problem, the results are
classical and well studied [1] and the technique is implementable
in real-time. On the contrary, warping long-length signals presents
large computational problems, both from the point of view of com-
plexity and of causality, which hamper the possibility of using this
technique in real-time applications, at least in exact form. A few
plugins partially exploiting the musical capabilities offered by fre-
quency warping are available on the market [2, 3].

In this paper, we present a simple approximation method that
yields efficient and causal structures, in the form of unconventional
multirate filter banks, which allow for real-time computation of
frequency warping, for a large class of warping maps. At simi-
lar computational cost, the algorithm largely improves the quality
of warping with respect to the one presented in [4, 5]. The new
approximation is based on the intuitive idea that frequency warp-
ing a narrowband signal, such as a sinusoidal wave packet, simply
amounts to properly time scale the amplitude envelope and to re-
modulate the signal to warped frequency. The scaling factor of the
envelope approximately depends on the derivative of the warping
map at warped frequency.

If a wideband signal is decomposed into sinusoidal wave pack-
ets, e.g., by means of a Gabor expansion or short-time Fourier
transform [6, 7], then the warped signal can be generated by scal-
ing, remodulating and properly delaying each packet. Due to the
dispersive character of frequency warping, the original time shift
of the wave packets transforms into a frequency dependent delay,
which can be approximated to a constant delay for wave packets at
each given frequency. Fortunately, scaling and delay transform in
a covariant way by warping. As it can be expected, this results into
generalized phase vocoder filter bank structures [8] where differ-
ent resampling factors are applied to the various channels. More-
over, scaling is achieved by enforcing unequal downsampling and
upsampling rates in each channel.

The efficient filter bank structures for the computation are dis-
cussed in this paper together with an analysis of the complexity
and of the error. Our results show that both the numerical and the
perceptual errors are largely tolerable.

The applications of the approximate warping filter bank struc-
ture range from signal representations [9] to synthesis and digital
audio effects [10, 5]. In particular, in the physical models of piano
strings and rods, the frequency warping section can be cascaded to
a digital waveguide in order to simulate dispersion [11]. At compa-
rable computational cost and similar warping map flexibility, this
is a viable alternative to the use of dispersive waveguides that does
not require the design of very high order allpass filters [12].

2. FREQUENCY WARPING OPERATORS

Frequency warping is completely characterized by a frequency
transformation, i.e., by a map θ(ω) of the frequency axis into or
onto itself. Given a signal s(t) with Fourier transform S(ω), the
Fourier transform of the warped signal is the function

S(θ(ω)) = 1√
2π

Z +∞

−∞
s(t)e−jθ(ω)tdt. (1)

Thus, frequency warping can be defined as action of the operator

Wθ = F†CθF, (2)

where F is the Fourier transform operator and F† its adjoint. The
symbol Cθ denotes the composition by θ operator, i.e.,

[CθS] (ω) = [S ◦ θ] (ω) = S(θ(ω)). (3)

The arbitrary shape of the map θ defines the character of the fre-
quency warping operations. In most applications, θ(ω) is a contin-
uously increasing and differentiable antisymmetric function map-
ping zero frequency to zero frequency, as shown in Figure 1. How-
ever, more general forms in which the warping map θ(ω) is not
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Figure 1: A typical warping map.

one-to-one can be considered provided that local invertibility is
guaranteed.

If the map is one-to-one and almost everywhere differentiable
then a unitary form of the warping operator can be defined by the
action

S̃(ω) = [UθS] (ω) =
q˛̨

dθ
dω

˛̨
S(θ(ω)). (4)

We will assume henceforth that the map is increasing so that
its first derivative is non-negative and the absolute value can be
dropped in (4). The main property of the unitary warping oper-
ator is to preserve in-band energy. This is an important property
even from the perceptual point of view: since warping a given fre-
quency band results in a dilated or compressed band, without nor-
malization the warped band may be perceived as louder or fainter,
respectively. If the map θ is strictly increasing, then the warping
operator is invertible and the action of the inverse is given byh

U†θS
i
(ω) =

ˆ
U−1
θ S

˜
(ω) = [Uθ−1S] (ω)

=

q
dθ−1

dω
S(θ−1(ω)),

(5)

where the symbol † denotes the adjoint operator, which is identical
to the inverse in view of unitarity.

A spectral peak of the signal at ω = ω0 may result into one
or more peaks of the warped signal located at the roots Ω of the
equation θ(Ω) = ω0, if any. If the map θ is one-to-one and onto
then the peak at ω = ω0 transforms into a peak at θ−1(ω0). In
this sense, frequency warping is a frequency dependent modula-
tion technique, where each component sinusoid is modulated to a
different frequency.

2.1. Warping Quasi-Sinusoidal Signals

It is instructive to investigate on how an amplitude modulated si-
nusoidal signal of the form

s(t) = g(t)ejω0t, (6)

where g(t) is a real smooth envelope, is transformed by frequency
warping. In this case we have

S(ω) = G(ω − ω0), (7)

hence the Fourier transform of the warped signal is

S̃(ω) =
q

dθ
dω
G(θ(ω)− ω0). (8)

If the amplitude envelope g(t) is narrowband then G(θ(ω) − ω0)
is nonzero only in a small neighborhood of θ−1(ω0). Therefore, if
the map is continuous and differentiable in this neighborhood, we
can expand θ(ω) in a Taylor series about ω = ω0. Truncation to
first order yields:

θ(ω) ≈ θ(θ−1(ω0)) + β(ω − θ−1(ω0))

= ω0 + β(ω − θ−1(ω0)),
(9)

where

β = dθ
dω

˛̨
ω=θ−1(ω0)

=

»
dθ−1

dω

˛̨̨
ω=ω0

–−1

. (10)

Substituting (9) into (8) and approximating, within the warped
band, the first derivative of θ with the constant β obtains

S̃(ω) ≈
p
βG(β(ω − θ−1(ω0))). (11)

Equation (11) shows that warping a narrowband signal is approx-
imately equivalent to scaling the signal envelope by β and to re-
modulating to the warped frequency θ−1(ω0). Indeed, from (11)
and the Fourier scale theorem, we obtain:

s̃(t) ≈ 1√
β
g

“
t
β

”
ejθ

−1(ω0)t. (12)

Consequently, the frequency warped version of a wideband sig-
nal represented in terms of narrowband Gabor grains can be ob-
tained approximately by individually scaling and remodulating the
grains.

Another essential ingredient for the approximation of warping
is dispersion. It is easy to see that the warped version of the shifted
signal s(t− τ) has Fourier transform

[FUθs(t− τ)] (ω) =
q˛̨

dθ
dω

˛̨
e−jθ(ω)τS(θ(ω)). (13)

Accordingly, each frequency component of the signal is time
shifted by a different amount controlled by the warping map θ,
acting as a multiplier of the time shift τ . If s(t) is the narrowband
signal in (6) then, within the same approximation as in (11), we
have

[FUθs(t− τ)] (ω) ≈ e−j[βω+ω0−βθ−1(ω0)]τ S̃(ω). (14)

As the result of warping, the delayed enveloped sinusoid is shifted
by βτ . Hence, the warped group delay β acts as a multiplier of
time shift. The phase correction term

ˆ
βθ−1(ω0)− ω0

˜
τ adjusts

the phase delay of the unwarped sinusoid to that of the warped one.
Indeed, it is easy to show that the approximately warped version
of a running sinusoid amplitude modulated by a delayed envelope,
i.e., of a signal of the form:

v(t) = g(t− τ)ejω0t, (15)

is the following:

ṽ(t) = Uθv(t) ≈ 1√
β
g

“
t
β
− τ

”
ejθ

−1(ω0)t. (16)

The last approximation can be written in the compact form:

UθMω0Tτg(t) ≈ Mθ−1(ω0)TβτDβg(t), (17)
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where Mω0 is the modulation operator

Mω0g(t) = ejω0tg(t), (18)

Tτ is the time-shift operator

Tτg(t) = g(t− τ), (19)

and Dβ is the dilation operator

Dβg(t) = 1√
β
g

“
t
β

”
. (20)

In other words, since (17) can be rewritten as follows:

D−1
β T−1

βτM−1
θ−1(ω0)

UθMω0Tτg(t) ≈ g(t), (21)

the low-pass window g(t) must be selected as an approximate
eigenfunction of the unitary operator on the left hand side, with
eigenvalue 1.

It is interesting to note that both the modulation and the di-
lation operator are particular cases of unitary warping operators,
where the map θ is chosen as ω − ω0 and βω, respectively. In-
deed, using this fact and the commutation rule TβτDβ = DβTτ ,
one can show that (21) is equivalent to

UψTτg(t) ≈ Tτg(t) (22)

with
ψ(ω) = θ

“
ω
β

+ θ−1(ω0)
”
− ω0. (23)

In other words, the time-shifted window must be close to an eigen-
function of the incremental warping operator Uψ .

3. APPROXIMATE FREQUENCY WARPING THROUGH
GABOR FRAMES

By means of Gabor expansions [7, 6], signals are represented in
terms of a collection of windowed sinusoids:

s(t) =
X
q,n∈Z

Sq,ngq,n(t), (24)

where

gq,n(t) = M2πqaTnτg(t) = ej2πqatg(t− nτ); q, n ∈ Z, (25)

in which q is the frequency index and n the time index. The rep-
resentative elements are obtained by time-shifting and modulating
a unique window function g(t). The representation is complete
provided that the frame operator

Ps(t) =
X
q,n∈Z

〈s, gq,n〉 gq,n(t) (26)

is invertible, where the symbol 〈, 〉 denotes scalar product in
L2(R). This is true if there exist two finite non-zero constants
A and B such that

A 6
X
q,n∈Z

|〈s, gq,n〉|2 6 B, (27)

in which case (25) is said to be a frame and the expansion coeffi-
cients Sq,n in (24) can be computed – not uniquely in the general
case – as the scalar products

Sq,n = 〈s, ĝq,n〉 , (28)

where ĝq,n = P−1gq,n(t) is the dual frame. For the Gabor frame
(27) can only be satisfied if the time-frequency sampling grid is
sufficiently fine, i.e., if aτ 6 1.

The definition of frame (27) and of frame operator (26) is inde-
pendent on the way the frame elements gq,n(t) are generated, i.e.,
it extends to non-Gabor frames in which the frame elements are
not generated by time-shift and modulation. For the Gabor frame
one can show that

ĝq,n(t) = M2πqaTnτ ĝ(t) = ej2πqatĝ(t− nτ); q, n ∈ Z, (29)

i.e., the dual Gabor frame is also obtained by time-shifting and
modulating a unique dual window function ĝ(t), so that (28) takes
on the form of a short-time Fourier transform with inverse (24).

Any unitary operation on the frame results in a new frame with
the same frame bounds A and B [13]. In particular, when applied
to a Gabor frame, the unitary warping operator Uθ generates the
frequency warped frame and dual frame

g̃q,n(t) = UθM2πqaTnτg(t),

˜̂gq,n(t) = UθM2πqaTnτ ĝ(t).
(30)

A discrete-time version of warped frame was introduced in [14]
for the non-uniform time-frequency representation of signals. As
we showed in the previous Section, the warped Gabor frame and
its dual are not Gabor frames. Unless the warping map is linear,
there is no exact commutation rule between warping and time-shift
operators. However, reasoning as in (17), one can show that

g̃q,n(t) ≈ Mθ−1(2πqa)TnβqτDβqg(t), (31)

where

βq =
dθ

dω

˛̨̨̨
ω=θ−1(2πqa)

=

"
dθ−1

dω

˛̨̨̨
ω=2πqa

#−1

, (32)

provided that g(t) is sufficiently smooth and narrowband, and sim-
ilarly for the dual frame.

In this paper we will not focus on the unitarily equivalent
warped frame representation. Rather, we seek approximations of
the warping operator through Gabor frame representation. The
main idea is that when (31) holds and the signal is represented
as in (24) then

Uθs(t) =
X
q,n∈Z

Sq,nUθgq,n(t)

≈
X
q,n∈Z

Sq,nMθ−1(2πqa)TβqτDβqg(t).
(33)

Notice that (33) is a peculiar “irregular” Gabor-like expansion in
which the windows are differently scaled by the dilation operators
Dβq and the modulation frequencies θ−1(2πqa) are not harmon-
ically related. Moreover, the expansion coefficients Sq,n are ob-
tained as in (28) by computing the scalar product of the signal with
the unwarped dual Gabor frame ĝq,n(t).

An alternate (dual) scheme consists, in principle, in warp-
ing the signal before computing the Gabor coefficients and us-
ing these coefficients for the expansion on a conventional Gabor
frame. Thus, one can compute the coefficients

S̃q,n = 〈Uθs, ĝq,n〉 =
D
s,U†θ ĝq,n

E
. (34)
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As shown in the rightmost term of (34), this process is unitarily
equivalent to computing the scalar product of the signal over the
inversely warped dual frame:

˜̂gq,n(t) = U†θ ĝq,n(t) = Uθ−1M2πqaTnτ ĝ(t). (35)

Summarizing the results of this Section, approximate fre-
quency warped can be computed by means of Gabor-like expan-
sions in which either the frame elements are approximately warped
by scaling and frequency dependent modulation or the dual frame
elements are approximately inversely warped by scaling and fre-
quency dependent modulation.

The resulting piecewise warping map approximation is shown
in Figure 2 for a very reduced number of bands. There, a warp-
ing curve is approximated by tangent linear segments in partly
overlapping bands. The edges and centerbands of the ideal uni-
form bandwidth frame elements can be read on the ordinates axis.
These are transformed according to the inverse map θ−1 into non-
uniformly spaced frequencies as read on the abscissae axis (dot-
ted lines). As a result of the approximation, the band edges are
transformed according to the tangent lines and can be traced in the
figure as dashed lines.

We remark that, according to the local convexity of the warp-
ing map, the bands resulting from the local scaling approxima-
tion of warping may either overlap in the frequency domain or
there can be gaps. However, as the number of bands increases, the
overlapping portions or the gaps become less and less pronounced.
Other piecewise linear approximations are possible, e.g., by trac-
ing chord segments joining the band edges. The one we selected
exactly warps the centerband frequencies.

0
0

ω

θ(ω)

2πa

4πa

8πa

6πa

θ
−1

(6πa)θ
−1

(4πa)

Figure 2: Piecewise linear approximation of warping map with a
very small set of points: thin solid lines denote center bands and
dotted lines denote band edges(initial and warped).

4. DISCRETE-TIME FREQUENCY WARPING

The discrete-time counterpart of the frequency warping approxi-
mation easily follows from the continuous time version discussed
in the previous sections. The discrete-time Gabor set requires only
a finite number of bands M to cover the normalized frequency
range ω ∈ [−π,+π), with frequency resolution a = 2π/M . The

discrete-time Gabor frame elements gq,n(r) are obtained by shift-
ing and modulating a unique window sequence g(n), where only
integer shifts multiple of an integer N ≤M are allowed, thus

gq,n(r) = M 2πq
M

TnNg(r) = ej
2πq
M

rg(r − nN), (36)

for q = 0, 1, ...,M − 1 and n ∈ Z, and similarly for the dual
frame gq,n(r).

A few remarks on the warping maps are however necessary.
In fact, since frequency warping transforms bandwidths, the re-
striction of an invertible analog frequency map to the interval
[−π,+π) is not necessarily one-to-one and onto over this interval.
For a strictly increasing map mapping zero frequency to zero fre-
quency one needs to require that ±π is mapped to ±π. If the map
maps [−π,+π] one to one onto a smaller interval then aliasing-
like phenomena occur, similar to downsampling, unless the orig-
inal signal sequence is suitably bandlimited to the smaller inter-
val θ([−π,+π)). Vice versa, if the map maps [−π,+π] one to
one onto a larger interval then spectral replication occurs, similar
to upsampling, unless the domain of the map is restricted to the
smaller interval θ−1([−π,+π)). In other words, in order to avoid
both aliasing and imaging one needs to restrict both domain and
co-domain of the warping map to the interval [−π,+π], keeping
in mind that there can be frequencies that are not mapped by any
frequency or frequencies that do not map to any frequency. In the
latter case, only the scalar products of the signal with a subset of
the Gabor frame elements, with respect to the frequency index q,
are required in order to compute warping.

The choice of the analysis and synthesis windows, respectively
ĝ(n) and g(n), is arbitrary, provided that the discrete-time coun-
terpart of (27) is satisfied. Ideally, the synthesis window should
match eigenfunctions of the incremental warping operator Uψ as
in (22). However, the Fourier transform of an eigenfunction of
the unitary warping operator corresponds to the square root of the
derivative of an eigenfunction of the composition operator Cψ , up
to an additive constant. Using the theory developed in [15], we
were able to prove that the only eigenfunctions of Uψ with eigen-
value 1 are constant, corresponding to a Dirac pulse at ω = 0 in
the frequency domain. In order to approach this shape, we can
select the window to be narrowband lowpass, which leads to con-
ventional window design in short-time spectral analysis. We let
M be an integer multiple of N , i.e., M = KN , with K a small
integer (usually K = 2 or 3), and determine a length M lowpass
symmetric window g(n) such thatX

n∈Z

g2(r − nN) =
1

KM
. (37)

In this case, by choosing identical analysis and synthesis windows:
g(n) = ĝ(n), one obtains a tight frame, i.e., a frame with bounds
A = B = 1 in (27). This is similar to orthogonal bases, however,
the frame is complete but not a basis. A popular choice is

g2(r) =
1− cos

`
2πr
M

´
KM

; r = 0, 1, ...,M − 1, (38)

i.e., g2(r) is the Von Hann window and

g(r) =

r
2

KM
sin

“πr
M

”
; r = 0, 1, ...,M − 1 (39)

is the sine window, which we will enforce in this paper. One of the
advantages of this choice is that the sinusoidal form of the window
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leads to a single frequency term, which warps to another single
frequency term. Therefore, except for terms deriving from the fi-
nite length of the window, the shape of the warped window is very
close to that of a dilated window.

Computation of the expansion coefficients

Sq,n = 〈s, gq,n〉 =
X
r∈Z

s(r)e−j
2π
M
qrg(r − nN) (40)

can be performed using the analysis section of the filter bank struc-
ture in Figure 3, which corresponds to the analysis section of a
phase vocoder [16, 17, 8], with impulse responses

gq(r) = ej
2π
M
qrg(M − r) = ej

2π
M
qrg(r). (41)

A delay ofK−1 samples is introduced in the coefficient sequence
Sq,r in order to make computation causal.

The approximate synthesis of the warped signal requires a dis-
crete counterpart of (33). The discrete-time window can be con-
sidered as the samples of a continuous-time function g(t) taken
at unit sampling rate. In order to form the discrete-time warping
synthesis windows one can apply the dilation operation Dβqg(t)
to the continuous-time window and then sample at unit sampling
rate. This operation yields the window

hq(r) =

s
1

βq
g

„
r

βq

«
. (42)

However, the result is sharper if only the window lengthM is mod-
ulated to some other integer Mq . To the purpose we let Mq be the
closest integer to βqM and we let

hq(r) =

s
M

Mq
g

„
rM

Mq

«
; r = 0, 1, ...,M − 1. (43)

Similarly, for the discrete-time counterpart of the shift operator
Tβqτ , we enforce the integer shifts nNq = nMq/K. Both dilation
and shifting operations are quantized in the discrete-time warping
algorithm, which is a source of error that can be controlled by
choosing a sufficiently large window length M and a sufficiently
small overlap factor K. This is preferable with respect to the non-
integer choice, which causes amplitude modulation since the win-
dow would not satisfy the overlap add identity (37). In this form,
the approximate warped signal can be obtained as output of the
synthesis filter bank in Figure 3. There, the analysis coefficients
are phase corrected, upsampled with a different upsampling rate in
each channel and interpolated by unequal length modulated win-
dows

g̃q(r) = M
θ−1

„
2πq
M

«hq(r) = e
−jθ−1

„
2πq
M

«
r
hq(r). (44)

The phase correction terms

γq = Nqθ
−1 `

2πq
M

´ − 2πqN
M

, (45)

which are the discrete analogues of (14), originate from the filter
bank implementation of the phase vocoder, where the modulating
terms in the frame elements need to be time shifted for both the
analysis and synthesis procedures to be put in the form of (resam-
pled) convolution. To the purpose, we use the following commu-
tation rule:

Mω0Tτ = ejω0τTτMω0 (46)

in both the analysis and synthesis. While in conventional phase
vocoders the phase correction factors cancel out, in reason of the
heterogeneous analysis and synthesis sections these factors are in-
deed necessary for correct computation in the approximate warp-
ing filter bank scheme.

An alternate structure, with similar properties, to that shown
in Figure 3 can be worked out from (34) and (35). It consists of an
approximate inverse warping analysis section, followed by a con-
ventional phase vocoder synthesis section. Furthermore, an exten-
sion to rational numbers Nq and Mq is possible, which achieves a
smaller error but requires a more costly implementation in terms
of upsamplers and downsamplers by possibly high factors.

5. PERFORMANCE

In this Section we give a brief account of the performance of the
approximate warping algorithm, in terms of operation count and
numerical and perceptual error.

5.1. Computational Cost

The analysis section of the approximate warping filter bank in Fig-
ure 3 can be efficiently implemented with a length M FFT, with
a cost of O(M logM) operations, which are repeated every N
input samples, for a total rate of O(K logM) operations per sam-
ple. The synthesis filter bank section cannot be efficiently com-
puted by means of FFT since the modulating frequencies of the
warped frame elements are not harmonically related. For real sig-
nals, only half of the filters in the bank must be computed since
the other half are complex conjugated versions applied to complex
conjugated coefficient sequences. Therefore, a set ofM/2 real im-
pulse responses can be derived by combining each pair of complex
conjugates sections of index q and M − q. For each expansion co-
efficient, the generic section q filter generates Nq output samples;
the other Mq − Nq = (K − 1)Nq samples need to be prepared
for the overlap with subsequent outputs in the overlap-add scheme.
This operation requiresMq multiplies of the coefficient Sq,r times
the corresponding precomputed synthesis window. Thus, each fil-
ter section requires Mq/Nq = K operations per output sample.
For M even there are M/2 + 1 sections and for M odd there
are bM/2c + 1 sections. In each length Nq output segment there
are K slices of shifted windows to be added together. Therefore,
the total cost of the complete synthesis section is (bM/2c+ 1)K
multiplies and bM/2c (K−1) adds per sample. Notice that in this
computational scheme the phase correction factors are not needed
as they are embedded in the modulated windows both in the anal-
ysis and in the synthesis.

For a finite-length input signal, the overall cost of the approx-
imate frequency warping structure grows linearly. This should be
compared with the non-causal allpass cascade structures in classi-
cal computation of the Laguerre transform for frequency warping
[18, 14], whose complexity grows quadratically with the number
of samples.

5.2. Numerical and Perceptual Error

A direct estimate of the warping approximation error bounds pro-
vides the following characteristics: both the `2 error norm and the
absolute error decrease as M−3/2 as M grows. Therefore, the er-
ror can be reduced by choosing a sufficiently wide window. More-
over, due to the fact that the approximation of the delays tends to
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Figure 3: Efficient warping structure based on Gabor filter bank for the analysis and approximated warped Gabor filter bank for the
synthesis.

cumulate in time, the error grows with the length of the input sig-
nal. With this respect, for fixed window length M , our estimates
provide an error trend of O(L5/4/M2) as the length L of the sig-
nal grows. For example, for a window length of 2400 samples,
the error remains confined within 10% for about 1 s at 44.1 kHz
sampling rate. The error is also proportional to the sum of the co-
efficients βq , showing that the error depends on the steepness of
the warping curve. Moreover, the influence of the overlap factor
over the error decays modestly as K−1/2. However, since N de-
creases as K grows, the heavier quantization of the delays and of
the window shifts tends to increase the error. Therefore, from the
error point of view increasing K is not beneficial.

We extensively tested the theoretical error estimates against
the numerical error. In this task we employed a number of sources
like noise and tones of musical instruments with sharp or slow
attack and decay. In the comparison we used the one-parameter
family of Laguerre maps, as only in this case an exact algorithm
to compute warping is available. The experimental results confirm
the theoretical estimates and show proportionality with the given
trends by small constants, confirming that the theoretical estimates
provide worst case bounds.

Additionally, we evaluated the perceptual error introduced by
warping. For the purpose, for a set of instrument sounds, we evalu-
ated the error of the approximation with respect to Laguerre maps.
Using a procedure similar to that found in MPEG coders, we com-
puted the masking curves of the signal over the error. As the er-
ror is coherent with the signal, masking is likely to occur. This
is due to the fact that the most relevant part of the error originates
from the approximation of frequency dependent delays as constant

within narrow frequency bands and from their quantization. In our
results, the approximation error rarely exceeds the masking thresh-
old. In sounds of approximately 1 s duration and using a window
length ofM = 2400 samples, the masking threshold overshooting
occurred in less than 1% of the frames, mostly located at the attack
and at the decay segments of the tones.

6. APPLICATIONS

The frequency warping effect introduces a coloration in the
signal in which harmonically related partial can become more
or less inharmonic, with consequent beating and floating. The
effect is per se interesting and can be applied to the sounds
of several instruments and, especially, strings. Examples
employing the proposed algorithm on a variety of sounds,
together with a comparison with the exact algorithm in the avail-
able cases (Laguerre maps) can be found at the following URL:
http://www.itn.liu.se/∼giaev/soundexamples.h
tml.

With properly selected maps, frequency warping can be used
in physical models as an alternative to dispersive delay lines. In
fact, a dispersive delay line can be considered as a warped delay
line in which the elementary delay (or a group of them) is replaced
by an allpass filter. The structure is therefore equivalent to a delay
line cascaded with a warping section, provided that all the inputs
are inversely warped. A dispersive waveguide may contain several
dispersive digital lines, each going from the excitation input to the
boundaries or vice versa and to and from the output pick-up point.
Often the inputs are control signals that can be either prewarped
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off-line or, in the case of noise, are unaffected by warping. Each
dispersive chunk is formed by a chain of allpass filters, or, what is
equivalent, by a high order all-pass filter. The design of heteroge-
neous length allpass filters simulating the proper dispersion is very
hard and still an open problem [12]. Rather, it may be convenient
to simulate a non-dispersive waveguide, moving dispersion out-
side the closed loop, which is accomplished by warping the output
signal.

In contrast to the one parameter family of Laguerre maps in
allpass cascade implementations, the proposed warping algorithm
leaves ample freedom in the choice of warping map. In fact, fixed
the window length M , both the discrete set of warped frequencies
ωq = θ−1(2πq/M) and the slopes βq can be arbitrarily selected.
The latter control the scale of the warped signal about the corre-
sponding frequency ωq , where large values of βq generate longer
signals. This property can be used in digital audio warping ef-
fects in order to change the decay rates of the output signal in a
frequency dependent fashion.

While the cascade allpass structure for Laguerre warping are
strongly non-causal and impractical for real-time computation, the
proposed warping algorithm lends itself to real-time computation.
However, the limitation of our algorithm toward real-time is that
the upsampling rates Nq in each channel of the synthesis structure
should never be smaller than the corresponding downsampling rate
N of the analysis section, otherwise data would be missing for the
computation of the current sample. Since the ratio Nq/N ≈ βq ,
then (see (32)) a condition for real-time operation is that the first
derivative of the warping map should not be smaller than 1. Warp-
ing maps having this characteristic bring frequencies in [−π,+π]
to frequencies in a smaller interval around zero frequency.

In the synthesis by physical models, the previous limitation
can be circumvented by calibrating the non-dispersive waveguide
to a much higher pitch than the target one, so that the tone is
brought back to the desired height by warping. If the warping map
has a specific form θ̂(ω), as dictated by physical laws or by exper-
imental measures, one can easily transform this into a map having
derivative greater than one simply by multiplying it by a constant
α > 1. With the new map θ(ω) = αθ̂(ω), a frequency ω0 warps
to frequency ω̃0 = θ−1(ω0/α). Therefore, in order to achieve the
desired frequency ωd = θ̂−1(ω0) one simply needs to start with
frequency αω0. The linearity of this relationship ensures that the
relationships among the desired frequencies, e.g., the harmonics to
be warped to inharmonic partials with a given law, is not altered.
The only limitation is therefore the reduced frequency range due
to the [−π,+π] clipping of the scaled warping map. This can be
handled by oversampling.

In digital audio effects, the above limitation toward real-time
may be too severe. However, a workaround is possible by embed-
ding pitch-shifting in the modified phase vocoder scheme. This
is indeed directly possible by frequency bin reassignment and by
phase correction in the analysis section [19, 20].

The latency of the approximate warping scheme is propor-
tional, via the sampling interval, to the window shift integer pa-
rameter N . The latter is the minimum number of samples in or-
der to produce a set of coefficients, assuming that the previous
(K − 1)N samples are known or zero. For a fixed window length
M , one can reduce N by increasing the overlap factor K. How-
ever, as we have seen in Section 5, reducing N increases the com-
putational cost and the quantization error of the delays and win-
dow shifts in the synthesis section. This results in lower adherence
to the established warping rule but in no other annoying effect.

Therefore, a trade-off between latency and precision needs to be
achieved. For K = 2 and M = 2200, latency is estimated at
about 25ms at a sampling rate of 44.1 kHz.

7. CONCLUSION

In this paper we introduced an efficient scheme for frequency
warping audio signals, which overcomes several limitations of all-
pass chain based systems, notably those of the restricted family of
achievable maps and the non-causality of the computational struc-
ture. The approximate warping algorithm was shown to introduce
a negligible error, both numerical and perceptual, which can be
controlled by proper choice of the length of the window. With
some limitations and workarounds, the algorithm has a real-time
implementation and it can be suitable as a digital audio effect or in
the synthesis by physical models.
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ABSTRACT 

This paper describes an approach to using compactly supported 
spline wavelets to model the residual signal in a real-time (frame-
by-frame) spectral modelling system. The outputs of the model are 
time-varying parameters (gain, centre frequency and bandwidth) for 
filters which can be used in a subtractive resynthesis system.  

1. INTRODUCTION 

Extraction of the sinusoidal part of an audio signal, leaving a resid-
ual, is a common approach to spectral modelling [1]. Whereas the 
sinusoidal part of the signal consists of long-term, narrow-band 
components, the residual is comprised of both long- and short-term 
broad-band components.  Systems have been proposed that separate 
these two types of residual component, classifying them as tran-
sients or noise, such as in [2]. A multiresolution approach to resid-
ual modelling, such as that offered by wavelets, can enable the good 
time localisation required for transients, along with the generality 
required for more stationary components. This paper introduces 
such an approach. 
 
The analysis system described here was developed for use in a real-
time spectral modelling system. In this context real-time means 
frame-by-frame; decisions about model parameters are made, and 
time-domain resynthesis is executed, within the current frame to 
minimise the delay between input and output. Because it produces 
complex analysis data it is possible to obtain estimates for the cen-
tre frequency of components. Also, through use of the wavelet split-
ting method which is used in wavelet packet decomposition, the 
bandwidth of components can be estimated. This allows the resyn-
thesis filters to adapt their time-frequency localisation properties to 
the analysed signal. B-spline wavelets are used since they also offer 
control over the time-frequency localisation of the analysis filters. 
 
Whilst critically sampled orthogonal wavelets are often useful in 
situations where sparseness in the analysis data is required, for 
analysis-modelling-transformation applications over-complete (re-
dundant) wavelet representations are usually more desirable. How-
ever such representations come at greater computational cost and 
highly redundant analysis may well be prohibitively expensive in a 
real-time application where the analysis-modelling-transformation-
resynthesis cycle for a single frame must take less time than for that 
frame to be played out and the next frame to be acquired. To offer 
some mediation between cost and redundancy a ‘partially deci-
mated’ transform is used where the amount of decimation can be 
controlled by the user (and potentially by the system in response to 
other processing demands). 

Section 2 of this paper provides an introduction to the existing lit-
erature that describes B-spline wavelets and their properties. Sec-
tion 3 gives an overview of the context in which they are used here 
and the spectral subtraction method used to obtain the residual. 
Section 4 describes the complex wavelet system employed while 
Section 5 assesses its cost and proposes partial decimation as a way 
of offering flexibility in this regard. Section 6 presents a method for 
estimating the bandwidth of components of the residual. Section 7 
briefly describes a context in which the system is employed. 

2. B-SPLINE WAVELETS 

This section summarises the existing literature on B-splines and 
their associated wavelets. For further information the reader is di-
rected to the references cited, particularly [3], [4] and [5].  
 
A B-spline (‘basis’ spline) curve through a set of points consists of 
the linear combination of shifted B-spline basis functions of a given 
order. A zeroth order spline curve is constructed from a series of 
constant functions at the height of each data point. A first order 
spline curve is constructed from a series of straight lines that join 
each data point. A second order spline curve is constructed from a 
series of quadratic functions that span three data points and so on, 
with each ‘piece’ of the curve having its own weighting coefficient, 
meaning that a function can be described by: 
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Higher orders are obtained by repeated (m times) convolution of the 
zeroth order B-spline. For example the cubic (third order) B-spline 
is obtained by convolution of the zeroth order with itself three 
times. An order m B-spline can be found directly (without convolu-
tion) from: 
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where  
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is the one-sided power function [3]. It should be noted that, for high 
order splines, there are stability problems when using (3) with finite 
precision. A version of (3) which exploits the symmetry inherent in 
the repeated convolution of a box function is proposed and used 
here. This is given by 
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The constant (zeroth order) B-spline basis leads to a model which is 
not continuous (since it is piecewise constant). The first order basis 
offers a continuous (piecewise linear) underlying model but it is not 
smooth since the first derivative is not continuous. The second order 
(quadratic) basis is continuous and smooth but its rate of change of 
curvature (second derivative) changes in a piecewise constant fash-
ion. The third order (cubic) basis exhibits the ‘minimum curvature 
property’ since the second derivative is continuous and so for many 
applications the cubic B-spline is considered the most appropriate 
underlying continuous piecewise function. However, if better fre-
quency localisation is required (at the cost of poorer time localisa-
tion) then the B-spline order can be increased. 
 
For the m order B-spline wavelet transform the scaling and wavelet 
functions and their associated discrete filter sequences are given by 
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u n , the interpolation (approximation) filter, is the bino-

mial kernel of order m given by 
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and g[n], the wavelet (detail) filter, is given by 
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where 
m

b is the mth order B-spline sampled at the integers [4], [6]. 
Figure 1 shows the wavelet functions associated with B-splines of 
order zero (the Haar wavelet), one, three and twenty, at scale one. 
 

 

Figure 1: Underlying wavelet functions for B-splines of dif-
ferent orders. The horizontal axis values are samples. 

As the order of the B-spline increases so the shape of the 
wavelet function tends to a modulated Gaussian (Gabor 
function) which has optimum time-frequency localisation 
properties. For a cubic B-spline it has been shown that the 
error in approximating a Gabor function is less than 3% and 
the localisation is within 2% of the optimum [5]. Unfortu-
nately only the zeroth B-spline wavelet transform is energy 
preserving. At higher orders the wavelet and scaling filters 
are not the power complements of each other. Figure 2 
shows the magnitude responses of these filters for orders 
zero, one and three. This lack of orthogonality can be over-
come by over-sampling in both time (partial or no decima-
tion) and scale domain (parallel transforms of the input at 
different sample rates) and by taking account of the ap-
proximate Gaussian shape of the filters in the Fourier do-
main. Knowledge of the filter shape, along with estimation 
of a component’s width and centre frequency, allows for 
magnitude correction of estimates [8]. 

 

Figure 2: Magnitude response of wavelet and scaling filters 
at orders zero (solid line), one (dashed) and three (dotted). 

3. DERIVATION OF THE RESIDUAL 

The real-time spectral modelling system in which the analysis 
method described here is used is discussed in [7] and described in 
detail in [8]. The system models and synthesizes the sinusoidal part 
of monophonic audio signals as successive non-overlapping frames 
with piecewise quadratic phase and piecewise linear amplitude on a 
frame by frame basis. Only the phase is aligned between frames for 
continuing sinusoids; discontinuities in frequency and amplitude at 
synthesis frame boundaries are usually very small due to the high-
accuracy analysis method employed.  
 
The Spectral Modelling Synthesis system (SMS, see [1]) uses time 
domain subtraction to produce the residual; the entire sinusoidal 
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signal is synthesized and subtracted from the original input signal. 
An advantage of this approach is that having a time domain repre-
sentation of the residual means that spectral analysis of it can be 
performed with optimised parameters, such as a shorter analysis 
frame, for what is assumed to be a stochastic signal. In a real-time 
system which produces output from input on a frame by frame basis 
it is not possible to employ this approach. Unless there is no overlap 
between frames (only possible with a rectangular window) the syn-
thesis and analysis frames will be of a different length and so short-
time time domain subtraction is not available either. For this reason 
spectral subtraction is employed here to calculate the residual sig-
nal. Once this has been performed the data is finally transformed 
back to the time domain in analytic form after Hilbert transforma-
tion in the Fourier domain, ready for the complex B-spline wavelet 
analysis described in this paper. 
 
An assumption of SMS is “that the residual is fully described by its 
amplitude and its general frequency characteristics. It is unneces-
sary to keep either the instantaneous phase or the exact spectral 
shape information” [9]. Augmentations of the SMS model to in-
clude a third signal component type (transients) acknowledge that 
this assumption is not valid in some cases [2]. Whilst it is the case 
that for long term stationary noise the phase spectrum does not 
contain important information the situation for short duration broad 
band (i.e. impulsive) components is that both the phase and magni-
tude are needed to retain perceptually relevant fast changing tempo-
ral detail. The spectral modelling technique used here for the resid-
ual is intended to be capable of capturing the temporal detail of 
transient components and the spectral resolution of longer term 
stochastic components. Since both the phase and magnitude of non-
sinusoidal components remain intact after spectral subtraction, the 
inherent timing information contained within these components is 
passed onto the complex wavelet analysis combining both transient 
and long term noise in the one model. 
 
Time domain subtraction is a straightforward and, provided the 
instantaneous frequencies and amplitudes of the sinusoids are well 
predicted by the model, effective operation. Spectral subtraction is a 
more complex process since individual sinusoidal components are 
not represented by individual points in the Fourier domain. Finite 
length windowing smears components into multiple bins and non-
stationarity exacerbates this: frequency change widens the main 
lobe and amplitude change narrows the main lobe but increases the 
level of side lobes, increasing the spread of energy to distant bins. A 
single sinusoid is represented by a single complex number in the 
Fourier domain only in a very specific situation: a rectangular 
analysis window is used, the analysed sinusoid has stationary ampli-
tude and frequency and its frequency coincides exactly with the 
centre of an analysis bin (i.e. the length of the analysis window is an 
integer multiple of the sinusoidal period). 
 
In [10] a spectral subtraction technique was described which was 
developed for use in a transform based thresholding process, 
Wavethresh. This technique used knowledge of the window power 
spectrum to predict the contribution made to adjacent bins made by 
a stationary sinusoid for a given deviation of the sinusoid’s fre-
quency from that of the bin centre. This was necessary since 
Wavethresh used a non zero-padded FFT. This produces large varia-
tions in energy localisation around a sinusoidal peak for different 
deviations of the mean frequency from that of the centre of the 
analysis bin. For the sinusoidal analysis employed here a zero-
padding factor of 8 is used which significantly reduces the variation 

in energy localisation. In fact the number of bins that require zero-
ing in order to produce a desired level of attenuation does not 
change as a function of the distance of a component from the centre 
frequency of an analysis bin (for example 30 bins either side of, and 
including, the sinusoidal peak require zero-ing to achieve 48 dB of 
attenuation for an 8 times zero-padded 1025 sample frame, regard-
less of frequency).  
 
Since the spectral data is available in zero-padded form there are 
two approaches that can be taken to obtain a time domain version of 
the residual: decimation in the frequency domain or in the time 
domain. Following inverse transformation decimation in time is 
performed by discarding samples beyond the time support of the 
analysis window. Since the spectral subtraction process can spread 
some of the remaining component energy outside the support of the 
analysis window this also helps to reduce the sinusoidal energy in 
the residual signal. The disadvantage of not decimating before 
transformation to the time domain is the increased cost of the IFFT. 
The time domain decimation method is used here since this greatly 
simplifies the spectral subtraction process and offers much greater 
consistency in the relationship between the number of bins that are 
zeroed and the attenuation of deterministic components. 
 
Non-stationarity must also be accounted for in the spectral subtrac-
tion process. Frequency non-stationarity causes a widening of the 
main lobe but there is little change in the energy contained in distant 
bins. There is no analytic method for expressing a window’s power 
spectrum where there is frequency non-stationarity. However, the 
number of bins that need to be zeroed for a given level of attenua-
tion for a particular intra-frame frequency change can be reasonably 
well modelled by a second order polynomial as shown in Figure 3.  
This illustrates the number of bins, actual and predicted, that need 
to be zeroed to produce an attenuation of 48 dB for a given fre-
quency change. 
 

 
Figure 3: Number of bins zeroed either side of peak to produce an 
attenuation of -48 dB for a non-stationary sinusoid versus amount 
of intra-frame frequency change. 
 
Amplitude non-stationarity can produce a significant de-localisation 
in the Fourier domain of a sinusoidal component. This is due to the 
localisation in the time domain that is produced by the amplitude 
change; the greater the amplitude change, the more impulse-like the 
component becomes. The more impulsive a component becomes the 
less energy it contains compared to a stationary sinusoid with the 
same peak amplitude. A positive amplitude change localises energy 
at the end of the frame and negative change localises energy at the 
beginning of a frame. These are the parts of the frame that experi-
ence the greatest attenuation when a window is applied.  
The lower energy in a component with non-stationary amplitude 
combined with the attenuation introduced by the windowing process 
offsets the energy spreading in the Fourier domain: although zero-
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ing a given number of bins produces less attenuation for a compo-
nent with non stationary amplitude this loss of attenuation is com-
pensated. This is illustrated in Figure 4 which shows the attenuation 
produced by spectral zeroing of 60 bins and the attenuation pro-
duced by the amplitude non-stationarity.  It can be seen that the 
combined attenuation actually falls as the amplitude change in-
creases. For this reason the intra-frame amplitude change for a sinu-
soidal component is not considered in the spectral subtraction proc-
ess. 
 

 
 
Figure 4: Maximum component energy for a given amplitude due to 
intra-frame amplitude change (dotted line), energy reduction due to 
spectral subtraction (dashed) and combined attenuation (solid) 

4. COMPLEX B-SPLINE WAVELET ANALYSIS 

Once the spectrum of the residual has been obtained via the subtrac-
tion process described in the previous section its analytic time do-
main version is computed. First the Hilbert transform is performed 
in the Fourier domain by 
 

 ( ) ( )

( )
analytic

2

2

2

( ), 0,            

2 ( ), 1 1

0, 1 1

N

N

N

X k k

X k X k k

k N

=

= ≤ ≤ −

+ ≤ ≤ −






  (10) 

 
where N is the zero-padded transform size. The inverse transform is 
then computed and the output truncated so that it is the same length 
as the input frame. Then the B-spline wavelet transform is applied 
separately to the real and imaginary parts of the analytic signal. The 
reasons for this approach are twofold. Firstly, a major advantage of 
the B-spline wavelets is their compact support (both for computa-
tional speed and because only short-frames are being analysed). By 
having two parts of the analytic signal of the same length and ana-
lysing these separately with the B-spline filters a saving, in terms of 
the convolutional demands, is made over analysing the same real 
signal with two different transforms, one of whose filters would not 
be compactly supported. Secondly, since the data is already in the 
Fourier domain the Hilbert transform can be easily implemented at 
very little additional cost. 
 
When the wavelet transform is considered as a multiresolution 
analysis (MRA) the sampled sequence which forms the input to the 
transform is considered to be the approximation of the underlying 
continuous signal at scale 0. However, this sequence is not the 
equivalent of projection of the continuous function (in this case 
band-limited by the anti-aliasing filter) on to the vector subspace 
that this scale represents. Projection is achieved by convolution of 
the input with a filter that is the inner product of the sinc function 

and the dual scaling function (the scaling function itself if the trans-
form is orthogonal rather than biorthogonal) [11]. For the B-spline 
case this is achieved by convolution of the input with the sampled 
B-spline of the same order as that of the B-spline transform to be 
applied [4].  
 
As discussed in Section 2 the B-spline wavelet approximates a Ga-
bor function. The centre frequency of the wavelet is given by 
 

 0
centre, 1

2

s
k k

f F
f −=  (11) 

 

where k is the analysis scale and 0f  = 0.4092 [5]. However it has 

been found here that (11) fails at scale 1 and that correct initialisa-
tion is only achieved by multiplication in the Fourier domain of the 
input with 
 

 ( )1
( ) sinc

2

m
F

ω
ω +

=   (12) 

 
which is the Fourier transform of the continuous, rather than sam-
pled, B-spline of order m. If (12) is implemented in the Fourier 
domain then (11) holds at all scales including 1 and since the data is 
already in the Fourier domain there is no more expense in this filter-
ing operation, despite the far fewer coefficients of the sampled B-
spline filter in the time domain. Figure 5 shows the frequency re-
sponse of the wavelet at scale 1 for both initialisation filters for a 
cubic B-spline. In this figure the shape given by the filter calculated 
from (12) is visually indistinguishable from the Gaussian function it 
approximates. 
 

 
Figure 5: Normalised magnitude response of the cubic B-spline 
wavelet at scale 1 for initialisation of the input sequence by the 
sampled (solid line) and continuous (dotted) cubic B-splines. The 
sample rate of the input sequence is 44.1 kHz. 
 
With this improved initialisation a multiresolution analysis is 
achieved which is akin to an atomic decomposition with Gabor 
functions which are successively dilated by a factor of 2. Since the 
critically sampled decomposition of Mallat is achieved by decima-
tion of coefficients at each scale, aliasing is present and the trans-
form is shift-variant [12]. A shift-invariant, non-aliased alternative 
to the decimated transform is the ‘algorithme à trous’ (algorithm 
with holes). This algorithm achieves dilation of the underlying 
wavelet and scaling functions by inserting a zero (placing a hole) in 
between each sample of the filters, rather than by decimating their 
outputs, at each successive scale [13]. Figure 6 shows the time do-
main, and Figure 7 the Fourier domain, shape of the wavelet filters’ 
impulse responses at the first five analysis scales for a 1025 sample 
frame. Some spreading of the response in Figure 6 can be observed 
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at scale 1, this is an unavoidable artefact of the Hilbert transform 
due to its inherent band-limiting of the signal. 
 

 
Figure 6: The undecimated time-domain magnitude response of the 
complex cubic B-spline wavelet for an impulse at the centre of a 
1025 sample frame. The responses widen with increasing scale. 
 

 
Figure 7: Magnitude responses derived from Figure 6. The sample 
rate for this and subsequent plots  is 44.1 kHz. 
 
As is the case for the DFT, the mean instantaneous frequency of a 
spectral component can be estimated using the complex wavelet 
transform, particularly since the wavelet used so closely approxi-
mates a windowed sinusoid. Reassignment is used for frequency 
estimation for the prior sinusoidal analysis in this system since an 
estimate can be obtained from a single analysis frame [10]. Unlike 
the STFT the wavelet transform provides more than one coefficient 
at each scale (apart from the highest scale of a critically sampled 
wavelet transform). This implies that the mean instantaneous fre-
quency can be estimated from the first order difference of the phase 
between consecutive coefficients in a given scale within a single 
frame:  

 ( ), , 1 detail , 1 detail ,
2

s
k n n k n k n

F
f φ φ

π
+ += −  (13) 

 
for an undecimated transform, where n is the index at the scale k, 
and φ  is the phase, of the coefficients, and 
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F
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for a decimated transform. The kth power of 2 in (14) is present 
since the temporal distance between indices is doubled for each 
increment in scale. Whilst (14) is effective for the lower half of the 
frequency band occupied by each scale, a correction must be ap-
plied to prevent negative frequency estimates in the upper half: 
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An additional problem when using the decimated transform is alias-
ing caused by high energy in nearby out-of-scale components. A 
straightforward solution to this problem is to not decimate the out-
put detail coefficients at each scale. Whilst this doubles the number 
of coefficients produced at each scale it does not increase the com-
putational burden since the detail coefficients are not used in further 
iterations of the decimated algorithm, it is only the approximation 
coefficients that are used recursively. This prevents aliasing at scale 
1 however aliasing still occurs at higher scales since the number of 
detail coefficients at each scale is reduced by decimation of the 
approximation coefficients at the previous scale. The ideal solution 
is to use the undecimated transform however this comes at a signifi-
cantly increased cost than its decimated counterpart.  
 
Circular convolution is not desirable for time-scale analysis since 
the purpose is to describe where events occur in (linear) time. In 
this analysis system the synthesis frame width is determined by the 
frame overlap. If frames overlap then encroachments due to circular 
convolution near frame boundaries can be ignored; the greater the 
overlap factor, the more samples that can be ignored near the 
boundaries. For example, with an overlap factor of 4 and a frame 
size of 1025 the wavelet coefficients of concern correspond to the 
middle 257 samples of the frame. However where circular convolu-
tion is employed a component is likely at higher scales, where the 
filter response is longer, to wrap into the region of interest. There-
fore, for short-time wavelet analysis, circular time within frames, as 
opposed to linear time, makes matching of components at synthesis 
frame boundaries difficult. Although linear convolution is more 
expensive than its circular counterpart, since it increases the length 
of the output of each scale and, therefore, the input to the next scale, 
it is better suited to this application.  

5. TRANSFORM COST AND PARTIAL DECIMATION 

The costs of the decimated and undecimated transforms are now 
considered in terms of the number of multiply and add operations 
for the linear convolution case. For the mth order spline wavelet the 
length of the low and high pass filters in samples, at scale 1 are 
given by: 
 

 LPF 2L m= +  (16) 

 HPF 3 2L m= +  (17) 

 
When a sequence of length S is convolved with a filter of length L 
the length of the output is 1S L+ − . For the undecimated transform 
the input sequence at one scale is the approximation of the previous 
scale which is achieved by convolution with the dilated low pass 
filter. Therefore, for the undecimated transform, the sequence 
length before low pass filtering at scale k is given by: 
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where N is the analysis frame length. This gives a total cost for the 
transform of: 

 ( )

( ) ( )( )
1

( 1)(2 1 )

K

LPF HPF k
k

K
LPF HPF LPF

C L L N

L L NK L K

=
= +

= + + − − −

∑  (19) 

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

DAFX-07 281



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007 

 DAFX-6 

where K is the total number of scales. For the decimated transform 
the filter output is decimated at each scale and so the sequence 
length at scale k, before filtering and decimation, is given by: 
 
 ( ) ( )

( )

( 1) ( 1)

( 1)

2 1 1 2

2 1 1

k k
k LPF

k
LPF LPF

N N L

N L L

− − − −

− −

= + − −

= − + + −

  

  

 (20) 

 
Allowing for rounding up of numbers of coefficients when an odd 
length sequence is decimated the approximate total cost is given by: 
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In order to offer some mediation between these two extremes the 
partially decimated wavelet transform is proposed here. The princi-
ple is straightforward: the algorithm begins by filtering the signal 
and inserting holes into the filter until a given decomposition level 
(scale) is reached, at which point the filter remains the same and the 
output is decimated for subsequent iterations. The only other wave-
let analysis that combines decimated and undecimated transforms in 
this way is the over complete DWT (OCDWT) described in [14]. 
However, this system begins with decimation and then at higher 
scales switches to filter dilation. This order is reversed in the system 
proposed here since this reduces shift variance at all scales.  
 
Equations (18) – (21) can be combined to calculate the cost of the 
partially decimated transform. The cost of calculating the undeci-
mated scale coefficients can be calculated directly from (19) where 
N is the length of the input sequence and K = U is the number of 
undecimated scales. The cost of calculating the subsequent deci-
mated coefficients is given by a modified version of (21): 
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where D is the number of decimated scales and undecN is the length 

of the final approximation sequence output from the undecimated 
part of the transform, given by (18) where 1k U= + , which is then 
halved (since this sequence is decimated before the next filtering 

stage).  dLPFL is the length of the dilated LPF and is given by 

 

 ( ) 1
1 2 1

U

dLPF LPF
L L

−
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Figure 8: Time-domain magnitude response at scale 8 of the com-
plex cubic B-spline wavelet transform for differing amounts of deci-
mation. 

Figure 8 shows the time domain magnitude response at scale 8 for 
an impulse in the centre of the analysis frame for different ratios of 
numbers of decimated to undecimated scales. 

6. SPLIT WAVELETS FOR BANDWIDTH ESTIMATION 

The frequency-splitting ‘trick’ described in [15], and used to pro-
duce the full binary tree decomposition used in wavelet packets, is 
used here to produce estimates of the bandwidth of components at 
each scale. At one extreme, the instantaneous mean centre frequen-
cies of the scale filter and the two split filters will coincide for an 
impulse in the frequency domain and, at the other, their centre fre-
quencies will be the same as those of the fixed filters for an impulse 
in the time domain. Therefore the proximity of the derived centre 
frequencies for the two complex split filters can be used to estimate 
the width of the underlying component. 
 
For the undecimated transform the split at each scale is achieved by 
filtering of the detail coefficients at that scale. The filters are ob-
tained by dilation by a factor of two of the high and low pass filters 
used to derive the approximation and detail coefficients. For the 
decimated transform the split can be achieved by convolution of the 
decimated detail coefficients with the existing filters. However this 
would produce fewer split than scale coefficients meaning that there 
could not be a one-to-one mapping of a scale coefficient to its lower 
and upper split coefficients. Therefore, in the split implementation 
described here, the filters are dilated and the scale coefficients left 
undecimated whether the split is occurring for a decimated or un-
decimated scale in the partially decimated transform. It should be 
noted that where splitting is performed then not decimating the 
detail coefficients at each scale (discussed earlier as a method of 
reducing aliasing) will increase the computational cost. 
 
Splitting at a given scale is achieved by convolution of the detail 
signal with the low and high pass wavelet filters dilated by a factor 
of two from those used to generate the approximation and detail 
coefficients at that scale. Dilation of a filter’s impulse response in 
the time domain is equivalent to an equal contraction of its response 
in the frequency domain. Therefore the frequency responses of the 
split wavelets’ filters are given by: 
 

 ( ) ( )
lower scale scale(2 )HPFω ω ωΨ = Ψ  (24) 

 ( ) ( )
upper scale scale(2 )LPFω ω ωΨ = Ψ  (25)

   
where Ψ and XPF are the Fourier transforms of the various filters. 
The perhaps counter-intuitive result that the upper split wavelet is 
produced by convolution with the LPF and the lower split by con-
volution with the HPF is explained by the fact that it is the aliased 
(reflected) parts of the filters’ frequency responses (which are con-
tracted by a factor of 2 in the above equations) that coincide with 
the region where the response of the wavelet filter is greatest. The 
upper part of Figure 9 shows the magnitude frequency responses of 
the wavelet and its upper and lower splits at scale 1. The lower part 
of this figure shows the shape of the underlying continuous func-
tions. As would be expected of the dilation and convolution opera-
tions of the splitting operations, the split wavelets have greater time 
support but are more localised in frequency than the parent wavelet. 
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Figure 9: Magnitude frequency response (top) and time domain 
shape of cubic B-spline wavelet and its splits at scale 1. 
 
The centre frequencies of the split wavelets at each scale are given 

by (11) where 0f  = 0.2919 for the lower and 0.4678 for the upper 

splits respectively [8]. Therefore the maximum difference (i.e. that 
due to an impulse) between split filters at scale k is given by: 
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Figure 10 illustrates how differences between frequency estimates 
at a single scale occur where a component has spectral breadth. The 
frequency estimates at scale 1 for the wavelet and its splits are 
shown for a sinusoid and for a single impulse which occurs in the 
middle of the frame (sample 513). There is a clearly visible differ-
ence in estimates for the impulse whereas, at the same scaling of the 
vertical axis, there is no difference in estimates for a stationary 
sinusoid. 
 

 
Figure 10: Frequency estimates for a sinusoid (top) and an impulse 
at the centre of the frame (bottom). 
 
The cost of the split transform is the cost of the non-split transform, 
given by equations (18) to (23), plus the cost of filtering that pro-
duces the splits at each scale. The split at each scale is achieved by 
high pass filtering of the detail coefficients at that scale followed by 
high and low pass filtering with filters which are dilated by a factor 
of two from those used to produce the approximations and details at 

that scale. For the undecimated transform the sequence length, kNs   

(the s indicates ‘split’), before the high and low pass split filtering is 
given by: 
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and so the combined cost of the all the splitting stages is given by: 
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and the total cost of the transform is given by adding (19) and (28). 
For the decimated transform the sequence prior to splitting is the 
detail sequence at that scale. This is given by 
 

 ( )( 1)
2 1 2
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k LPF LPF HPFNs N L L L
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and the total cost of the splitting stage is given by adapting (21): 
 

( ) ( ) ( )( ) ( )( )( 1)1 1 2 2 1K
LPF HPF LPF LPF HPFC L L L N L J LK − −= + − + − + − + − (30) 

 
The total cost of the split decimated transform is given by adding 
(21) and (30). The cost of the splitting stage of the partially deci-
mated transform can be calculated for the undecimated levels by the 
same sum. The cost of splitting at the decimated levels is given by a 
modification of (30) 
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where 
dHPF

L is given by 
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1 2 1

U

dHPF HPFL L
−
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Finally, the total cost of the partially decimated split wavelet trans-
form is given by adding (22) and (32). Figure 11 shows the compu-
tational cost of the split and un-split, decimated and undecimated 
complex cubic spline wavelet transforms for linear convolution. For 
comparison the cost of a 1024 and 8192 point FFT are also shown. 
 

 
Figure 11: Number of complex multiply and odd operations re-
quired for various complex cubic B-spline wavelet transforms of a 
1025 sample frame. 
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7. APPLICATION 

The complex wavelet analysis system described is able to adapt to 
different types of input component. The frame-by-frame spectral 
modelling system in which it is used employs biquadratic paramet-
ric equalisers applied to a white noise source for resynthesis of the 
residual.  Two examples are now given which demonstrate how this 
system performs on different types of input signal. The top part pf 
Figure 12 shows a resynthesized sequence of unity impulses. In this 
case the time localisation is good, with energy focussed in a small 
number of samples. At the other extreme the bottom part shows the 
time domain input, output and magnitude frequency response of a 
stationary sinusoid. Although such a component is unlikely to form 
part of the residual, it demonstrates the ability of the resynthesis 
filters to adapt their bandwidth to give good frequency localisation 
and to shift their centre frequency to that of the input component. 
This time-frequency adaptation is made possible by the bandwidth 
estimation described in this section.  
 
Figure 13 demonstrates how the residual synthesis can adapt in a 
single frame. The time localisation at the onset is good but this 
changes to good frequency localisation later on in the frame (the 
analysis overlap factor is 2 so the synthesis frame is half the size of 
the analysis frame). During the last half of the frame the sinsusoidal 
oscillator ramps on exponentially, ‘taking over’ from the residual 
synthesis by the next frame. 
 

 

 
Figure 12: Residual resynthesis of time domain (top) and frequency 
domain impulses (bottom). 
 

 
Figure 13: Windowed sinusoid with sudden onset (top), residual 
after spectral subtraction (middle) and resynthesized residual (bot-
tom).  

8. SUMMARY 

A multiresolution analysis system which produces estimates of 
magnitude, mean instantaneous frequency and bandwidth of com-
ponents, and is suited to a residual modelling system has been pre-
sented and placed in the context of a frame-by-frame spectral mod-
elling system. The properties of the wavelet analysis, its cost, and 
partial decimation as a means of negotiating between computational 
cost and shift-variance\aliasing have been described. Further work 
will look at how the synthesis and analysis filters can be better 
matched whilst retaining the simplicity of the resynthesis method. A 
more detailed treatment and analysis of the work presented here 
(including measures of aliasing and shift-invariance for different 
levels of partial decimation) can be found in [8]. 
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ABSTRACT 

A modification to the hybrid sinusoidal model is proposed for 
the purpose of high-quality audio coding. In our proposal the am-
plitude envelope of each harmonic partial is modeled by a narrow-
band complex signal. Such representation incorporates most of the 
signal energy associated with sinusoidal components, including 
that related to frequency estimation and quantization errors. It also 
takes into account the natural width of each spectral line. The 
advantages of such model extension are a more straightforward 
and robust representation of the deterministic component and a 
clean stochastic residual without ghost sinusoids. The recon-
structed signal is virtually free from harmonic artifacts and more 
natural sounding. We propose to encode the complex envelopes 
by the means of MCLT transform coefficients with coefficient 
interleave across partials within an MPEG-like coding scheme. 
We show some experimental results with high compression effi-
ciency achieved. 

1. INTRODUCTION 

Parametric audio coding [1] is usually considered as a departure 
from the waveform coding paradigm in a sense that matching of 
absolute signal value is abandoned in favor of matching perceptu-
ally relevant features. Parametric approach promised an exciting 
perspective of data reduction almost down to the amount of se-
mantic content, thus offering an option for great coding efficiency. 
The problem is that such extreme compression requires very flexi-
ble and realistic models, at least for those signal features that are 
essential from perception point of view. This goal remains elusive 
in current implementations which have yet to prove their advan-
tage over latest transform coding techniques, such as MPEG-4 
HE-AACv2 [2,3].  

In fact, the borders between parametric and waveform coding 
are quite blurred. Current perceptual codecs often feature paramet-
ric enhancements to the traditional transform-based schemes. Pa-
rametric tools like PNS (Perceptual Noise Substitution), SBR 
(Spectral Band Replication) and PS (Parametric Stereo) helped to 
push the limits of transform coding down to the range of 24-
32kb/s while still offering a good quality of reconstructed audio. 
Therefore it is reasonable to consider MPEG-4 HE-AACv2 as a 
hybrid transform-parametric technique. 

Purely parametric coding of wideband audio traditionally em-
ploys a well established hybrid model to represent the main spec-
tral features of the signal in terms of deterministic and stochastic 
components. The deterministic component is modeled as a sum of 
non-stationary sinusoids, 
 ∑ ∫= ⎟

⎠
⎞⎜

⎝
⎛ ττπ+ϕ=

N

k

t

kkk dftAts
1 0

)(2cos)()(ˆ , (1) 

as proposed by McAulay and Quatieri [4] and improved later by 
others, e.g. [5,6]. It is generally assumed that the magnitudes and 
frequencies of constituent sinusoids evolve slowly in time and 
they may be very well approximated by simple functions. For 
example, Ak(t) is usually a piecewise linear ramp and fk(t) is a low 
order polynomial. The stochastic part is usually considered as a 
residual obtained during an analysis by synthesis process, after 
spectral subtracting the estimated sinusoidal part from the original 
signal, as proposed by Serra [7] and further refined, e.g. [8,9]. The 
stochastic part is usually modeled by filtered noise with an addi-
tional envelope (2) 
 [ ] ),(,)()()()(ˆ σµ∝εε∗= NtthtAtn nn

, (2) 

where ε(t) represents a white noise process, and hn(t) represents 
the impulse response of an AR or ARMA modeling filter [10]. 
Some more elaborate models feature additional functions for effi-
cient representation of transients, e.g. [11,12,13]. These are usu-
ally detected and removed from the original signal at the begin-
ning of the analysis by synthesis process. 

There are several successful applications of the above hybrid 
model to compression of wideband audio with the most important 
being the one covered by ISO/MPEG-4 SSC standard [13,14]. 
Although the codec implementation available from ISO shows a 
great compression efficiency, it is unable to offer a truly high 
quality output, and many listeners complain on unnatural sound-
ing harmonic clashes that are particularly audible in sounds rich 
with overtones (glockenspiel, trumpet) and human voice (famous 
Suzan Vega sample). Since about 80% of the total bit stream pro-
duced by the encoder is used for the sinusoidal part, we consider 
some serious deficiency of the underlying model to be responsible 
for these artefacts.  

2. DRAWBACKS OF THE SINUSOIDAL MODEL 

There is a lot of research on the sinusoidal model alone. The 
most important problem is an accurate estimation of the parame-
ters (e.g. [13,14]) such that the reconstructed sum of time-varying 
sinusoids (1) matches the tonal part of the signal as closely as 
possible for the analysis by synthesis principle to work in time 
domain. This in general is difficult if the tonal part is non-
stationary or buried in noise. Apart from well-known 
time/frequency resolution limits due to the analysis window length 
and shape, there is a bias related to AM and FM components 
[15,16,17], and the estimation accuracy is constrained by the 
Cramer-Rao bound.  

First of all, inaccurate estimation of frequency and amplitude 
for each partial leads to bulk of the tonal energy being left in the 
residual signal (fig. 1). These so called "ghost sinusoids" are a 
significant source of inaccuracy of the low-order auto-regressive 
model being fitted to the residual PSD. On the other hand, if the 
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sinusoids are estimated and extracted from the original signal one 
by one, there is a whole bulk of sinusoids representing each of the 
individual tonal partials, and the model is simply inefficient. Both 
problems have been addressed with some successful solutions 
[18,19,20], however perfect results are obtained only for very 
stationary sounds or artificial spectra. In case of real audio signals, 
small random fluctuations of amplitudes and frequencies observed 
on short-time spectrograms of natural sounds are not very well 
represented by the traditionally formulated model. Furthermore, 
parameter quantization [13,21] which is an essential component of 
every compression technique introduces small discrepancies into 
the encoded frequencies, usually up to ±0.5% [13]. Frequency 
deviation of 0.088 ERB is generally considered as imperceptible 
with regard to single tones or fused harmonics heard in isolation. 
However, it is not so in case of several components of harmonic 
series beating against each other due to different frequency quan-
tization error. In such case, small offsets destroy fixed phase rela-
tionships between overtones and cause a sensation of mistuning 
and unnaturalness. 

In our opinion, the classic sinusoidal model (1) exhibits two 
significant drawbacks when considered as a compression tool: 
1. it is too sensitive to small inaccuracies of parameter estima-

tion and representation, since even little frequency errors lead 
to significant modeling problems or even audible artifacts, 

2. it is too idealistic, since it assumes an infinitely small instan-
taneous bandwidth of each sinusoidal partial, while in real 
audio signals the tonal components exhibit a significant spec-
tral width. 

The basic idea behind the extension of the sinusoidal model pro-
posed in this paper is to incorporate the narrowband content asso-
ciated with each partial into its amplitude envelope. Instead of a 
piecewise linear functions, the envelopes Ak(t) are modeled as LF 

signals which are heterodyned to proper frequency by correspond-
ing complex sinusoidal carriers. Since the amplitudes are band 
limited complex signals, they may be represented with signifi-
cantly reduced sampling rate and using one of the well established 
signal coding techniques, in our case – transform coding. 

Fitz and Haken proposed bandwidth-enhanced sinusoids [22] 
obtained through narrowband frequency modulation with a filtered 
noise modulator as a flexible tool for modeling the stochastic 
component of the signal. In the context of encoding the determi-
nistic part, this enhanced model is not applicable since the repre-
sentation does not guarantee waveform matching. While band-
width enhanced sinusoids offer easy parameterization of a narrow-
band stochastic process, our complex amplitude model is a more 
systematic expression of the signal deterministic content that al-
lows for near transparent quality at sufficiently high data rate. 

3. PROPERTIES OF THE COMPLEX ENVELOPE 

Every narrowband signal may be expressed as a product of modu-
lation of a low-frequency band-limited “content” (the complex 
envelope) by a complex sinusoidal carrier (3). We use this expan-
sion to represent the constituent partials of the sinusoidal model. 
 { }tfj

kk
ktxts π= 2e)(Re)(  (3) 

In order to study the spectral properties of the envelope, let us 
consider an example of a high violin note with vibrato (fig. 2). 
Due to the variations of fundamental frequency, short-time fre-
quency analysis with a reasonable window length (here: N=2048) 
shows a series of thick bulges in the magnitude spectrum. 

Complex amplitude envelopes may be obtained for each of the 
existing sinusoidal component through frequency shift according 
to their instantaneous frequencies. For this purpose we detect and 
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Figure 1: Sinusoidal plus noise analysis demonstrating limitations of the sinusoidal model 
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track the sinusoidal components of the signal using the McAulay-
Quatieri algorithm. We consider only long solid tracks as carriers 
of tonal content in our model. After demodulation, the remaining 
bandwidth of each envelope is mostly related to frequency estima-
tion errors, the fluctuation of the instantaneous frequency, and last 
but not least – the spectrum of the magnitude envelope of the 
whole sound. Experiments show that the estimated complex enve-
lope signals are very narrowband (fig. 3) therefore they may be 
very efficiently encoded using transform coding with only few 
significant coefficients. Compared to sinusoidal coding with 
piecewise-linear envelope this scheme needs more data to repre-
sent several transform coefficients, however it allows for much 
lower update rate (long frames). 
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Figure 2: A spectrogram of a violin note (above)  
and a corresponding STFT magnitude at t=0.8 
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Figure 3: PSD-s of the complex envelopes (5 partials) 
obtained from the example test signal (fig. 2) 

Transform coding of audio spectra is usually based on coeffi-
cients of MDCT transform. It may be shown that in case of com-
plex-valued signals the optimal extension of this scheme is the use 
of modulated complex lapped transform (MCLT) proposed by 
Malvar [23], 
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where x(n) denotes the time-domain signal, and w(n) denotes a 
real-valued window function satisfying the conditions for aliasing 
cancellation as defined by Princen, Johnson and Bradley [24]. 
MCLT is an extension of MDCT in a sense that the real part of 
MCLT is equivalent to MDCT which is based on DCT-4, while 
the imaginary part is based on DST-4. Thus it offers a critically 
sampled filterbank with TDAC working for both the real and 
imaginary parts, and it may be implemented using FFT. 

For encoding of complex envelope signals with MCLT we 
adopt the well established data compression scenario as specified 
in MP3 and AAC standards. In our implementation, the transform 
is followed by coefficient perceptual scaling, quantization and 
entropy coding. In fact, the main difference is the treatment of the 
complex-valued coefficients, X(r).  

An interesting observation from the analysis of the complex 
envelopes (fig. 3) is also that these signals are similar in their 
magnitude spectrum shape. Since harmonics having a common 
source (e.g. overtones of the same fundamental) have also a com-
mon magnitude envelope, a significant portion of the spectral 
content related to this envelope is usually present in the complex 
envelope signals. This suggests that an additional coding gain may 
be achieved in exploiting inter-partial correlation within transform 
coding. Our proposal consists in application of a simple coeffi-
cient interleave scheme which is applied to those sets of sinusoidal 
partials which are detected as being components of harmonic se-
ries. This requires an identification of harmonic series and proper 
grouping of the sinusoidal tracks before coding. 

4. CODING TECHNIQUE 

4.1. Proposed codec structure 

The proposed audio codec (fig. 4) operates on the signal arranged 
in frames of 2048 samples with 50% overlap. The input signal is 
analyzed using FFT. Local maxima in the magnitude spectrum are 
detected, selected according to the energy of corresponding har-
monic partials, and exact frequencies are estimated according to 
Marchand’s derivative algorithm [14,16]. A tracking algorithm 
attempts to connect corresponding points of the frequency grid 
across consecutive analysis frames and thus to create the map of 
sinusoidal tracks. The tracks are grouped into sets corresponding 
to harmonic series with common fundamental frequency, and sent 
to the decoder.  
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Figure 4 : The structure of the proposed encoder 

A bank of M carrier generators (complex sinusoidal oscilla-
tors) is driven by the estimated frequencies. The original signal is 
independently heterodyned by each of the carriers, thus providing 
an effective SSB-like frequency shift towards DC. The resulting 
M complex signals are lowpass filtered for rejecting the unwanted 
products. In our implementation we use a fixed zero-phase 256-tap 
FIR filter with stopband attenuation of 65dB. There is a natural 
trade-off between the amount of side energy around each sinusoi-
dal partial in frequency domain and the energy of the residual 
error. First of all, the aim is to avoid leaving any tonal energy in 
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the residual. Therefore the bandwidth of the filter should be de-
termined with respect to the accuracy of the frequency estimation 
algorithm. 

The set of complex LF envelopes is subsequently encoded in 
the following way. First, all signals are subject to the MCLT trans-
form. The coefficients are appropriately scaled with application of 
the perceptual model, and quantized. A coefficient interleave 
process follows. An independent vector of coefficients is created 
for each of the groups of envelopes belonging to different har-
monic series. In each group the coefficient vector is constructed 
by taking consecutive coefficients one by one from each of the 
partials. In other words, first coefficient from the lowest partial is 
followed by the first coefficient from the second partial, and so on 
(fig. 5). Independent vectors are constructed from the real and 
imaginary coefficients. These are subject to subsequent entropy 
coding.  

4.2. Estimation, interpolation, tracking, grouping, and 
encoding of partial frequencies 

Estimation of sinusoidal frequency based on frame analysis 
usually assumes that the resulting value approximates the instan-
taneous frequency (IF) of given partial at the middle of analysis 
frame. The frequency values are transmitted to the decoder once 
per frame and should be interpolated on a sample basis for a con-
tinuous demodulation of sinusoidal partial. This is necessary in the 
encoder since the aim is to obtain the complex envelopes as nar-
rowband as possible in order to maximize the transform compres-
sion gain. It is also necessary in the decoder, in order to properly 
shift the reconstructed spectra back to the right place. 

The problem of appropriate frequency interpolation that mini-
mizes phase errors was studied with the development of the 
sinusoidal model, and a solution using cubic polynomial was pro-
posed [4,7,13]. We basically follow this interpolation scheme, but 
no significant penalty has been observed by application of a sim-
pler linear interpolation. In fact, phase matching is not necessary 
since the content is encoded in complex envelope. Our extended 

model is also quite insensitive to small frequency errors, since 
their only manifestation is in little increase of envelope bandwidth 
and transform coefficient values. 

Proper operation of the codec certainly depends on reliable 
tracking of the frequencies of sinusoidal partials. Big tracking 
errors such as those occurring in case of crossing sinusoidal trajec-
tories lead to audible artifacts (e.g. temporal discontinuities in 
tonal energy similar in timbre to the flanger effect). For robust 
tracking we employ a modified McAulay-Quatieri algorithm [4] 
with relaxed birth/death conditions and different matching criteria. 
Our matching technique aims at better smoothness of tracks, 
which is achieved by seeking for the best match among those 
frequency points in consecutive frame that minimize the second 
derivative of frequency. In our experience, such principle allows 
to some extent for coping with the problem of crossing tracks and 
deep frequency modulation. 
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Figure 6: The template used for detection of harmonic series 

A following procedure is employed for grouping of tracks into 
harmonic series. At first, candidate fundamental frequencies 

}ˆˆ,ˆ{ 21 Lfff K  are determined by correlating in frequency domain 
the magnitude spectrum resampled to log frequency scale with a 
constant-Q harmonic template (fig. 6). The idea is to exploit the 
property of shift in log domain being equivalent to scaling in lin-
ear domain, which is required to estimate the best matching of the 

...

encoded as “big values” “small values” + “zeros”  

Figure 5: Coefficient interleave within one group of partials, and coding in sections 
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harmonic series to the template [25]. We use a high resolution 
(16384 points) log frequency representation that allows us to find 
the fundamental frequency using FFT-based correlation with an 
accuracy of about 1.37ct. 

A given frequency track fk(t) is classified as belonging to one 
of the candidate harmonic series {f1(t), 2f1(t), 3f1(t),..}, {f2(t), 
2f2(t), 3f2(t),..}, ... {m fL(t), m=1,2...} that minimizes 
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Finally, the fundamental frequencies of each harmonic series are 
estimated by 
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The frequencies are encoded and transmitted to the decoder in 
groups, using a representation that in our experience minimizes 
data overhead. For each group, only the fundamental frequency is 
represented with a natural binary code. The remaining frequencies 
f1 < f2 <… fM are represented by differences between integer mul-
tiple of the fundamental fl, and the actual value, 

 lkk fmff −=∆ ,   where   )/( lk ffroundm = . (3) 

The fundamental frequency fl and a set of differences ∆fm are 
quantized uniformly with quantization step equal to half of the 
frequency resolution of MDCT, and encoded by a dedicated 
Huffman code. Both encoder and decoder share identical de-
quantization rule. 

4.3. Scaling, quantization and entropy coding of the 
complex envelope signals 

Quantization of MCLT coefficients in all complex envelope sig-
nals is done in a very similar way to the MPEG-4 AAC algorithm. 
A nonlinear quantizer is used independently for the real and 
imaginary part, and the degree of quantization is controlled by 
coefficient scaling,  
 [ ]0946.0][2])[sgn(][ 4/34/)( += − rXfloorrXrX k

gsfscf
kk

k . (7) 

Individual scaling factors scfk are determined for each of the enve-
lope signals, plus one global gain factor, gsf controls the degree of 
distortion of all partials. All coefficients of each envelope signal 
Xk share the same scaling factor scfk. Such approach leads to uni-
form distribution of the quantization noise around each partial so 
that it may be masked by the energy of spectral peak. It also al-

lows to adapt an effective bit allocation algorithm primarily de-
veloped for an AAC coder.  

In fact, our coding technique is quite similar to traditional 
transform coding, since the coding error has a form of a narrow-
band noise. Therefore a perceptual model developed for the family 
of MPEG L3/AAC techniques is also applicable here. The only 
simplification is that there is no need to calculate the tonality in-
dex for the maskers, and the final masking threshold is calculated 
on the basis of tone-masking-noise (TMN) coefficient. The scaling 
factors scfk in (7) are therefore calculated on the basis of the mask-
ing threshold determined by the perceptual model 

Entropy coding of the quantized MCLT coefficients imple-
ments a typical scheme of data sectioning into “big values” and 
“small values” taken from the MP3 algorithm. Due to coefficient 
interleave, the distribution of quantized values along the data vec-
tor is concentrated near its beginning (fig. 5). For entropy coding 
we use a coding scheme taken literally from the MP3 technique. 
All the “big values” with magnitudes not exceeding 15 are en-
coded in pairs, using 2D codewords from selected Huffman tables. 
The whole section is divided into three equal groups, and an opti-
mal Huffman table is selected for each group. Very big values are 
represented as escape codes. Values from the range of <-1…1> 
are encoded in quadruples using a dedicated Huffman table. 

5. EVALUATION 

In order to verify the advantages of the proposed coding technique 
over traditional parametric coding, a series of experiments has 
been carried out. First, a hybrid sinusoidal+noise model has been 
implemented in Matlab. A second version of the same model fea-
turing complex envelopes and MCLT-based coding has been pre-
pared. Both implementations share identical procedures for esti-
mation and tracking the sinusoids, but no perceptual model is 
used. Both the sinusoidal parameters and the transform coeffi-
cients are quantized in a uniform way. The noise residual is mod-
eled using a warped LPC algorithm. Instead of entropy coding, a 
simple entropy measure is used to estimate the amount of informa-
tion contained in both representations of the signal. 

A test suite consisting of several music excerpts (violin, opera 
voice, trumpet) has been used to compare the performance of both 
models. The reconstructed signals have been compared in a blind 
listening test with degree of quantization controlled in such a way 
to force the output entropy to be similar. Figure 7 shows an exam-
ple reconstructed deterministic part and corresponding residual 
signal. These should be compared with figure 1. Figure 8 shows 
the subjective listening test results (mean opinion score of 7 lis-
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Figure 7: Reconstructed deterministic part and noise residual after coding with complex envelope and MCLT quantization 
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teners) for H=15kb/s and H=30kb/s. 
The general conclusion form the first test is that there is a sig-

nificant improvement of the subjective quality achieved thanks to 
more truthful reconstruction of the sinusoidal component of the 
signal. In fact, thanks to more accurate reconstruction of the de-
terministic part, also the noise residual is much better represented. 
Compared to traditional sinusoidal model, the output of our codec 
sounds more natural and is free from typical artifacts attributed to 
inappropriate sinusoidal parameters. 
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Figure 8: Subjective test results (MOS) for 6 items in  
7-point ITU scale. Positive values show a preference of 
the new model. Diamonds: 15kb/s, stars: 30kb/s. 

6. CONCLUSIONS 

A new approach for encoding of the deterministic part within a 
parametric audio coder is proposed in the paper. Our extended 
sinusoidal model uses complex envelopes to represent the narrow-
band spectral content around each encoded sinusoid. This content 
is encoded using transform coding. The proposed scheme may be 
considered as a hybrid of perceptual and transform coding. It may 
also be interpreted as an adaptive subband coding with subbands 
following the instantaneous frequencies of individual harmonics in 
the signal. The experimental results show that a combination of 
this model with an advanced transform coding technique featuring 
coefficient interleave offers a possibility of very low bit rate com-
pression with high quality of reconstructed audio. 
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ABSTRACT

The SCELP (Spherical Code Excited Linear Prediction) au-
dio codec, which has recently been proposed for low delay
audio coding [5], is based on linear prediction (LP). It ap-
plies closed-loop vector quantization employing a spherical
code which is based on the Apple Peeling code construction
rule. Frequency warped signal processing is known to be
beneficial especially in the context of wideband audio cod-
ing based on warped linear prediction (WLP).
In this contribution, WLP is incorporated into the SCELP
low delay audio codec. The overall audio quality of the
resulting W-SCELP codec benefits from an improved per-
ceptual masking of the quantization noise. Compared with
existing standardized audio codecs with an algorithmic de-
lay below 10 ms, the W-SCELP codec at a data rate of 48
kbit/sec outperforms the ITU-T G.722 codec at a data rate
of 56 kbit/sec in terms of the achievable audio quality.

1. INTRODUCTION

Most of the popular audio codecs, e.g. the Advanced Au-
dio Codec (AAC), [1], are based on perceptual audio cod-
ing. In perceptual audio coding in general an audio signal
is at first transformed by an analysis filter bank. The re-
sulting representation in the transform domain is quantized
whereas a perceptual model controls the adaptive bit alloca-
tion. Large transform lengths cause a high algorithmic de-
lay. Considering mobile communications, the approach of
linear predictive coding (LPC) has been followed for many
years in speech coding. In LPC, an all-pole filter models
the spectral envelope of an input signal. The signal is fil-
tered with the inverse of that all-pole filter to produce the
LP residual which is quantized. In the most recently stan-
dardized speech codecs, vector quantization (VQ) based on
a sparse codebook is applied, following the CELP (Code
Excited Linear Prediction) analysis-by-synthesis principle,
[2]. A well-known example for this approach is the adaptive
multi rate speech codec (AMR), [3]. Due to the sparseness
of the codebook and modeling of the speakers instantaneous

pitch period, speech coders can not compete with perceptual
audio coding for non-speech input signals. The algorithmic
delay is in general lower than that in perceptual coding.
The new SCELP audio codec targets application scenarios
which require high audio quality and a very low algorith-
mic delay, for example digital audio transmission for a wire-
less headphone. It employs the principle of combined linear
prediction and vector quantization (LP VQ) as known from
speech coding. In order to achieve a better perceptual au-
dio quality than speech coders, a spherical codebook is em-
ployed. The spherical codebook is constructed according to
the Apple Peeling principle. This principle was introduced
in [4] for the purpose of channel coding. In [5] we have
proposed an efficient vector search procedure for the spher-
ical codebook for linear predictive quantization, and in [6]
a representation of the available Apple Peeling code vectors
as coding trees has been introduced. Both techniques enable
very efficient encoding and decoding with respect to com-
putational complexity and memory consumption.
In [7] it was shown that warped signal processing techniques
are suited to decrease the required data rate for wideband
audio coding while retaining the same subjective audio qual-
ity. WLP is employed in a simulated coding system with
D*PCM in that contribution. In contrast to that, in this
contribution WLP will be incorporated into the closed-loop
analysis-by-synthesis framework of the SCELP codec which
was introduced for conventional LP primarily.
The principle of the SCELP audio codec and warped linear
prediction will be introduced in Section 2 and 3 respectively.
The modifications required for the application of WLP in
analysis-by-synthesis VQ in general and the SCELP frame-
work for highly efficient encoding in particular are described
in Section 4. Results are presented in Section 5, including a
comparison of the W-SCELP codec with the ITU-T G.722
[8] low delay audio codec.

2. PRINCIPLE OF THE SCELP AUDIO CODEC

The SCELP low delay audio codec is based on block adap-
tive combined linear prediction and vector quantization: The
correlation immanent to an input signal x(k) is exploited
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in order to achieve a high quantization signal-to-noise-ratio
(SNR). For this purpose, a windowed segment of the in-
put signal of length LLP is analyzed in order to obtain the
N time-variant filter coefficients a1 · · ·aN . Based on these
LP coefficients the LP analysis filter with system function
HA(z) = 1 +

∑N

i=1 ai · z
−i converts the input signal into

the LP residual signal d(k) which is segmented into NV =
LLP /LV ∈ N non overlapping signal vectors
d =

[

d0 d1 · · · dLV −1

]

of length LV . Each LP resid-
ual vector is quantized and transmitted to the decoder as
code vector index iQ. For signal reconstruction, also the LP
coefficients must be transmitted to the decoder. In general
this can be realized with only small additional bit rate as
shown for example in [9]. In the decoder, the transmitted
code vector index iQ is the basis for the reconstruction of
the quantized LP residual vector d̃ which is filtered by the
LP synthesis filter HS(z) = (HA(z))−1. The output of the
LP synthesis filter is the decoded signal vector x̃ and hence
the signal x̃(k) [10].
The principle of the encoder of a CELP codec is depicted in
Figure 1. The decoder is part of the encoder. According to

-
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Figure 1: Scheme SCELP Audio Codec, Encoder.

the analysis-by-synthesis principle, the LP residual vector
d̃i for each codebook index i is generated first. This excita-
tion vector is filtered by the LP synthesis filter HS(z) to ob-
tain the corresponding decoded signal vector candidates x̃i.
The error distance between the input signal and the decoded
signal, ei = x− x̃i, is determined for each vector candidate
corresponding to index i. The goal is to find the index iQ

for which the minimum mean square error is achieved:

iQ = arg min
i
{Di =‖ ei ‖

2= (x − x̃i) · (x− x̃i)
T }. (1)

The error weighting filter W (z) controls the spectral
shape of the quantization noise inherent to the decoded sig-
nal for perceptual masking of the quantization noise. The
analysis-by-synthesis vector search can be exhaustive for a
large vector codebook.

2.1. Spherical Vector Codebook

In the SCELP audio codec, vector quantization is applied in
a gain-shape approach to encode the LP residual. Each LP

residual vector d is decomposed into a radius for the gain
and a vector on the surface of a unit sphere for the shape
component. While the radius R is quantized by means of
logarithmic scalar quantization, the valid code vectors for
the quantization of the shape component are based on the
Apple Peeling code construction rule. This rule was de-
scribed and demonstrated for the special case of a 3-dimen-
sional sphere in [5]. The design target of the Apple Peeling
code is to place all codebook vectors on the surface of a unit
sphere as uniformly as possible.
The decoder in CELP coding in general is not very com-
plex. For a low computational encoding complexity, the
analysis-by-synthesis approach in Figure 1 was modified
in the SCELP encoder as described in [5]. The result is a
low complexity vector search framework. Additionally, the
technologies called Pre-Selection and Candidate-Exclusion,
combined with an efficient metric computation, enable a
very efficient code vector search. Furthermore the repre-
sentation of the Apple Peeling code vectors as coding trees
was explained in [6] for the sake of highly efficient encod-
ing and decoding.

3. WARPED LINEAR PREDICTION

The principle and properties of warped linear prediction are
discussed in [7]. In this contribution only those aspects that
are relevant for the analysis-by-synthesis vector search of
the SCELP will be briefly presented.
In conventional linear prediction the approximation of the
spectral envelope of a signal is based on a uniform reso-
lution of the frequency scale. Considering the perceptual
properties of human hearing, a uniform resolution is known
to be inferior compared to a non-uniform resolution of the
frequency scale. For this purpose, a non-uniform resolution
of the frequency scale is achieved by applying WLP. Con-
sidering the z-transform of a signal, this can be realized by
replacing all unit delay elements by an allpass filter AP (z),

z−1 → AP (z) =
z−1 − λ

1− λ · z−1
| λ |< 1; λ ∈ R (2)

For positive values of warping constant λ, the spectral res-
olution is increased for lower and decreased for higher fre-
quencies compared to conventional LP.

3.1. Warped LP Analysis

In the SCELP codec the LP analysis is based on the auto cor-
relation method, as for example described in [10]. In [7], it
was shown that for the warped LP analysis, in the auto cor-
relation method all unit delay elements must be replaced by
the first order allpass filter AP (z) according to (2). Hence
the warped auto correlation coefficients ϕw

x,x(0) · · ·ϕw
x,x(N)

are determined as demonstrated for the first three coeffi-
cients in Figure 2. Warped auto correlation coefficients can
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be transformed into warped LP coefficients aw
1 · · · a

w
N by

means of the Levinson Durbin algorithm as in conventional
LP.
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Figure 2: Warped LP Analysis.

3.2. LP Analysis/Synthesis filter

For the warped LP analysis and synthesis filter, all unit de-
lay elements of the conventional LP analysis/synthesis filter
are replaced by allpass filters AP (z):

Hw
A (z) = Hw

A (AP (z)) = 1+
N

∑

i=1

aw
i ·AP (z)i = (Hw

S (z))−1.

(3)
The filter coefficients aw

i are calculated according to Section
3.1.

3.3. Error Weighting Filter

The SCELP audio codec employs an error weighting filter
as proposed in [11]. In conventional linear prediction this
error weighting filter can be calculated from the LP analysis
filter:

W (z) =
HA(z/γ2)

HA(z/γ1)
. (4)

The coefficients γ1 and γ2 are within the range of
0 ≤ γ1 ≤ γ2 ≤ 1.0 and control the degree of noise shap-
ing. With the application of the error weighting filter, the
quantization noise inherent to the decoded output signal is
spectrally shaped according to the system function of the
inverse of the error weighting filter, (W (z))−1.
Considering WLP, all unit delay elements in equation (4)
must be replaced by AP (z) in the warped error weighting
filter:

W w(z) =
Hw

A (AP (z) · γ2)

Hw
A (AP (z) · γ1)

. (5)

4. WLP IN THE SCELP CODEC

The properties of the warped linear prediction prohibit a
straight forward incorporation into the SCELP audio codec.
Therefore the following modifications must be considered
first.

4.1. Zero-Delay Path in Feedback Loop

A zero-delay path in the feedback loop makes the imple-
mentation of the LP synthesis filter according to equation
(3) impractical. In contrast to the implementation of the
warped LP synthesis filter in [7], in this contribution [12]
the substitution of

C(z) = AP (z) + λ (6)

is applied to the first allpass filter in the allpass chain of the
warped LP synthesis filter to remove the zero-delay path.
The resulting filter structure is employed for warped LP
analysis and synthesis filter as depicted in Figure 3, and also
for the error weighting filter (5).
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Figure 3: Modified Structure for Warped LP Filters.

As a consequence of the applied substitution, modified filter
coefficients a′

w
0 · · · a

′w
N are used in the new LP analysis and

synthesis filter structure. These can be calculated from the
original coefficients aw

0 · · · a
w
N recursively as

a′
w

N = aw
N

a′
w

i = aw
i − λ · a′

w

i+1; i = N − 1, · · · 0; aw
0 = 1.0(7)

4.2. Zero-Mean Property

Decorrelation of an input signal without any additional am-
plification is connected to the well-known zero-mean prop-
erty in conventional LP [13]. WLP does not provide this
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property. It can be shown, however, that the WLP filters
have zero-mean property if the modified filter coefficients
a′

w
i (7) are normalized according to

a′′
w

i = a′
w

i /a′
w

0 i = N, · · · , 0. (8)

Considering Figure 3, the filter coefficients a′
w
i must be re-

placed by the normalized coefficients a′′w
i , with the first co-

efficient resulting to a′′
w
0 = 1.0.

4.3. Spectral Tilt Compensation

Due to the non uniform resolution of the frequency scale
in warped signal processing, the warped LP residual signal
is not perfectly flat but contains a spectral tilt [14]. This
spectral tilt inherent to the LP residual must be compen-
sated prior to quantization to achieve the highest quantiza-
tion SNR in closed-loop LP VQ. For this purpose the filters
according to (3), in the structure as depicted in Figure 3, em-
ploying the normalized coefficients a′′w

i (8), are operated in
the cascade with the tilt compensation filter

Hw
t (z) = 1− λ · z−1 (9)

to form the overall LP analysis/synthesis filter 1

Hw,t
A (z) = Hw

A (z) ·Hw
t (z) = (Hw,t

S (z))−1. (10)

4.4. SCELP Low Complexity Vector Search

Considering the analysis-by-synthesis principle, a low com-
plexity vector search procedure is employed in the SCELP
codec. It enables to search the large spherical vector code-
book in a very efficient way to achieve the low computa-
tional complexity of the codec. The principle was intro-
duced in [5] and is depicted in Figure 4.
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-
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1No tilt compensation is required for the error weighting filter because
the same warping factor is used for numerator and denominator part.

Considering Figure 4, those functional blocks which must
be adapted for the application of WLP will be identified in
the following:
The basis for an efficient vector search in the SCELP is the
determination of signal d0 prior to the actual analysis-by-
synthesis vector search procedure. In order to determine this
signal, the filter ringing signal, marked by the label A, must
be obtained first. Latter is the filter output resulting from the
history related to previously quantized signal frames. Be-
fore a new signal input vector x is quantized, this history
is stored as the filter states S0. In order to get the vector
related to the filter ringing, the filter Hw,t

W (z) is fed with a
zero input signal vector 0 of length LV . For the W-SCELP,
this filter is identified as the cascade of the warped LP syn-
thesis filter according to (10) and the error weighting filter
according to (5):

Hw,t
W (z) = Hw,t

S (z) ·W w(z). (11)

In order to obtain signal vector d0, the filter ringing signal
vector must be transformed into the residual signal domain.
This is done in Figure 4 by means of convolution, marked
as the block hw,t

W

′
at position B. hw,t

W

′
is identified as the

truncated impulse response of the inverse of filter Hw,t
W (z)

(11):

hw,t
W

′
=

[

hw,t
W,0

′
· · ·hw,t

W,(LV −1)

′
]

; hw,t
W,k

′
c s(Hw,t

W (z))−1

(12)
The convolved filter ringing is added to the warped LP resid-
ual d. The LP residual d is obtained by filtering x in the
warped LP analysis filter Hw,t

A (z), position C. The result-
ing signal vector d0, position D, is analyzed to determine
the corresponding radius R which is quantized as R̃.
In the analysis-by-synthesis vector search procedure, code
vectors d̃i are generated by multiplying the spherical shape-
component vector candidates with the quantized radius R̃.
Considering the metric (1) to find the optimal excitation
vector d̃iQ , the unquantized and the quantized residual vec-
tor candidate, d and d̃i, both must be transformed from the
LP residual into the signal domain. For this purpose, the
two blocks hw,t

W , position E, represent the transform for both
signals by means of convolution with the truncated impulse
response of filter Hw,t

W (z) (11):

hw,t
W =

[

hw,t
W,0 · · ·h

w,t

W,(LV −1)

]

; hw,t
W,k

c sHw,t
W (z) (13)

Now that all functional blocks, which were introduced for
the SCELP codec, have been identified also for the W-SCELP
codec, the principles of Pre-Selection, the efficient metric
computation and the Candidate-Exclusion explained in [5]
for highly efficient encoding can be applied also in the W-
SCELP.
With the determination of quantized LP residual vector d̃iQ ,
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the differential signal d − d̃iQ must be processed by filter
Hw

W (z) to finally determine the update for the filter states
S0 restored for the quantization of the next signal frame.

4.5. Complexity

The computational complexity of the warped LP analysis,
synthesis and error weighting filter in the W-SCELP codec
is higher than that of the same filters realized for conven-
tional LP in the SCELP codec. The biggest part of the over-
all complexity of the SCELP codec, however, is spent on the
analysis-by-synthesis vector search. Since the W-SCELP
benefits from the same principles targeting low complex-
ity encoding as the SCELP, the overall complexity is only
marginally increased. The complexity of the encoder of the
conventional SCELP codec was estimated as 20-25 WMOPS
in [5], that of the encoder of the W-SCELP codec as 23-28
WMOPS. The decoder of the W-SCELP codec has an esti-
mated complexity of 2-3 WMOPS.

5. RESULTS

For the comparison of the achieved quality of the W-SCELP
and the SCELP codec, both codecs have been configured
identically for a sample rate of fs = 16 kHz. The result-
ing overall data rate is approximately 48 kbit/sec, and the
noise shaping coefficients have been set to γ1 = 0.6 and
γ2 = 0.94. The order of the linear prediction in both cases
is N = 10 and the algorithmic delay LLP =̂9 ms. For the
W-SCELP codec, the highest performance has been deter-
mined for a warping factor λ = 0.46 in informal listening
tests.
Comparing the prediction gain in W-SCELP and SCELP as
a measure of signal decorrelation, WLP provides only an
insignificantly higher value. Considering perceptual mask-
ing of the quantization noise, it was observed in informal
listening tests that the higher spectral resolution of WLP for
lower frequencies provides significant benefits. Especially
for audio signals with a sparse spectrum, for example the
sound of a flute, WLP provides clearly better perceptual re-
sults than conventional LP.
Considering a formal assessment of the quality, speech was
processed by the W-SCELP and the SCELP codec. The de-
coder output was rated with the WB-PESQ measure [15]
which is widely used in the speech coding community. As
result, the W-SCELP outperformed the SCELP by 0.2 on
the MOS scale. Comparable results may also be obtained
using the PEAQ quality measure [16].
For a comparison of the W-SCELP codec with a standard-
ized audio codec, the same speech signal was also processed
by the ITU-T G.722 low delay audio codec at 48, 56 and 64
kbit/sec. This reference codec was chosen because of its al-
gorithmic delay in the magnitude of that of the W-SCELP

codec (below 10 ms)2. The result of the formal comparison
of the new codec with the G.722 reference codec is listed in
Table 1 in the order of descending perceptual quality. The

Codec
G.722

mode 1
W-SCELP

G.722
mode 2

G.722
mode 3

Data rate 64
kBit
sec 48

kBit
sec 56

kBit
sec 48

kBit
sec

WB-PESQ
(MOS-LQO)

4.47 4.4 4.39 4.02

Table 1: Results Formal Quality Assessment.

performance of the G.722 codecs was rated with 4.02, 4.39
and 4.47 MOS for the three codec modes respectively. The
W-SCELP at a data rate of roughly 48 kbit/sec reached a
value of 4.4 MOS. Considering this result, the quality of the
W-SCELP codec at 48 kbit/sec can be classified as slightly
better than that of the G.722 at 56 kbit/sec.

6. CONCLUSION

In this contribution the principle of warped signal process-
ing was incorporated into the new SCELP low delay au-
dio codec to form the W-SCELP codec. While the overall
complexity of the W-SCELP is only insignificantly higher
than that of the SCELP codec, the achievable audio qual-
ity is clearly better. In a comparison with a standardized
codec that has a similar algorithmic delay, the W-SCELP
at a data rate of 48 kbit/sec outperforms the ITU-T G.722
audio codec at a data rate of 56 kbit/sec.
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ABSTRACT
In this paper, we present a frame based approach for transient
detection and encoding of audio signals. The transient detection
procedure, as presented here, uses linear prediction within a sig-
nal frame followed by an envelope estimation to build an adaptive
threshold. Detected transients will automatically be separated and
the gaps left by the removed transient are filled with samples from
forward and backward extrapolation. To encode detected tran-
sients, dyadic approximation approaches are discussed. Results
of the application to different audio signals are also presented.

1. INTRODUCTION

An audio signal is generally composed of two parts: a determin-
istic and a stochastic part. The deterministic part of an audio sig-
nal consists of sinusoids, while noise and transients constitute the
stochastic part. Although some models as proposed in [1, 2, 3]
represent well sinusoids and noise, they really fail for transients.
Since transients do not fit well into sinusoids and noise models,
they therefore need their own model. In order to build a three
components approach (transients + sinusoids + noise) of an audio
signal, we need to split the stochastic part into two parts.
In [1] a model for sinusoids with time-varying amplitudes, phases
and harmonic frequencies has been presented. In [2], the sinu-
soidal model (SM) proposed in [1] was extended with a noise
model based on residual approximation. The Spectral Modelling
Synthesis (SMS) presented in [2] gives good results when applied
to audio signals only composed of sinusoids and noise. But once
transients occur in an audio signal, they will then appear in the
residual signal. This will thus raise the spectral envelope of the
noise during a residual approximation, yielding a synthesized sig-
nal with artefacts. To avoid this, a pre-processing step is required
to first separate the transient’s contribution.
In [4, 5, 6, 7, 8] and many other recent publications, transient rep-
resentation is investigated. The methods proposed can be classified
into three categories: time domain approach, frequency domain
approach and hybrid approach [9]. In this paper, we address the
problem of a transient representation under the hybrid approach.
We first perform detection in time domain based upon linear pre-
diction followed by encoding in frequency domain using dyadic
approximation. In our three components approach (Fig. 1), si-
nusoids and noise are represented using techniques proposed in
[2, 10].
In Section 2, we will present our transient detection approach, Sec-
tion 3 will introduce the transient encoding approaches, Section 4
will show some simulation results, we will finally close with a con-
clusion and outlook in Section 5.

2. TRANSIENT DETECTION

Since transients are poorly represented by sinusoids or noise model,
it is preferable to represent them separately and leave sinusoids
and noise to their own models. We propose, in Fig. 1, to first
detect and separate transients within a signal frame. Transients
represented as filtered noise will certainly lose their sharpness and
sound bad. In Fig. 2 the pre-processing steps for the transient
detection are detailed. Transients can be classified into two cate-
gories: visible and hidden transients. The main difficulty does not
consist of detecting visible transients, but those of small energy. A
good transient detector should thus reveal the presence of hidden
transients and then emphasize them. In order to successfully de-
tect both kinds of transients, we need to apply a filter which should
absorb most of the audio signals (sinusoids and noise) energy leav-
ing transients unchanged. Since sudden changes in audio signals,
like transients, remain unpredictable, the prediction error will then
accentuate transients in the audio signal.

Figure 1: Transients + Sinusoids + Noise approach. TD/TS (Tran-
sient Detection / Transient Separation), TE (Transient Encoding),
SM (Sinusoidal Modelling), RA (Residual approximation). s(n):
sinusoids, t(n): transients, r(n): noise.

2.1. Linear Prediction

Assume that signal sample x(n) of an audio signal is to be esti-
mated combining p previous samples. The estimated sample x̂(n)
will then be obtained using a finite impulse response (FIR) filter
given by

x̂(n) =

p∑
i=1

ai · x(n− i), (1)

where ai are the filter coefficients obtained by minimizing the
square of the prediction error

e(n) = x(n)− x̂(n) = x(n)−
p∑

i=1

ai · x(n− i) (2)
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Figure 2: TD/TS: Transient Detection & Separation approach.
t1(n): detected transients, r1(n): first residual.

within a signal frame. Transforming Eq. (2) into the Z-domain,
we obtain the following filter transfer function

A(z) =
E(z)

X(z)
= 1− P (z) = 1−

p∑
i=1

ai · z−i. (3)

The filter A(z) is designed so that all its zeros are inside the unit
circle |z| = 1 (excluding the unit circle itself). If we need to
recover the filtered input signal x(n) from the error signal e(n),
we then have to apply the inverse (synthesis) filter

H(z) =
Y (z)

E(z)
=

1

1− P (z)
=

1

A(z)
. (4)

on e(n).

2.2. Envelope estimation

The simple way to estimate the temporal envelope of a signal x(n)
is to take the absolute value of x(n) and apply smoothing using
low-pass filter or peak detector. In our model (see Fig. 2), we
choose a common and very efficient technique based on the Hilbert
Transform (a 90 degree phase shifter) to estimate the envelope of
the prediction error signal. With that technique the envelope of a
signal x(n) is computed using the corresponding analytic signal

x̃(n) = x(n) + j · x̂(n), (5)

where x̂(n) is the Hilbert transform of x(n). The envelope of the
original signal is then simply the modulus of the analytic signal
given by

xenv(n) = |x̃(n)| =
√

x2(n) + x̂2(n). (6)

Finally, the envelope is smoothed using a first order low-pass filter.

2.3. The proposed method

The main steps for transient detection as depicted in Fig. 2 can
be described as follows. An input signal x(n) is decomposed into
short frames of 1024 samples with an overlap of 512 samples. Lin-
ear prediction is then applied in each frame to reveal the transients
locations. A prediction filter with model order p = 8 is sufficient
for our application. A suitable envelope estimator is applied to the
prediction error to build the threshold. The threshold function will
be kept constant in transient area and follows the error signal else-
where. This is done by comparing the actual value of the envelope

with the weighted mean value of the envelope from the previous
frame. The weighting factor is obtained by dividing the maximum
value with the mean value of the envelope in the current frame. If
the value of the envelope is higher than the weighted mean value,
the threshold function is kept constant equal to the non-weighted
mean value of the envelope from the previous frame. A binary
sequence is then set to one at those indexes where a transient is
occurring in the current frame (see Fig. 3 - 4 lower right). In order
to avoid multiple detections of the same transient in the overlap-
ping zone, a strategy has been developed. That is if a transient is
fully embedded in a frame, a detection flag is triggered. If a fully
embedded transient spans over both half-frame, the index of the
detected transient corresponding to the second half-frame are used
in the next frame for comparison. If a transient spans over suc-
cessive frames, a detection flag is not triggered since the transient
data over these frames needs to be assembled. The gaps left when
detected transients are removed, are filled with samples using for-
ward and backward extrapolation as presented in [11]. A three
components approach is built, sinusoids and noise are thus left to
their respective models, while transients are encoded separately.

Figure 3: Transients detection in Castanets sound file.

Figure 4: Transients detection in ABBA sound file.

DAFX-2

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

298 DAFX-07



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

2.4. Signal extrapolation

In [11, 12] extrapolation and signal restoration of damaged or re-
moved samples have been deeply investigated. The underlying
idea is here the same like in linear prediction, with the only differ-
ence that extrapolation needs forward and backward predictor. In
our approach the samples to be extrapolated are those correspond-
ing to the removed transients samples (N2). The procedure for the
extrapolation of the missing samples is depicted in Fig. 5, while
the results are shown in Fig. 6. The main steps of the extrapolation
procedure can be explained as follow:

• Determine the number N2 of missing samples x2 within a
frame.

• Compare the number N1 and N3 of known signal samples
(x1 and x3 ) with the number N2 of missing samples x2.

• For forward extrapolation: if there are fewer known sig-
nal samples than missing samples (N1 < N2), take known
samples from previous frame.

• For backward extrapolation: if there are fewer known sig-
nal samples than missing samples (N3 < N2), take known
samples from next frame. In this case backward extrapola-
tion is done in the next frame.

• Apply autoregressive (AR) model of order p ≤ N2 to cal-
culate the filter coefficients: aif and aib.

• Initialize the filter with p past known samples just before
the section to be extrapolated.

• Generate a vector of zeros with length N2, feed it together
with zif or zib as input to the extrapolation filters.

• The output of the two filters are the N2 extrapolated sam-
ples ( xef and xeb ).

• Finally sum the forward extrapolated samples and back-
ward extrapolated samples weighted with an appropriate
window function (see Fig. 6).

Figure 5: Extrapolation procedure: autoregressive parameter esti-
mation (AR), Initial Conditions for filter implementation (IC), filter
(f(n)), appropriate window function (wf (n), wb(n)).

Figure 6: Transients detection in Castanets sound file.

3. TRANSIENT ENCODING

We have already stated that transients do not fit well into sinusoids
and noise models. Since transients need a very good time resolu-
tion, while sinusoids require a very good frequency resolution, a
transformation which works with variable resolution is therefore
needed. Methods based on dyadic approximation such us multi-
scale approximation or octave splitting, as presented in Fig. 7,
address the problem of multiresolution. An important dyadic ap-
proximation method, which has gained increasing attention during
the last years, is the discrete wavelet transform (DWT). In [5, 6]
transients detection and encoding based on wavelet transform and
Hidden Markov tree are presented, while in [13, 14] methods based
on iterated filter bank are used. Let |X(f)| be the magnitude spec-
trum of a signal x(n), using dyadic approximation, the spectrum
of x(n) can be first split into two equal parts: low-pass band and
high-pass band. These two bands can again be decomposed into

Figure 7: DWT in frequency domain upper, a 3 level filter bank
lower.

subbands until we reach the number of bands needed for the ap-
plication (see Fig. 7). Since discrete wavelet transform (DWT) is
an implementation of wavelet transforms as an iterated filter bank,
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the LP and HP, within one level (see Fig. 7) will represent respec-
tively the scaling filter and the wavelet filter. The signal x(n) is
simultaneously decomposed using low-pass filter g and high-pass
filter h (see Fig. 7 lower) yielding approximation coefficients

Aj(k) =

Nx+NF−1∑
i=1

x(i) · g(2k − i) = (x ∗ g)(n) ↓ 2, (7)

and detail coefficients

Dj(k) =

Nx+NF−1∑
i=1

x(i) · h(2k − i) = (x ∗ h)(n) ↓ 2, (8)

where j is the index of the considered subband, while Nx and NF

are respectively the length of the input signal x(n) and the length
of the impulse response g or h (see Fig. 8). The filters g and h are
related to each other and must satisfy the quadrature mirror filter
relationship.

Figure 8: A 3 level Wavelet decomposition, decomposition filter
f(n) (g(n) , h(n)), input signal x(n), detail coefficients (Dj(k)) and
approximation coefficients (Aj(k)).

In this section, we present our transient encoding approach which
performs quantization of the prediction error from discrete cosine
transform (DCT) applied on DWT coefficients. We will compare
various combinations of dyadic approximations applied to the de-
tected transient. The first method will combine discrete wavelet
transform (DWT) and coefficients thresholding within each band.
The second method is our proposed approach. The third method
is a modified version of the second method, where the discrete co-
sine transform is not applied. The last method deals with quantiza-
tion of the prediction error from DCT transformed transient signal.
Regarding fame, minimum of smoothness and reduced number of
coefficients, we have chosen Daubechies wavelets with 4 vanish-
ing moments (zero moments) to decompose and reconstruct the
transients.

3.1. Method I - DWT / Thresholding

This method, as depicted in Fig. 9, deals with discrete wavelet
transform (DWT), coefficient thresholding within a subband and
inverse discrete wavelet transform (IDWT) for signal reconstruc-
tion. The aim of this method is to investigate how far we can re-
duce the number of coefficients in each subband, but still be able
to reconstruct the decomposed signal with the few retained co-
efficients after thresholding. We have seen from the decomposi-
tion explained with Fig. 8, that the approximation coefficients are
again split into two parts yielding new detail coefficients and new
approximation coefficients of the corresponding subband. Regard-
ing importance of the approximation coefficients in the last sub-
band, we decide not to threshold A3(k). In the analysis part, a

detected transient will first be discrete wavelet transformed using
Daubechies wavelets (db4: here 4 is for the order or the vanishing
moments) with 3 levels. Applying thresholding (Thresh) based on
Root Mean Square (RMS)

RMS =

√√√√ 1

N

N∑
k=1

D2
j (k), (9)

in each band, except the low-pass band (A3) (see Fig. 7), we have
considerably reduced the number of coefficients to be used for re-
construction. To threshold the wavelets coefficients we have com-

Figure 9: Method I: Discrete Wavelet Transform (DWT), Thresh-
olding (Thresh) and Inverse Discrete Wavelet Transform (IDWT).

pared three functions for wavelets coefficients thresholding. The
hard-thresholding

fH(Dj) =

{
Dj if |Dj | ≥ λ,
0 elsewhere.

(10)

retains all coefficients that are greater than the chosen threshold
value λ (RMS) and sets to zero others. The soft-thresholding

fS(Dj) =


Dj − λ if Dj ≥ λ,
0 if |Dj | < λ

Dj + λ if Dj ≤ −λ

(11)

is shrinkage function, since it shrinks the coefficients by λ to-
wards zero. From Fig. 10 we can see that the hard-thresholding
(blue curve) is discontinuous at |Dj | = λ, while soft-thresholding
(green curve) is continuous at |Dj | = λ but modifies the value of
the retained coefficients. In [15] a custom thresholding function

fC(x) =


Dj − sgn(Dj)(1− α)λ if |Dj | ≥ λ,
0 if |Dj | ≤ γ

αλ(
|Dj |−γ

λ−γ
)2(α− 3)(

|Dj |−γ

λ−γ
) + 4− α elsewhere

(12)
where 0 < γ < λ and 0 ≤ α ≤ 1 is proposed. This function
is a linear combination of hard-thresholding and soft-thresholding,
since it combines the advantages of both functions. In Fig. 10,
we can recognize that custom-thresholding is equivalent to hard-
thresholding with smooth transition around the threshold. From
Eq. (12) we can easily go back to Eq. (11) by taking α = 0 and to
Eq. (10) by taking α = 1 and γ = λ

2
. For this method, we have

finally applied the custom-thresholding function.
The decomposition in subbands is shown in Fig. 9. Except the
lower band (A3), the thresholding concerns here only the upper
bands. The results of the reconstruction are shown in Fig. 16.
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Figure 10: Coefficients Thresholding: Hard-Thresholding (Blue),
Soft-Thresholding (Green) and Custom-Thresholding (Red).

3.2. Method II - DWT / DCT / LPC / Q

In this method, as depicted in Fig. 11, we present our transient
encoding approach. To motivate this choice, we compare this
method with various combinations of dyadic approximations ap-
plied to the detected transient. The discrete wavelet transform
(DWT) followed respectively by discrete cosine transform (DCT),
linear prediction coding (LPC) and quantization (Q) are applied on
the detected transient. In the analysis part (see Fig. 11 upper), the

Figure 11: Method II: Discrete Wavelet Transform (DWT), Dis-
crete Cosine Transform (DCT), Linear Prediction Coding (LPC)
and Quantization (Q).

DWT coefficients are transformed with the discrete cosine trans-
form (DCT-II) yielding

DCj (k) = β(k)

N∑
n=1

Dj(n) cos(
(2n + 1)kπ

2N
) (13)

for the detail coefficients and

ACj (k) = β(k)

N∑
n=1

Aj(n) cos(
(2n + 1)kπ

2N
) (14)

for the approximation coefficients, with

β(k) =


√

1
N

if k = 1,√
2
N

for k = 2, .., N .
(15)

where N is the length of the coefficient array in the considered
subband and j is the index of the corresponding subband. On the
DCT transformed coefficients linear prediction coding (LPC) is
then performed. A prediction filter with model order p = 8 is
used for this method. In each subband the prediction error is first
normalized (Si) before quantization is applied on it. The original
16 bit quantization word-length is here reduced to only 4 bit. In
the synthesis stage, the inverse of the scaling factor (1/Si) is first
multiplied with the quantized signal before LPC synthesis filter
is applied on it. Assuming that the analysis filter A(z) used in
the LPC part is the one designed with Eq. (3), we can expect
perfect reconstruction of the coefficients using the inverse filter
H(z) (Eq. (4)). The inverse discrete cosine transform (IDCT) and
inverse discrete wavelet transform (IDWT) are performed for final
reconstruction.

3.3. Method III - DWT / LPC / Q

This method, as presented in Fig. 12, is a modified version of
the previous method. In the analysis part, linear prediction cod-

Figure 12: Method III: Discrete Wavelet Transform (DWT), Linear
Prediction Coding (LPC) and Quantization (Q).

ing (LPC) is directly applied to the coefficients from the discrete
wavelet transform (DWT). We finally quantize the prediction error
using the same word-length like in method II. A prediction filter
with model order p = 8 is again used here. The prediction error
is normalized in each subband before quantization is applied. The
normalized prediction error is then 4 bit quantized. In the synthesis
stage, the inverse of the scaling factor (1/Si) is multiplied with the
quantized signal before LPC synthesis filter is applied on it. We
finally reconstruct the signal the inverse discrete wavelet transform
(IDWT).

3.4. Method IV - DCT / LPC / Q

The last method, as shown in Fig. 13, deals with the discrete co-
sine transform (DCT) directly applied to the detected transient sig-
nal. The DCT transformed signal is then linear predicted yielding
a prediction error which will be finally quantized. The prediction
error is first normalized in each subband before quantization is ap-
plied on it. The original 16 bit quantization word-length is again
here reduced to only 4 bit. In the synthesis stage, the inverse of
the scaling factor is first multiplied with the 4 bit quantized signal
before LPC synthesis filter is applied on it. We finally reconstruct
the signal using the inverse discrete cosine transform (IDCT).
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Figure 13: Method IV: Discrete cosine Transform (DCT), Linear
Prediction Coding (LPC) and Quantization (Q).

4. SIMULATION RESULTS

We have applied the four methods to detected transient signal and
have calculated the L2-norm

l =

√√√√ N∑
n=1

r2(n) (16)

of the residual signal from each method. In [16], a similar ap-
proach has been used for comparison of reconstruction results in
image processing. We should point out that this way of charac-
terizing the residual signal is purely numerical and does not take
perceptual hearing considerations into account. Although there
might be a correlation between numerical error and sound qual-
ity. In Fig. 15 results obtained when applying only the Spectral
modelling Synthesis (SMS) to the castanet signal are shown. The
original signal x(n), the reconstructed signal y(n) and the resid-
ual signal rx−y(n) with the L2-norm are presented. From Fig. 16
up to Fig. 19, results obtained with approaches depicted in Fig.
1 applied to the same castanet samples are shown. We can eas-
ily recognize that the reconstructed signal y(n) is very close the
original signal x(n) for all the methods, with small differences
regarding their L2-norm. We can also notice that the three com-
ponents approach really outperforms the Spectral modelling Syn-
thesis (SMS) approach for this kind of signal. We have applied
the same simulation to different audio signals. For the sake of
completeness, we will show here the results obtained with glock-
enspiel samples. Fig. 20 shows results obtained when applying
only the Spectral modelling Synthesis (SMS) to the glockenspiel
signal. In Fig. 21 results obtained when applying the SMS ap-
proach combined with the second transient encoding approach to
the glockenspiel samples are presented. It is worth mentioning
that the three components approach again outperforms the Spectral
modelling Synthesis (SMS) approach regarding L2-norm. Similar
results are also obtained applying the same approaches to samples
from ABBA sound file (see Fig. 22). Improvement of the SMS ap-
proach is expected with the new promising method proposed [17].
This method analyzes the noise without any prior knowledge of the
sinusoids model as presented in [2]. For all the methods, where
linear prediction coding (LPC) is used, model order p = 8 has
been applied. The original 16 bit quantization word-length of the
input signal is reduced to only 4 bit for these methods. Regarding
L2-norm results, we can notice that the three first methods remain
close to each other. The L2-norm of residual signal obtained with
method IV is bigger than the one obtained with other three meth-
ods. In Table 1 and Fig. 14, results obtained during listening test
with headphones are presented. The subjects recruited for this test
are all working in our lab. All the subjects assigned a grade of 100

to the hidden reference signal. While Subject F is the only one who
graded the proposed method lower than the other methods, subject
I even graded method III higher than others. Subject C did not
perceive any difference between all the methods. But nevertheless
method II is graded the best and method IV is scored lowest by all
the subjects. With results presented in Table 1 and the L2-norm
of the residual signal, a correlation between numerical error and
sound quality is somehow observed.

Subject Method.I Method.II Method.III Method.IV
A 80 80 80 40
B 70 80 70 80
C 90 90 90 90
D 75 90 80 60
E 90 93 90 90
F 80 60 60 80
G 78 88 80 75
H 90 90 80 80
I 85 95 98 80
J 92 90 85 90
K 85 90 80 80
L 75 90 85 80
µ 82.5 86.33 81.5 77.08
σ 6.91 9.02 9.34 13.61
Interval ± 4.59 ± 5.99 ± 6.20 ± 9.03

Table 1: Results from listening test using headphones. µ is the
arithmetic average and σ is the standard deviation. Interval: 95 %
confidence interval.

Figure 14: Results from listening test using headphones. Bars de-
note 95 % confidence interval

5. CONCLUSION

We have presented a method for transient detection based upon
linear prediction combined with envelope estimation. This method
succeeds in detecting transients in various kinds of audio signals.
We have shown several alternatives for transient encoding using
dyadic approximations. Regarding the L2-Norm of the residual
signal, the method based on the discrete wavelet transform (DWT)

DAFX-6

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

302 DAFX-07



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

Figure 15: Original signal x(n) (Castanets), SMS synthesized sig-
nal y(n), residual signal rx−y(n).

Figure 16: Original signal x(n) (Castanets), SMS + Method I y(n),
residual signal rx−y(n).

followed by the discrete cosine transform (DCT), Linear Predic-
tion Coding (LPC) and 4 bit quantization remains close to method
I and III for all the tested signals. Subjective listening tests com-
bined with the L2-Norm of the residual signal, indicate exactly that
method II outperforms others. For future work, the same listening
tests will be repeated in modified order and with many different
audio files to observe if the trend remains the same.
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ABSTRACT

Block based physical modeling requires to provide a libraryof
modeling blocks for standard components of real or virtual mu-
sical instruments. Complex synthesis models are built by connect-
ing standard components in a physically meaningful way. These
connections are investigated for modeling a resonating structure as
a distributed parameter system. The dependence of a resonator’s
spectral structure on the termination of its ports is analyzed. It is
shown that the boundary conditions of a distributed parameter sys-
tem can be adjusted by proper termination only. Examples show
the corresponding variation of the resonator’s spectral structure in
response to variations of the external termination.

1. INTRODUCTION

1.1. Block Based Physical Modeling

There is a rich set of tools available for digital sound synthesis:
wavetable synthesis, frequency modulation (FM), additiveand sub-
tractive synthesis, granular and concatenative synthesis, and vari-
ous flavors of physical modeling. Rather than generating more
and more new synthesis methods, recent advances have focused
on the combination of different synthesis methods. In the context
of physical modeling, a methodology for the block-wise synthesis
of virtual musical instruments has been developed under thename
of block based physical modeling.

Block based modeling separates the tasks ofcomponent de-
sign andmodel building. Component design means that various
components of real or virtual instruments like strings, membranes,
air columns, piano hammers, mallets, etc. are modeled and im-
plemented independently of each other. The resulting component
models (theblocks) are stored in a block library for later use.
Model building means to built a virtual instrument from its com-
ponents by selecting the appropriate blocks from the library and to
connect them in a meaningful way. An overview on methods and
synthesis tools for block based modeling can be found in [1] and
the literature cited there; a detailed account of the fundamentals is
given in [2].

1.2. Signals and Ports

This procedure is well known from signal based simulation envi-
ronments like SIMULINK or programming languages for audio
signals like Pure Data (PD). The block structure in these imple-
mentations resembles signal flow graphs known from systems and
control theory. Blocks for processing signals have well defined
inputs and outputs. The connection of the output of one blockto
the input of the next one does not change the values of the output

signal. This property is easy to implement in software but itis also
shared by specialized hardware like analog modular synthesizers.
In detail, electronic circuitry with low output impedance and high
input impedance ensures that the output signal is not affected by
connections to a limited number of inputs.

The situation is different when the blocks model physical com-
ponents. At first, the related quantities (e.g. pressure andparticle
velocity in a pipe) are not per se given as input or output signals.
Furthermore, connecting two blocks will affect all relatedquanti-
ties. This situation is usually described by so called ports, a com-
bination of two or more variables like pressure and flow, force and
velocity, or voltage and current. Connecting two physical model-
ing blocks means to connect the respective port variables, which
in turn will change the behavior of both blocks.

1.3. Boundary Conditions

Designing blocks for physical modeling frequently requires to con-
sider distributed parameter systems like strings, membranes, and
air columns. Their implementation is based on a mathematical
description in the form of partial differential equations (PDEs)
and their respective boundary conditions. In musical instruments,
boundary conditions are given e.g. by the fixing of a string, amem-
brane, or a plate, or by the termination of an air column. The
type of boundary conditions determines the sound of a resonat-
ing structure, as is well known from string, brass, and woodwind
instruments or from organ pipes.

Boundary conditions of distributed parameter systems are
closely related to the port variables of their block implementa-
tions. In short, the port variables are the values of the block model
at the interface to the outside world, i.e. to other block models.
Conditions on the port variables imposed by block connections or
terminations constitute the boundary conditions for the distributed
parameter block. Examples are the excitation of a string, which
is zero at a fixed end or the pressure in a pipe which is zero at an
open end.

The mathematical literature classifies boundary conditions of
the first, second, and third kind [3, 4]. Boundary conditionsof
the first and second kind prescribe the values of port variables or
their derivatives. Boundary conditions of the third kind prescribe
relations between the port variables. These relations may be real
or complex valued and are given in terms of reflection factorsor
impedances. Methods for the investigation of resonance modes
in a one-dimensional medium with two resistive boundaries have
been compared in [5].
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1.4. Connecting Blocks

At this point, the separation of component design and model build-
ing discussed above poses a problem which is the topic of this
contribution: During component design, i.e. when a distributed
parameter model is implemented, the boundary conditions for the
use of this component for model building are not known. More-
over, a certain block has to work in a physically meaningful way
in different kinds of connections.

However mathematical rigor requires that the boundary condi-
tions are included in the definition of a distributed parameter model
in order to constitute a properly posed problem. This means that a
distributed parameter block at first has to be designed and imple-
mented for a certain set of boundary conditions and later used in
block connections which impose other boundary conditions.

This problem can also be expressed in musical terms. When
a block model of e.g. a string with fixed ends is connected with
another block, e.g. a sound board, will the spectral structure of
the block model change accordingly? Is it sufficient to provide the
correct port connections to the existing blocks or is it necessary to
redesign the string model?

This problem is discussed here for a specific case. A block
model for an air column with standard boundary conditions ister-
minated by an external component and the resulting spectralprop-
erties are investigated. The answer to the question above isgiven
by formulating the problem as a feedback structure and by analyz-
ing it in terms of basic control theory.

2. PROBLEM DESCRIPTION

This section describes the problem in general terms. Block mod-
els of distributed parameter systems are introduced, the boundary
conditions are formulated, and an example for wave propagation
is presented.

2.1. Block Models of Distributed Parameter Systems

A general distributed parameter system with one spatial dimen-
sion is shown in Fig. 1. It may represent a vibrating string, an
air column, or another type of waveguide. The spatial coordinate
is denoted byx, the model is defined within the one-dimensional
spatial regionV = [0, l] with the boundary∂V = {0; l}. For all
boundary pointsxb ∈ ∂V , i.e. xb ∈ {0; l}, the behavior is de-
termined by two physical variablesy1(xb) andy2(xb). They con-
stitute the port variables introduced above. These variables may
represent force and deflection, pressure and particle velocity, or
other pairs of across and through variables, depending on the na-
ture of the distributed system. Two of these variables are sufficient
to describe simple resonating structures. More involved models
with more than two variables can be investigated in the same way,
but they are not discussed here.

The internal behavior of the system in Fig. 1 is described in
terms of a vector partial differential equation (1). The vectory(x, t)
consists of the two variablesy1(x, t) andy2(x, t), the vectorv(x, t)
describes a possible excitation function. The matricesB1 andB2

describe the partial differential operators in detail. An example is
given in Sec. 2.3.[

B1
∂

∂x
+ B2

∂

∂t

]
y(x, t) = v(x, t) , x ∈ V (1)

0 l
x

y1(l, t)

y2(l, t)

y1(0, t)

y2(0, t)

Figure 1: Sketch of a spatially one-dimensional block model. The
boundary consists of two pointsxb ∈ {0; l}.

The port variables, i.e. the the outcome at the boundariesy(x, t)
for x = xb are given by

y(0, t) =

(
y1(0, t)
y2(0, t)

)
, y(l, t) =

(
y1(l, t)
y2(l, t)

)
. (2)

2.2. Boundary Behavior

The port variables are neither inputs nor outputs in the sense that
e.g.y1(xb) is independent ofy2(xb) and y2(xb) is determined
only by y1(xb). If the port variablesy(x, t) for x = xb are con-
nected to the port variables of another block, then their values are
determined by the interaction of both blocks.

This interaction happens instantly for continuous-time systems.
For discrete-time systems, it is necessary to ensure computability
by avoiding delay-free loops. To this end, the elements ofy(xb, t)
or combinations thereof have to be divided into input and output
variables. The formal description of this division requires to intro-
duce the normal component of the differential operator (see[2])

Bn = n1B1 + n2B2 (3)

with the normal vector

nb =

(
n1

n2

)
. (4)

This notation allows for rather general boundary conditions includ-
ing time-varying boundaries. For the consideration of boundary
conditions at time-invariant boundary points,nb has the values

nb =

( −1
0

)
for x = 0, nb =

(
1
0

)
for x = l ,

(5)

such that

Bn = ±B1 . (6)

Now the boundary inputs and boundary outputs can be defined
by introducing the boundary input operatorfb and the boundary
output operatorfo, both are two-element column vectors. They
define the input signalvb(xb) and the output signalyb(xb) at the
boundaryxb as

fH
b Bnyb(xb) = vb(xb) input, (7a)

fH
o Bnyb(xb) = yb(xb) output. (7b)

The superscriptH denotes the Hermitian vector or matrix. For real
valued boundary operators, it is equal to the transposed vector.

DAFX-2

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

306 DAFX-07



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

The boundary input operatorfb and the boundary output oper-
atorfo can be combined to a matrix representation to replace (7a,7b)
by (

fb fo
)H

Bny(xb) =

(
vb(xb)
yb(xb)

)
. (8)

This definition of input and output values is only meaningfulif
vb(xb) andyb(xb) are not identical, i.e. if

rank
{(

fb fo
)H

Bn

}
= rank {Bn} . (9)

Fig. 2 shows the relation (8) between the port variables at
x = l and the input and output signalsvb(l, t) andyb(l, t). The
assignment between the port variables and the input and output sig-
nals is defined by the boundary input operatorfb and the boundary
output operatorfo. Only the port atx = l is considered here.
Similar results hold also for the port atx = 0 with the appropiate
normal vector from (5).

y1(l, t)

y2(l, t)

vb(l, t)

yb(l, t)

(
fb fo

)H

Figure 2: Spatial one-dimensional model with a specific boundary
behavior described by equation (8).

2.3. Example: Wave Equation

As an example serves an air column with sound pressurep =
p(x, t), particle velocityv = v(x, t), mass density̺ 0, and speed
of soundc. A simple distributed parameter model is given by[

I0︸︷︷︸
B1

∂

∂x
+

(
0 −1

−1/c2 0

)
︸ ︷︷ ︸

B2

∂

∂t

] (
p

−̺0v

)
︸ ︷︷ ︸

y

=

(
0

−fe

)
︸ ︷︷ ︸

v

(10)

where the underbraces indicate the corresponding vectors and ma-
trices of the general system (1).

The normal component of the differential operator according
to (6) is given by

Bn = ±B1 = ±I0 , (11)

whereI0 denotes the identity matrix.
Meaningful boundary input and output operators have to sat-

isfy the rank condition

rank
{(

fb fo
)}

= rank {I0} = 2 (12)

If the case of hard reflecting walls on both sides (i.e. atx = 0
andx = l) is considered as boundary condition, then the parti-
cle velocity at the boundary must be zero. If (10) is regardedas
a PDE in terms of the sound pressure then these boundary condi-
tions are of the second kind (Neumann boundary conditions).This
assumption implies together with the rank condition (12)(

fb2 fo2
)

=

(
0 1
1 0

)
, (13)

and thus the following assignment between port variables and the
input and output signals(

0 1
1 0

) (
y1(l, t)
y2(l, t)

)
=

(
vb2(l, t)
yb2(l, t)

)
. (14)

The subscriptsb2 ando2 denote boundary conditions of the sec-
ond kind. The relation (14) is shown graphically in Fig. 3 by spe-
cializing the boundary operators from Fig. 2 to (13). Another type
of boundary conditions is considered in the following section.

y1(l, t)

y2(l, t)
vb2(l, t)

yb2(l, t)

Figure 3: Block model with boundary conditions of the second
kind.

3. ADJUSTABLE BOUNDARY CONDITIONS

This section describes a different kind of boundary conditions
which include adjustable parameters. If not connected to another
block, this kind of boundary conditions is equivalent to a port ter-
mination.

3.1. Boundary Conditions of the Third Kind

The assignment of boundary conditions of the second kind (14)
declares one port signal (y1(l, t)) to be the output (yb2(l, t)) and
the other port signal (y2(l, t)) to be the input (vb2(l, t)). But it
is also possible to declare a certain linear combination of the port
signals to be the output and another linear combination to bethe
input. Such an assignment corresponds to boundary conditions
of the third kind (also called Robin’s boundary conditions)and is
given by(

fb fo
)

=

(
1 g2

g−1
1 1

)
with g1 6= g2 , (15)

whereg1 andg2 are real admittances. Their physical dimensions
have to be compatible with the port variablesy1(l, t) andy2(l, t).
The rank condition (12) requiresg1 6= g2.

The input and output variablesvb3(l, t) andyb3(l, t) are as-
signed by(

1 g−1
1

g2 1

) (
y1(l, t)
y2(l, t)

)
=

(
vb3(l, t)
yb3(l, t)

)
. (16)

The subscriptsb3 ando3 denote boundary conditions of the third
kind.

Due to the definition of input and output variables by (16), the
port variablesy1(l, t) andy2(l, t) themselves are not computed in
a specific order. However, to establish a relation with boundary
conditions of the second kind, now consider arbitrarilyy1(l, t) as
an output variable of the port atx = l. To realize the boundary
block from Figure 2, one has to solve fory2(l, t) andyb3(l, t)

y2(l, t) = g1 · vb3(l, t) − g1 · y1(l, t) , (17a)

yb3(l, t) = 1 · y2(l, t) + g2 · y1(l, t) . (17b)

Fig. 4 shows the lattice structure of the corresponding signal flow
graph.
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y1(l, t)

y2(l, t)

vb3(l, t)

yb3(l, t)

g1

g2

Figure 4: Block model with boundary conditions of the third kind.

3.2. Port Termination

Here no connection to other blocks is considered and therefore the
input signalvb3(l, t) is zero and the output signalyb3(l, t) is not
required. Then the realization of boundary conditions of the third
kind simplifies to a termination of the port atx = l with boundary
conditions of the second kind (see Fig.3) by a negative admittance
g1 as shown in Fig. 5. Adjusting the coefficient−g1 changes the
character of this termination.

y1(l, t)

y2(l, t)

−g1

Figure 5: Simplified boundary conditions, the boundary input is
zero and the boundary output is not required.

3.3. Realization of Adjustable Boundary Conditions

Based on the results of Sec. 3.1 and 3.2, adjustable boundarycon-
ditions with a parameterg1 may be realized by block based physi-
cal modeling as follows:

• Design a standard block model according to Sec. 2.3 with
boundary conditions of second kind. According to Fig. 2
one port variable is the input variable and the other one is
the output variable. This block can be designed during com-
ponent design and stored in a block library for later use.

• For realization of adjustable boundary conditions during
model building, use the previously designed block and ap-
ply an external termination to its port atx = l. It consists of
a feedback of the scaled port output back to the port input.
The scaling multiplier may be any real number. According
to Fig. 4 and Fig. 5 this procedure realizes boundary condi-
tions of the third kind from an existing block model.

4. INTERPRETATION

Although the results of the previous section follow directly from
the boundary conditions from equation (17), they do not explain
the resulting change in the spectral structure of the initial block
model. This section gives an interpretation of the previousresults
based on tools from basic control theory, i.e. transfer function
formulation and feedback analysis.

4.1. Transfer Function Formulation

Now apply the procedure from Sec. 3.3 for a discrete-time block
model:

• design a discrete-time model with boundary conditions of
second kind.

• turn it into a model with boundary conditions of third kind
by termination with a suitable admittance.

H(z)

Yb2(l, z)

Vb2(l, z)

Vb3(l, z)

Yb3(l, z)

g1

g2

Figure 6: Block model with boundary conditions of third kind.

Fig. 6 shows the discrete-time version of Fig. 4.Vb2(l, z) and
Yb2(l, z) arez-transforms of discrete-time approximationsvb2[l, k]
andyb2[l, k] of their continuous counterpartsvb2(l, t) andyb2(l, t).
Corresponding relations hold forVb3(l, z) andYb3(l, z). H(z) is
the transfer function of a discrete approximation of the distributed
system with boundary conditions of the second kind with respect
to its port variables, i.e.

H(z) =
Yb2(l, z)

Vb2(l, z)
=

N(z)

D(z)
. (18)

N(z) andD(z) denote the numerator and the denominator poly-
nomial, respectively.

The form ofH(z) depends on the kind of discrete-time ap-
proximation of the distributed system. An example for a realiza-
tion with the functional transformation method is given in Sec-
tion 4.2. Other physical modeling methods like e.g. the digital
waveguide method [6, 7] yield different transfer functionswith
similar behavior.

4.2. Example: Functional Transformation Method

The functional transformation method (FTM) is used for physi-
cal modeling digital sound synthesis of resonating structures like
strings, bars, air columns, membranes, plates, and alike. It starts
from a PDE description of the continuous-time, continuous-space
model and derives a discrete-time model in the form of a paral-
lel arrangement of simple transfer functions. More detailson the
procedure and examples for the use of multidimensional transfer
function models can be found in [2, 8].

Here it is sufficient to show the complex representation of a
typical configuration in Fig. 7. It consists of a parallel arrangement
of first order systems with complex feedback coefficientaµ and
further multipliersbµ andcµ derived from certain eigenvalue prob-
lems [2, 8]. These eigenvalue problems (so-called Sturm-Liouville
problems) consider the boundary conditions of the system, here
boundary conditions of the second kind.

The transfer function of a single first order system is

Hµ(z) = bµcµ
z

z − aµ
=

dµz

z − aµ
with dµ = bµcµ . (19)

The complete transfer function is given by the sum of allN first
order systems from (19) as (see Fig. 7)

H(z) =
N∑

µ=1

Hµ(z) =
N∑

µ=1

dµz

z − aµ
. (20)
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Vb2(z)

Yb2(z)

bµ

aµ

cµ

z−1

Figure 7: Structure of the discrete-time implementation achieved
with the FTM, see for instance [8]. A finite number ofN first
order transfer functions with complex feedback coefficientaµ are
arranged in parallel.

The denominatorD(z) of (20) is the product of the denomi-
natorsz − aµ of the first order systems (19)

D(z) =
N∏

ν=1

(z − aν) . (21)

The transfer functionH(z) from (20) turns with

Dµ(z) =
D(z)

(z − aµ)
=

N∏
ν=1
ν 6=µ

(z − aν) (22)

into

H(z) =
∑

µ

dµzDµ(z)

(z − aµ)Dµ(z)
=

N(z)

D(z)
, (23)

with the numerator

N(z) = z
∑

µ

dµDµ(z) . (24)

4.3. Feedback Analysis

In Sec. 3 it has been shown that boundary conditions of the third
kind can be realized by external termination of a system with
boundary conditions of the second kind. Now the relation between
the transfer functions

H(z) =
Yb2(l, z)

Vb2(l, z)
=

N(z)

D(z)
, Hb3(z) =

Yb3(l, z)

Vb3(l, z)
=

Nb3(z)

Db3(z)
.

(25)

is derived, whereVb2(l, z), Yb2(l, z) andVb3(l, z), Yb3(l, z) cor-
respond to Fig. 6. Contrary to the example in Sec. 4.2 no specific
implementation ofH(z) is assumed.

The lattice structure from Fig. 6 is represented in matrix nota-
tion by (see (14) and (16))(

1 g−1
1

g2 1

) (
Yb2(l, z)
Vb2(l, z)

)
=

(
Yb3(l, z)
Vb3(l, z)

)
(26)

or

Yb2(l, z) + g−1
1 Vb2(l, z) = Vb3(l, z) (27)

g2Yb2(l, z) + Vb2(l, z) = Yb3(l, z) . (28)

The transfer functionHb3(z) follows from the division of (28)
by (27) as (some arguments are omitted for convenience)

Hb3(z) =
Yb3

Vb3
=

g2Yb2 + Vb2

Yb2 + g−1
1 Vb2

. (29)

Dividing by Vb2 and using (18) gives

Hb3(z) =
g2H(z) + 1

H(z) + g−1
1

=
g2

N(z)
D(z)

+ 1

N(z)
D(z)

+ g−1
1

. (30)

Multiplying by D(z) results in

Hb3(z) =
g2N(z) + D(z)

N(z) + g−1
1 D(z)

. (31)

Multiplication with g1 finally gives

Hb3(z) = g1
D(z) + g2N(z)

D(z) + g1N(z)
=

Nb3(z)

Db3(z)
. (32)

Thus the transfer function for boundary conditions of the third
kind Hb3(z) is expressed by the numeratorN(z) and denomi-
natorD(z) of the transfer function for boundary conditions of the
second kind.

Investigating the denominator ofHb3(z) yields the interpreta-
tion of the spectral effect of the external termination. Obviously,
the resonances ofHb3(z) are given by the poles of the denomina-
tor polynomialDb3(z)

Db3(z) = D(z) + g1N(z) . (33)

Therefore the real coefficientg1 allows to shift the pole locations
according to the boundary conditions of third kind in equation (15).
The effect of the external termination is shown by examples in the
next section.

5. RESULTS

For a more intuitive illustration of the results from the previous
sections, the modeling scenario as depicted in Fig. 8 is applied.
The underlying PDE is the wave equation as given in (10). The
input of the model isy2(0, t) while it is solved for the output
variabley1(l, t). According to the definition of the vectorial out-
comey(x, t) in (10) this corresponds to the particle velocity at the
left side as the input and the pressure at the right side for output.

0 l
x

y1(l, t)

y2(l, t)

y1(0, t)

y2(0, t)

FTM realization −g1

Figure 8: Sketch of the complete spatially one-dimensionalblock
model. The boundary consists of two pointsxb ∈ {0; l}.

The boundary conditions at the left side are of the second kind,
while the boundary conditions on the right side are adjustable via
the parameterg1. As well known from basic acoustics [9, 10],
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boundary conditions of third kind (as given in (15)) directly corre-
spond to a specific reflection factorα. In this scenario, this factor
can be calculated by

α =
1 + cg1

1 − cg1
, (34)

wherec is the speed of sound in the medium. A discrete realiza-
tion of the model is achieved with the FTM (see [8] for instance).
The sampling periodT is chosen to result inN = 17 first or-
der systems, one withaµ equal to zero and eight pairs of complex
conjugate systems. The resulting discrete time transfer function

G(z) =
Y1(l, z)

Y2(0, z)
(35)

is depicted in Fig. 9 for four different reflection coefficients. The
transfer function in Fig. 9(a) represents boundary conditions of the
second kind atx = l. The model obviously represents a comb
filter what is the expected behavior, as the traveling waves are per-
fectly reflected at all boundaries. The other extremum is depicted
in Fig. 9(d), where the reflection coefficientα is zero. The right
side absorbs all incoming waves as good as possible, such that the
impulse response fromy2(0, t) to y1(l, t) is a simple Dirac im-
pulse. The de facto transfer function in Fig. 9(d) however isnot
constant for all frequencies, as only 17 modes are considered in
the simulation. Figs. 9(b) and 9(c) show intermediate casesfor
α = 0.8 andα = 0.5.

Obviously there is a gradual variation of the spectral properties
of the system in Fig. 8, although the air column model itself does
not change. The variations of the transfer functionG(ejΩ) are
only caused by adjusting the feedback coefficientg1.
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(d) α = 0

Figure 9: Normalized transfer functionG(z) from (34) evaluated
at the unit circlez = ejΩ. The transfer function is depicted for
different reflection coefficientsα, which directly result from the
feedback coefficientg1 through (35).

6. CONCLUSIONS

The consideration of a simple example showed that models with
adjustable boundary conditions can be built from multidimensional
transfer functions with fixed boundary conditions. This result is
important for the practical application of physical modeling. It
is feasible to design components of musical instruments from the
physical description of resonating structures. Although their im-
plementation requires the assumption of fixed boundary conditions
for a correct mathematical description, the spectral properties can
be adjusted through proper port termination or, more general, by
suitable connection to other modeling blocks.

These results have been obtained by considering one-dimen-
sional transfer functions between suitably chosen port variables.
The technique of calculating the denominator polynomial ofa feed-
back structure from the corresponding open-loop transfer function
is well-known in control theory as the root locus method. Con-
sidering the modeling block of a resonating structure with fixed
boundary conditions as an open loop system (in control termsthe
plant), it is possible to adjust the properties of the closed loop sys-
tem only by variations in the feedback path (thecontroller).
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ABSTRACT 

GENESIS is a sound synthesis and musical creation environ-
ment based on the mass-interaction CORDIS-ANIMA physical 
modelling formalism. It has got the noteworthy property that it 
allows to work both on sound itself and on musical composition in 
a single coherent environment. In this paper we present the first 
results of a study that is carried out with GENESIS on a particular 
type of models: self-sustained oscillating structures. By trying to 
build physical models of real instruments like bowed strings or 
woodwinds, our aim is to develop and analyse generic tools that 
can be used for the production of self-sustained oscillations on 
every mass-interaction network built with GENESIS. But, if the 
family of the self-sustained oscillating structures is very interest-
ing to create rich timbres, it can also play a new and fundamental 
role at the level of the temporal macrostructure of the music (that 
of the gesture and the instrumental performance, as well as the 
composition). Indeed, it is possible, as we will propose in this 
paper, to use the relatively complex motion of a bowed macro-
structure in a musical composition way, as a musical events gen-
erator. 

1. INTRODUCTION 

One of the reasons that motivated the introduction of sound 
synthesis by physical modelling was the search -for a better real-
ism- of a naturalness of synthesized sounds. Logically researches 
began not on the sound itself, but on what produces this sound, 
that is the physical object, which is able to vibrate at acoustical 
frequencies. Indeed, human’s ear was built by evolution for a 
precise purpose: to give us information about our environment. 
So, it is very sensitive to sounds (musical or not) produced by a 
well-determined physical cause. As a consequence, physical mod-
eling will be an easier way to produce realistic sounds than signal 
processing. 

 
But if we talk about music, what is physical is not only the 

sound produced by real instruments but also the instrumentalist’s 
performance. Hence the use of physical modelling only to produce 
sounds with realistic timbre is a little restrictive. Using the physi-
cal modelling we can try to model also the instrumentalist itself, or 
at least some of its physical behaviour. This gives an approach of 
the sound construction at the scale of the musical macrostructure 
and, then offers a way to work at the compositional level. 

GENESIS [1], a software based on mass-interaction model-
ling, takes this idea into account by proposing an environment 
where we can build objects that move at acoustical frequencies as 

well as at gesture frequencies (more generally at macrotemporal 
frequencies). As a result, within this environment, the arbitrary 
boundary between the timbre, the composition and the perfomance 
tends to be erased. 

 
Among the infinity variety of physical models the environ-

ment allows to build, the specific category of self-sustained oscil-
lating structures is particularly interesting. Indeed they allow to 
produce rich timbres but also, when used at low (gestural) fre-
quencies, complex movements that can support rich expressivity. 
This article presents a study on this category of physical models 
which aims in developing simple models of, for example, violin, 
clarinet or oboe in the GENESIS environment and to find the 
relevant parameters of these models that can be used for rich 
timbre sound synthesis or for complex musical structures produc-
tion.  

 
After an introduction to the CORDIS-ANIMA formalism and 

the GENESIS environment, methods for self-sustained oscillating 
structures physical modelling will be presented on particular 
examples: bowed strings and woodwind instruments. The discus-
sion will end on the large possibilities, for sound synthesis and for 
musical composition, enabled by this category of models. 

2. PHYSICAL MODELLING WITH GENESIS 

2.1. The theoretical basis of GENESIS: CORDIS-ANIMA 

GENESIS is a coherent environment used for sound synthesis 
and more generally music creation. It is based on an axiomatic 
mass-interaction formalism called CORDIS-ANIMA [2]. Every 
object built with this formalism is constituted of different modules 
communicating with each other. We can distinguish two types of 
modules:  

 
- <MAT> modules represent material points that for ex-

ample may be provided with inertia. 
-  <LIA> modules link two <MAT> modules and repre-

sent the interactions between them (stiffness, viscous 
friction…) 

 
Behind each module is an algorithm that calculates output 

variables according to input ones. For example, at each step, the 
algorithm of the <LIA> element called RES (which represents 
stiffness) takes as input the positions X1 and X2 of the two 
<MAT> elements that it links together. Then it gives as output the 
force that must be applied on the two <MAT> elements and which 
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modulus is K|X1-X2| (where K is the stiffness coefficient). The 
<MAT> element called MAS, representing an ideal inertia, com-
putes its position in time according to the force it receives as 
input.  

So, with the CORDIS-ANIMA language, we can build an in-
finite variety of mass-interaction networks that correspond in a 
certain way to a space and time discrete view of Newton’s laws. 
The main advantage with this coherent modular language is that 
everything is modelled with the same tools (the elementary mod-
ules), ensuring the consistency of every model. Furthermore, it is 
very simple to build interactions between two models developed 
with CORDIS-ANIMA, since they are done like interactions 
between two elementary <MAT> modules. Hence, it is possible to 
build complex models that are composed of many elements (for 
example the model of a string or of a pipe…) and simply make 
them interact by means of one or several <LIA> modules. 

 
The CORDIS-ANIMA formalism is used to simulate physical 

objects we can see, hear or feel moving or vibrating, by using 
transducers. Different softwares based on the CORDIS-ANIMA 
formalism and dealing with image animation, sound or haptic 
perception have been developed. GENESIS is one of them, that is 
used for sound synthesis and music creation. It enables to build 
graphically any mass-interaction network with the <MAT> and 
<LIA> elementary modules. Here are basic modules used in the 
GENESIS environment: 

- <MAT> modules: the SOL (fixed point), the MAS 
(ideal inertia), the CEL (one degree of freedom damped 
oscillator) 

- <LIA> modules: the RES (stiffness), the FRO (viscous 
friction), the REF (viscoelastic link) and non-linear 
modules BUT and LNL (they will be developed below). 

- <MAT> and <LIA> degenerated modules link the envi-
ronment with external elements (loudspeaker, data-
files…): the ENF and the ENX (respectively force and 
position input), the SOF and the SOX (respectively 
force and position output). SOF and SOX modules are 
used to “hear” a structure vibrating. 

 
The BUT is a viscoelastic conditional link, that is to say, a vis-

coelastic link which is effective if the difference between the 
positions of the two <MAT> elements that it links is under a given 
threshold. This module is often used for collision simulation. 

The LNL module let us draw the interaction between two 
<MAT> by means of a function F(∆X) or F(∆V), with F the out-
put force, ∆X and ∆V respectively the difference between posi-
tions or velocities of the two linked <MAT>. The user can draw 
every one-variable function he wants. 

2.2. Time discretisation problems 

Time discretisation implies working with recurrence relations 
instead of differential equations to calculate the model behaviour. 
Consequently, there are only some model parameters values that 
lead to convergent sequences. For example, for the elementary 
oscillator CEL which parameters are the inertia M, the stiffness K 
and the viscosity Z, the conditions of convergence are: 

 
                                         (1) 

MZK
MZ

420
0

≤+≤
≤≤

 

These conditions calculated just for the elementary oscillator 
can nonetheless give a good idea of the convergence conditions 
for a more complex model. A general first approximation rule is 
hence that the masses of a model must be linked with <LIA> 
modules in which K and Z parameters must be smaller than the 
parameter M. 

2.3. The Instrumentarium 

In parallel to the GENESIS models development, a library of 
these models, called the Instrumentarium, has been built in order 
to compare and classify them according to an accurate conceptual 
organization. Analysing various models, fundamental functions 
and features have been identified, isolated and used as a classifica-
tion basis. The aim of this library is to define generic models or 
modelling techniques which could be easily used by GENESIS 
users, whether he or she is a composer or for example a peda-
gogue who wants to use GENESIS as a support for his or her 
teaching in Newton’s mechanics.  

Consequently it is very important to take this into account dur-
ing the development of our models in order to prefer generic 
models to ones that use ad-hoc functions. 

2.4. The study of self-sustained oscillating structures 

Many studies were carried out about physical modelling of 
self-sustained oscillations of musical instruments with the aim of 
digital synthesis of real sounds. For example the digital waveguide 
physical modelling technique was used by Smith, Cook and Sca-
vone to synthesise woodwind [3] [4], bowed string [5] and singing 
voice sounds [6], or by Karjalainen and Välimäki to model wind 
instrument bores [7] and vocal tract [8]. The modal synthesis [9] is 
also a good way to produce this kind of sound.  

In the domain of musical acoustics, many researches were un-
dertaken on self-sustained oscillations of musical instruments, 
which are a good basis for physical modelling in computer music. 
One can quote inter alia the names of Benade [10] [11] for wood-
wind instruments or Cremer [12] for bowed strings. 

 
The study presented in this paper, which aims to fill the lack 

of self-sustained oscillations instrument models in the GENESIS 
Instrumentarium, uses many results obtained by musical acousti-
cians. That is why simple models of bowed strings or woodwinds 
are presented below, but it is important to notice that our goal is 
not to model a specific real instrument in the most accurate way 
but to develop tools that are generic for self-sustained oscillating 
structures modelling. 

3. BOWED STRUCTURES 

3.1. A bowed simple vibrating structure 

One of the most studied families of instruments is the bowed 
strings. Thus we will first study the bowing of a vibrating struc-
ture in the GENESIS environment. As for all self-sustained oscil-
lations instruments, there is a non-linear element in the instrumen-
tal chain of the bowed strings that ensures the production of a high 
frequency oscillation (vibration of the string) from very low fre-
quency behaviour (movement of the bow). This is the non-linear 
interaction that takes place between the rosin on hair of the bow 
and the string. We can see its shape on the graph below: 
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Figure 1: Frictional force as a function of the string veloc-
ity for a bowed string. After Fletcher and Rossing, 1998 
[13]. 

The LNL module of GENESIS environment let us use this 
type of interaction since it is possible to draw a F(∆V) function. 
Below, you can see the curve that has been chosen: 

 

 

Figure 2: Left, frictional force as modelled in the LNL 
window. Right, model of a bowed basic structure. 

This simplified curve that models the interaction between the 
bow and the string is sufficient to work with, and we will see that 
it leads to phenomena that are characteristic of real bowed strings 
behaviours. But the aim is also to use this interaction with other 
structures than a modelled string; the simplest vibrating structure 
that we can use is the elementary module CEL. So, we will first 
work with it in order to illustrate the bowing of oscillating objects. 
On the figure 2 (right) we can see the representation of the model 
as it appears on the graphical interface of GENESIS. The MAS 
module called MA represents the bow inertia and the structure 
called OSC which contains a SOL (S), a MAS (M) and a REF 
link, has got the same behaviour as a CEL module except that it is 
not optimized. But for a best readability we will use it. So OSC is 
a damped harmonic oscillator that MA will bow via the LNL link.  
 
NB: It is important to keep in mind that the representation plan is 
not a metric space but a topologic one. That is to say, only the 
links between <MAT> elements will influence the behaviour of 
our model, not how the <MAT> elements are placed on this plan. 
Furthermore, the <MAT> modules can move along the axis per-
pendicular to this plan and only along this axis. That is why 
GENESIS is called a one-dimension simulation environment. But 
it is generally not a problem for sound synthesis since oscillations 
develop themselves mainly on a single axis and it is possible to 
take into account two or three dimensions effects via LNL links or 
judicious use of modularity. 

 
We can separate half of the symmetrical friction curve into 

three parts (noted 1-3 on the figure 2.a)). The first one is called the 
“sticking zone” and the second one the “sliding zone”. For a real 
bow, the slope of the sticking zone is almost infinite (cf. figure 1) 
but if we use such a characteristic, the value of the equivalent 
viscosity Z (i.e. the value of the slope) is almost infinite too. That 
is why we must use a finite slope unless the algorithm diverges 
when the difference of velocity is such as the operating point is in 
the sticking zone of the curve, leading to a sound with more or 
less white noise (that can get a certain interest). Furthermore, as 
McIntyre, Schumacher and Woodhouse say in [14] the finite slope 
of the sticking zone can partially take into account the effects of 
torsional waves along the string. 

 
Moreover, we must take into account the particularity of our 

model of interaction. For example, if we start from an oscillator 
that is at rest and a bow that has got a constant velocity, this veloc-
ity must be included between the two boundaries of the sliding 
zone to obtain a self-sustained oscillation. Indeed, if the velocity is 
in the third part, no force is applied on the oscillator, and if it is in 
the first part, no sliding friction can occur and the movement of 
the oscillator is quickly stabilised in an elongation position that 
depends of its stiffness (cf. figure 3). 

 

 

Figure 3: Velocity and position signals for the bowed os-
cillator described on figure 2, with a bow velocity in the 
sticking zone of the LNL characteristic. No oscillation oc-
curs. The behaviour is the one of a damped harmonic os-
cillator in aperiodic regime (exponential decrease).  

 
For the bow velocity in the sliding zone of the LNL character-

istic, a self-sustained oscillation is obtained as we can see on the 
figure 4. This fact is due to the negative slope of the curve in the 
sliding zone. We can see on the velocity signal, for each period, 
when the operating point passes from the sticking zone to the 
sliding one (inflexion point, see figure 4). One can note that before 
this inflexion point, we can see the same behaviour as when the 
velocity of the bow is in the sticking zone (exponential decrease). 
After this point, the velocity increases drastically because of the 
sliding friction; this leads to oscillations. 
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Figure 4: Velocity and position signals for the bowed os-
cillator described on figure 2, with a bow velocity in the 
sliding zone of the LNL characteristic. We can see on the 
velocity signal the change of behaviour when the system 
goes from sticking to sliding friction. 

Another parameter that we must precisely adjust is the sliding 
zone slope, that is the negative damping coefficient value (we note 
it Zneg). Indeed, if the absolute value of this parameter is lower 
than the positive damping (Zpos) of the vibrating structure, the self-
sustained oscillations regime cannot develop. This can be under-
stood by adding the straight characteristic of the oscillator damp-
ing to the one of the LNL link. Indeed, the undamped oscillator 
will come under the sum of these two characteristics. If the posi-
tive damping is higher than the absolute value of the negative one, 
the sum of the two characteristics will be separated in three parts 
too, but all with a positive slope. So this situation can be com-
pared to the one where the bow velocity is in the sticking zone and 
the vibrations of the oscillator quickly decrease. One can compare 
this behaviour to the minimum bowing force that must be applied 
on a real string in order to obtain self-sustained oscillations. For 
low forces, the sliding friction zone has got a very low slope and 
cannot compensate the damping of the string. A minimum bowing 
force is thus needed. 

Furthermore, if the absolute value of Zneg is higher than Zpos 
but if these two values are comparable, the transient is very long 
with a percussive attack at its start. So to quickly obtain a self-
sustained oscillations regime, the absolute value of Zneg must be 
much higher than Zpos.  

3.2. Generalisation to other structures 

The effects noted for this simple oscillator can be generalised 
for more complex vibrating structures. For example, we modelled 
a string by a chain of MAS linked by REF modules. This chain is 
fixed at both extremities to SOL elements. 

 

 

Figure 5: Model of a bowed string. The two SOF modules 
are linked to a MAS via RES and FRO modules in order to 
obtain the velocity and position signals at the point of 
bowing. 

If we give the correct values to the parameters that we spoke 
about in the simple oscillator study, the bowing of this structure 
leads to the well-known Helmholtz motion of the string as we can 
see on the figure 6. 

 

 

Figure 6: The Helmholtz motion of the string at two mo-
ments which have got a difference in phase of a half pe-
riod. The bow is moving up at a constant velocity. 

Furthermore, position and velocity signals at different points 
of our chain are comparable to experimental measures on real 
bowed strings (cf. figure 7 and 8). 

 

 

Figure 7: Velocity and position signals taken at the bow-
ing point for our bowed string model. The bowing point is 
at a quarter of the string. 

 

Figure 8: Velocity of the real string at the bowing point. 
β is the ratio of the distance between the bowing point 
and the bridge, upon the length of the string. va is the ve-
locity of the bow. After Boutillon, 2000 [15]. 

 
So, the simplified friction characteristic used in our model is 

sufficient to obtain realistic behaviours and moreover to get plau-
sible bowed string sounds. Note that the real friction force does 
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not tend to zero when the difference between the bow velocity and 
the string one is high, whereas it does in our model. The aim is to 
be able to produce particular gestures like a bow that ends without 
the bow on the string (in order to be able to produce the sound of 
the free motion of a string after bowing). Indeed, if we want to cut 
the link between the vibrating structure and the MAS MA, we just 
need to accelerate it until the operating point is always in the third 
part of the friction characteristic. 

So the LNL link described in this part can be used to bow 
many different structures such as strings, bars, membranes… But 
as we will see in the next part, this LNL link may be relevant for 
woodwind instruments modelling too. 

4. A PARTICULAR BOWED STRUCTURE 

Now, if we take our previously developed string model and 
link only one of its extremities to a SOL module, the produced 
sound when we bow the free extremity (using the same LNL as 
above) sounds like a clarinet. In order to explain this, we can 
analyse the non-linear characteristic of a woodwind reed (cf. 
figure 9). It represents the volume flow through the reed as a 
function of the difference of pressure between the player’s mouth 
and the reed.  

 

 

Figure 9: Characteristic of volume flow as a function of 
pressure difference for a woodwind single reed (OABC 
curve) and a woodwind double reed (one of the three 
curves, according to the reed channel resistance). After 
Wijnands and Hirschberg, 1995 [16]. 

 
N. B: A remarkable fact is that the friction characteristic of the 
LNL module developed previously can easily approximate the 
shape of the curve above, with the help of an analogy that we 
explain below. 

 
The analogies between mechanical systems and aeroacoustical 

ones are well known and have been developed in many acoustics 
books [17]. First of all, the comparison between our LNL charac-
teristic and the curve above suggests that the force applied on and 
the velocity of the MAS module are respectively the analogue of 
the volume flow and the pressure inside the reed. But in order to 
be more precise, let us consider two fluid tanks at different pres-
sures P1 and P2, connected by a channel where a volume flow U 
of fluid circulates. According to the Euler’s equation, we have got 
in this case: 

 
             

dt
dU

S
LPPP

dx
dp

dt
dv ρρ =−=∆⇒−= 21 ,                (2)  

with L and S respectively the length and the section of the chan-
nel, v the speed of the fluid particles and ρ its density. One often 
calls the factor Lρ/S the acoustic mass. The expression connecting 
the difference in pressure between the two tanks and the volume 
flow is similar to the one connecting the difference in speed be-
tween two masses connected by a spring:  
 
                                          

dt
dF

k
v 1
=∆ ,                                         (3)       

 
with ∆v the difference in speed between the two masses, K the 
stiffness coefficient of the spring and F the modulus of the force 
applied on the two masses. One can then carry out the analogies 
gathered in the following table: 
 
Mechanical system Aeroacoustical system 
 

V1 V2 

F 

k 

 

P1 P2
U 

 

∆v = 1
k

dF
dt

 ∆P =
Lρ
S

dw
dt

 

F U 
v P 

1/k Lρ/S = Ma 

Table 1: Analogies between mechanical and aeroacous-
tical systems. 

These analogies let us develop easily woodwind instruments 
models with mass-spring networks. Indeed, just as our strings are 
modelled by a succession of masses connected by springs, the 
body of the wind instruments can be seen as a succession of tanks 
connected by cylindrical channels.  

 
 

 

Figure 10: Simple models of cylindrical and conical 
bores for wind instruments. In the second case, on the 
right, the channels have increasing radii in order to 
model the widening of the bore. 

 
So, one can translate now this schematized aeroacoustical 

model into a mass-spring system by means of the developed 
analogies. On the figure below, we can see the GENESIS model 
that can be used for woodwind sound synthesis. 
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Figure 11: Woodwind as modelled in GENESIS. The non-
linear characteristic used is the same than for the bowed 
string. The left part of the mass-spring chain is fixed to a 
SOL module and represents the bell. The other one 
represents the embouchure. 

So the mass-spring chain is bowed at its free extremity, that is 
to say, where the v/F ratio is the highest. This is coherent with the 
behaviour of woodwind instruments for which the P/U ratio is the 
highest at the reed. On the contrary, a fixed point will represent a 
hole in the bore. So the SOL at the left extremity represents the 
hole of the bell. It is possible to model the tone holes too, by 
adding SOL modules linked to masses along the chain.  

As we said above, it sounds like a clarinet for a homogeneous 
mass-spring chain. This is understandable since the clarinet has 
got a cylindrical bore. Thus, it might be interesting to try to model 
other bores, for example a conical one, to obtain oboe-like sounds. 
The section of the bore of the oboe increases like the square of the 
distance to the mouth (since its diameter is proportional to the 
latter). The analogue of the section S is the constant of elasticity K 
(with a constant factor Lρ). Thus, by giving values, according to a 
parabolic law, to the K parameters of the consecutive REF mod-
ules, it is possible to obtain oboe-like sounds. 

On the figure below, it is possible to compare the differences 
of behaviour between the homogeneous string model (called 
CLARINET) and the non-homogeneous one (called OBWA). 
 

 

Figure 12:  Aspect of the mass-spring chain at the same 
phase for the cylindrical bore model (left) and the coni-
cal one (right). 

 
The figure above shows that the behaviours of the two models 

are not the same. In the first case, the string moves as a whole, the 
masses of the model being at every moment all on the same side of 
the rest plan of the string. This shows the prevalence of the fun-
damental mode on the other ones. On the contrary, for the second 
model, the mass on which is the excitation is often in opposition 
of phase with part of the string. This fact is confirmed by spectra 
of the sounds obtained. These are presented on figure 13 and a 
comparison is done with experimental data taken in the reference 
[13]. It is also possible to compare these with the results given in 
the chapter 21 of the reference [10]. 
 

 

Figure 13: Spectra of the sounds that we obtained with 
the CLARINET and OBWA models and comparison with 
experimental data on real woodwinds. After Fletcher and 
Rossing 1998 [13]. 

So, as for the real instruments, the fundamental prevails for the 
CLARINET whereas the second harmonic does for the OBWA. 

Furthermore, as for a real clarinet, the sound obtained with our 
CLARINET model has got prevalent odd-numbered harmonics. 
Even-numbered harmonics are not absent of the spectrum, which 
has been explained in different references [10] [18].  

The analogies developed in this part are very useful since an 
air column will be simply modelled by the same modules than a 
string. So it will be very easy to couple structures like strings or 
membranes with a tube: we only need a <LIA> module. Thus, one 
can hear for example an oscillating structure vibrating through a 
duct that has got vocal formants in order to produce vocalizing 
sounds. This example illustrates the coherence of CORDIS-
ANIMA as a general formalism; there is no need to deal with the 
compatibility of the different models that we develop since the 
language itself ensures the compatibility. 

5. THE BOWING OF MACROSTRUCTURES 

This last section deals with features and tools that we can de-
velop in the GENESIS environment by using bowed macrostruc-
tures, in order to create events at macrotemporal (compositional 
and instrumentalist performance) scale. The “macrostructure” term 
is used to talk about structures that can vibrate at very low fre-
quencies and so that can model the instrumentalist’s gestures. 

The underlying idea is that everything that has got inertia is 
modelled by a MAS module in GENESIS. Consequently, the 
MAS module, used to model the bow in our models above, can 
itself be a part of a vibrating macrostructure, which can lead to a 
complex movement of our bow. 

For example, if we consider a string, as in the second part, but 
with a ratio M/K much higher in order to obtain low frequency 
modes (~1Hz), and if different MAS modules of this string are 
used to interact with vibroacoustical structures, it is possible to 
create a complex play with this macrostructure. On the figure 
below, we can see such a model, with a “macrostring” that con-
tains plectra, as it has been built in GENESIS. 
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Figure 14: Model implying a “macrostring” which con-
tains thirteen plectra playing on different acoustical 
strings.  

The model, as it appears on the figure 14 has been conceived 
in order to produce a particular play going from low to high 
acoustical frequencies. Indeed, from top to bottom, the thirteen 
acoustical strings’ fundamental frequency increases. So we have 
separated these into two groups, each one plucked by a type of 
plectra (1: low frequency strings, 2: high frequency strings). The 
first type of plectra corresponds to a LNL module which is cali-
brated to obtain plucking when the MAS modules of the “macro-
string” are at a precise negative altitude “x=-a” (the acoustical 
strings are in the “x=0” plan), which is the altitude reached by the 
“macrostring” during its very long transient (cf. figure 15). The 
second type of plectra is calibrated to pluck when the MAS mod-
ules reach the “x=0” plan. On the figure 15 and 16 we can see the 
advantage of working with two plectra groups. Indeed, the string 
behaviour is typical of a bowed string transient. But for this sys-
tem, the transient is very long because of the very low frequency 
of the string oscillation. So what we have is a movement between 
two plans. It may be interesting to use some plectra for the mo-
ment when the string is in one plan and other plectra when it is on 
the other plan. 

 

Figure 15: Two different viewpoints of the simulation of 
the model shown on the figure 13 at 1,25 second. First 
phase of the period of the “macrostring” movement. This 
one goes down until it reaches an altitude located by the 
MAS circled (top picture). The six plectra on left are 
calibrated to pluck the low frequency strings at this alti-
tude. So we can see on the bottom picture that these six 
strings oscillate. On this picture, the vertical scale is 
much lower than for the top picture. 

 

Figure 16: Two different viewpoints of the simulation of 
the model shown on the figure 13 at 2,5 seconds. Second 
phase of the period of the “macrostring” movement. This 
one goes up until it reaches the “x=0” plan. So now the 
seven plectra of the second group pluck the high fre-
quency strings as we can verify it on the bottom picture. 
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So the “instrumental play” has got a repeated cycle that is di-
vided into two phases: the first when the “macrostring” is at its 
negative altitude (figure 15) and the low frequency strings are 
plucked, the second when it is at the zero altitude and the other 
strings are plucked. 

This produces a periodic alternation between complex series 
of low and high-pitched notes. Furthermore, these musical events 
evolve in time since the behaviour of the “macrostring” described 
above is the transient one. Progressively, higher amplitude oscilla-
tions take place, and it results in less plucks (but more disorgan-
ised). This gives the impression to pass from a vigorous part with 
lots of musical events to calm and quietness. 

Finally, we can say that the bowed “macrostring” produces an 
“instrumental play” that is not precisely predictable but, so far, not 
unpredictable either. Its periodic oscillation leads to a pulsation. 
Moreover the precise analysis of the model’s behaviour can give 
information on how to use it, to privilege a precise note for exam-
ple. Furthermore it has got very rich possibilities. For instance, it 
is possible to change the period of the instrumental play by chang-
ing the K/M ratio of the “macrostring” or to increase or decrease 
its transient by influencing the bow’s friction characteristic. It is 
possible to change the acoustical strings damping in order to get 
more or less resonant sounds, or to bow these ones instead of 
plucking them… 

Finally, one must study in details these sorts of models be-
cause in one hand they have got rich possibilities but in the other 
hand one must wonder: what are the minimum characteristics 
required to get a relevant model for expressive musical architec-
tures production? There is no doubt that the research on this point 
with GENESIS is at its infant. But it will be certainly fruitful to 
carry out researches in this way. 

 

6. CONCLUSION 

The self-sustained oscillating structures category is a very use-
ful family of models that is relevant for studies upon both timbre 
and composition in GENESIS and thus that must be developed 
and inserted into its Instrumentarium. We saw that, by means of 
analogies, real musical instruments of different natures can be 
simply modelled by almost the same bowed structure. Moreover, 
since the same elementary modules are used for the building of the 
structures, the compatibility of all the models is thus ensured. So it 
is very easy to couple all our different vibroacoustical structures in 
order to produce more complex and interesting timbres. The stud-
ies will now be carried out on other structures too. For example, 
structures with lots of modes can produce interesting evolving 
sounds when bowed repeatedly. 

As for the composition in GENESIS, bowed macrostructures 
offer many possibilities but need to be deeply analysed in order to 
be used in precise ways. For this, a time analysis of position or 
velocity signals appears to be more appropriate than a frequency 
one. In any case, a good comprehension of their behaviours is 
necessary in order to be able to insert this kind of tools in a musi-
cal piece with GENESIS.  
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ABSTRACT 

A variety of filters have been designed, synthesized and used in 
the history of electronic and computer music. All the approaches 
aimed to provide filters fulfilling several specifications   such as 
frequency response, phase response, transient state characteris-
tics like rise time and overshoot, realizably conditions concern-
ing the technology used for the implementation and even eco-
nomical considerations. One of the most important aspects con-
cerning the filters dedicated to musical applications is the control 
structure they provide to the musician, who is in charge for the 
integration of the filtering operation in the compositional process 
and performance. Designing filters using the mass interaction 
scheme embedded in the CORDIS-ANIMA formalism (used for 
sound synthesis and composition by physical modelling) offers a 
different methodology in the control which is coherent with the 
philosophy of musical composition by ‘physical thinking’. This 
article introduces a technique to design filters using the 
CORDIS-ANIMA simulation language.  

1. INTRODUCTION 

Filters play a crucial role in the history of sound transformation. 
They have been in use since the very early days of electronic 
music. The first systematic design approaches date  back to first 
decades of the previous century. Many electronic instruments of 
the 1930s including the Trautonium, used analogue filters [1]. 
Filters were standard components in electronic music facilities 
such as the West German Radio (WDR) studio in which K. 
Stockhausen, G. M. Koening and other composers worked in the 
1950s and 1960s. 

In the field of computer music, digital filters first appeared in 
sound synthesis languages such as Music IV after 1963. Nowa-
days, among several common used filters are the digital resona-
tor which  are special two-pole bandpass filters [2], the state 
variable filter [3], the simulations of the Moog four pole filter 
like the one proposed by Huovilainen [4] and the parametric 
filter structures like the Regalia or the Zolzer  filters[5]. 

A filter structure is expected to give direct or indirect aspects 
to the perceptual parameters like the center/cutoff frequency, the 
bandwidth and the gain. This is accomplished by controlling the 
transfer functions coefficients describing the designed filter. In 
this scenario the filter is conceived as a mathematical operation 
that transforms the audio signal. This functional point of view 
disallows the “Physical Instrumental Interaction” with the sys-
tem which performs the filtering operation and guides to the 
general question of mapping between the control signals and the 

available input parameters of the system – in this case the trans-
fer function coefficients.  

What we call " Physical Instrumental Interaction " [6] is here 
crucial: 
It is indeed the type of physical interaction which we establish 
with a real instrument. In this interaction, the “ergotic function” 
[7], [8], [9] which is what allows in a direct way to act on the 
physical instrument and to feel it by the haptic perception, plays 
an essential role. This lets to perform the gesture in an expres-
sive way and then to produce and even transform expressively 
sounds. In digital sound synthesis or transformation, the ergotic 
function can be supported by specific force-feedback gestural 
transducers [10],[11].“Physical thinking” and “Physical Instru-
mental Interaction” are very closely associated. 

So we can envisage that the filtering process is performed by 
a simulated physical mechanical system and not by an abstract 
signal processing algorithm. In this case we are able to establish 
by involving a suitable ergotic interface, a physical interaction 
between the musician and the filter which has now a virtual 
material substance. In this type of control there is no mapping 
between gesture and sound since no representation is involved in 
this situation, but only physical processes. The CORDIS-
ANIMA simulation system [12], which in fact is a formalism 
intended for simulating the instrumental relationship, permits to 
synthesize and control filters using this physical modeling ap-
proach. 

Therefore the purpose of this study is to synthesize audio fil-
ters using CORDIS-ANIMA networks. For the design part of the 
filter other well known methods were adopted like the pole/zero 
placements and approximation techniques for all pole filters like 
the Butterworth approximation [13]. In this essay we designed 
the filter by putting in parallel a certain number of second order 
sections: the well known simple two-pole filters. Evidently the 
actual intention of this research is not to propose a new imple-
mentation of filters but to give to filters the character, the nature 
and “charm” of a physical tangible object that can be manipu-
lated and controlled by physical gestures. These CORDIS-
ANIMA filter models are transferred to the GENESIS environ-
ment mainly dedicated to musical composition by physical 
modeling [14] and eventually will be used in combination with 
force-feedback gestural interfaces for real time musical applica-
tions.  

2. CORDIS-ANIMA AND GENESIS  

CORDIS-ANIMA is a real-time mass-interaction physical mod-
eling and simulation system. This highly modular language was 
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used during this study to simulate physical models that play the 
role of digital audio filters. CORDIS-ANIMA allows designing and 
simulating virtual objects that are composed of two types of 
elements, called modules:  
 
 <MAT> modules represent punctual material elements. The most used is the 

MAS module, which simulates an ideal inertia. The <MAT> modules are 
elementary subsystems and can be characterized in terms of their in-
put/output relationships. 

 
 <LIA> modules represent physical interactions between pairs of <MAT> 

modules. Available interactions are based on linear or nonlinear elasticity 
and friction. The <LIA> modules are elementary subsystems and can be 
characterized in terms of their input/output relationships. 

 

 
 

Figure 1 : <MAT> and <LIA> modules with their in-
puts and outputs 

 
Thus, CORDIS-ANIMA models are networks of interconnected 
<MAT> and <LIA> modules.  

Position and force are the two fundamental variables upon 
which CORDIS-ANIMA modules operate. At each sample a 
<LIA> computes two opposite forces according to the relative 
distance and/or velocity of the two <MAT> it links while a 
<MAT> computes its position according to the forces it receives 
from the <LIA> modules it is linked with. It should be noticed 
that some <MAT> modules are fixed points, so received forces 
have no effect on them. The algorithms can be found on [15]. In 
figure 1 the <MAT> and <LIA> elements are depicted with their 
inputs and outputs. 

 

 

Figure 2 : A CORDIS-ANIMA network 

 
GENESIS [16] is a graphical environment for musical crea-

tion based on CORDIS-ANIMA. The user builds CORDIS-
ANIMA networks at an elementary level, since models are 
created by direct graphical manipulation and connection of 
individual modules on a virtual workbench. A number of higher-
level tools are available for editing multiple parameters at the 
same time, generating large structures, visualizing models during 
simulation, etc. GENESIS implements ten types of modules. 
While CORDIS-ANIMA does not specify the dimensionality of 
the modules, GENESIS’ simulation space is one-dimensional. 
<MAT> modules can only move in the direction that is perpen-
dicular to the workbench, and distances and velocities are com-
puted along this axis. For convenience, graphical manipulations 

take place in the 2D-space of the workbench, but the position of 
the modules on this plane have absolutely no consequence on the 
simulation: the workbench representation is only topological. 

 

 

Figure 3 : A screenshot from the GENESIS software 

The normal set of GENESIS’ building blocks is composed of: 
 Linear modules: ideal mass (MAS), fixed point (SOL), 

second-order damped oscillator (CEL), elasticity (RES), 
friction (FRO), elasticity and friction combined (REF);  

 Nonlinear interactions: the BUT and the LNL;  
 Output modules: the SOX and the SOF, which respec-

tively record a position and a force signal. 
The BUT module simulates a conditional viscoelastic inter-

action. Installed from one MAS (M1) to a second one (M2), 
when the difference between the positions of M1 and M2 is 
smaller than a given threshold S, the BUT simulates the effect of 
a null-length damped spring between M1 and M2; otherwise, the 
two modules are not linked. 

The LNL module is a user-defined nonlinear viscoelastic in-
teraction. The user chooses the points defining two curves and 
may interpolate them using linear interpolation, splines, hyper-
bolic interpolation. The first curve (LNLK) gives the force to be 
applied to the modules according to the difference of their posi-
tions (nonlinear elasticity). The second curve (LNLZ) gives the 
force according to the difference of their velocities (nonlinear 
friction).  

All <MAT> modules have an initial position (X0). Mobile 
<MAT> modules also have an inertia parameter (M) and an 
initial velocity (V0). <LIA> modules have elasticity (K=k/Fs^2 
– k measured in S.I, Fs the sampling rate) and/or friction 
(Z=z/Fs, z measured in S.I) parameters. 

During this study, we used a particular version of GENESIS 
that includes two extra modules, ENX and ENF. These are input 
modules that read an input file and translate its data into a time-
changing position (ENX) or force (ENF). The input file repre-
sents a 1D temporal signal, sampled at 44100 Hz. It may derive 
from the measurement of a real gesture, the recorded movement 
of a <MAT> module in a previous simulation, or from an audio 
file. Consequently, input modules can be used to input any audio 
signal into GENESIS’ models. 
ENX is a massless <MAT> module whose position corresponds 
at each moment to the last sample read in the input file. ENF is a 
<LIA> module that connects to a single <MAT>, to which it 
sends a force proportional to the input file data.  
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Figure 4 : GENESIS basic modules 

3. GENERAL ASPECTS OF DESIGNING AND 
IMPLEMENTING DIGITAL FILTERS WITH CORDIS-

ANIMA  

The basic idea behind any digital audio effect and in our case the 
filters using physical modeling techniques are the forced oscilla-
tions. Sometime, it happens that a system is put into vibration 
because it is linked with another oscillating system which is 
called the driving system. The important feature on forced oscil-
lations is that the driven system does not feed back any appre-
ciable amount of energy to the driving system so the perturbation 
effects are negligible. The input sound for the digital audio 
effects takes the role of the driving system.  

In the simulated world of CORDIS-ANIMA there are two 
ways to connect two mechanical systems. It is possible to con-
sider as the output of the first system and as the input of the 
second system either the force or the position, according to the 
fact that the first is of <LIA> category or of <MAT> category, 
even though the variables in the Newtonian mechanics are duals 
and are not separable. On the other hand the computer simula-
tion and the real time control force the separation of these vari-
ables. In general all physical communications (which are intrin-
sically non-oriented) are presented by two-way communication 
carried out by divisible input/output pairs (this is a constraint 
inherited by the information theory and the capabilities of the 
technology) [12]. A special case is envisaged for the force oscil-
lations where the driving force or driving position is not pre-
sented by divisible input/output pairs but with a single input 
communication channel. Therefore we are able to apply directly 
a force to a <MAT> module or a position to a <LIA> module by 
an input file acting as the input sound (ENF and ENX modules 
in GENESIS – used only as external input). In a similar situa-
tion, whereas the physical model acts as the driving system, we 
can deliver a position using a <LIA> where it returns a zero 
force to the model or we can deliver a force using a <MAT> 
where it returns a zero position to the model (SOX and SOF 
modules in GENESIS – used only as external output). In this 
case the position or the force are considered as the output signal 
and it is recorded in sound files.  

In reality we always have feedback links between interacting 
mechanical systems. However it is possible to reach situations of 
forced vibrations when we link mechanical systems where we 
approximately ignore the  feedback of energy either because the 
linkage is very weak or else because the driving one has so much 
reserve energy that the amount of feedback is comparatively 
negligible [17] . So in CORDIS-ANIMA models, we can control 
the feedback interconnection following this principle and ap-
proximately pass from feedback interconnections to feed-
forward ones.  We are able to do this either by changing the 
impedance of the systems (the one with the considerably higher 
impedance drives the other) or by using a weak link.  

4. CAUER REALIZATIONS FOR LC ELECTRICAL 
CIRCUITS 

The Cauer synthesis procedure of passive electrical networks 
concerns the implementation of a specified immittance function 
by a particular form of ladder electrical networks. It is one 
among several other methods used for the synthesis of driving 
point immittances [18]. Immittance is a general term used to 
include both impedance and admittance. In many cases the 
required immittance is realized using only LC circuit elements: 
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The necessary conditions that must by satisfied by a rational 
function that is realizable as the LC driving-point immittance 
may be synopsized [19]: 
 The poles are simple and on the jω axis 
 The zeros are simple on the jω axis 
 The poles and zeros alternate 
 There is a pole or a zero at the origin 
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0 !
are the residues of the poles at the origin, at the 

infinity and on the jω axis, respectively. 
The ladder network has a specific topology with alternating 

series and shunt branches as shown in figure 5. This singularity 
allows the driving-point immittance to be expressed in the fol-
lowing form [20]: 
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The heart of this method follows from considering an LC 
driving-point immittance which consequently has poles at infin-
ity, the origin and complex-conjugate poles on the jω axis. Re-
moving any poles of this function results in a function which is 
as well LC realizable. 
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Figure 5 : Ladder network 

 
Each division can be carried out starting either with the 

highest or with the lowest power of s. When each division starts 
with the highest powers, the procedure is known as Cauer I 
method. On the other case the procedure is known as the Cauer 
II method. If the order of the numerator is greater than the order 
of the denominator the Cauer I method is used which always 
leads to a ladder with series inductors and shunt capacitors. In a 
similar way if the order of the numerator is smaller than the 
order of the denominator the Cauer  II method is used which 
always leads to a ladder with series capacitors and shunt induc-
tors 

For example the admittance function 
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be expanded in the form 
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This corresponds to a realizable circuit with YC1=1s, ZL1=1/2s, 
YC2=4s, ZL2=1/6s. 

5. SYNTHESIS BASED ON CAUER TECHNIQUE 

Every CORDIS-ANIMA model has an analogue Kirchhoff 
network in the continuous time domain. This analogy, permits in 
a certain number of cases to apply the Cauer method in the 
CORDIS-ANIMA simulation system. A detailed analysis con-
cerning the Kirchhoff/CORDIS-ANIMA analogy is out of the 
scope of this article. In figure 6, the analogue of a LC ladder 
network is presented by the CORDIS-ANIMA network topo-
logical diagram. For this case, the analogy displayed in the table 
1 was used. Z, K, M are the variables used in GENESIS. 
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Table 1 : CORDIS-ANIMA/Kirchhoff analogy 

 

 

 

Figure 6 : LC Ladder network in CORDIS-ANIMA  

The double discretization scheme adopted by CORDIS-ANIMA 
unfortunately does not permit the use of a direct transformation 
method from the s-domain to the z-domain. Nevertheless we 
may use an indirect method using the modal decomposition. The 
desired filter function is designed directly in the discrete time 
simulation space of CORDIS-ANIMA using a bank of second 
order parallel resonators. Each resonator is tuned to a certain 
resonating frequency Fi and Q-factor Qi. We remark that in this 
research the peak of the resonators is approximated by their 
natural frequencies. From these filter perceptual characteristics 
we compute the physical characteristics i.e. the mass M, the 
elasticity K and the friction Z. Approximately M affects the 
amplitude of the filter, M/K the resonant frequency and Z the 
Bandwidth or the Q parameter.  The adopted Cauer synthesis 
procedure is for LC networks and so non-dumped structures 
were treated and synthesized. In this case !="= QZ 0 . Using 
the M and K physical parameters or the m and k in the S.I sys-
tem we form the second order parallel resonators on the continu-
ous time. Having computed the impedance function we are ready 
to apply the Cauer technique. A detailed description of the algo-
rithm is depicted below. 
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It is possible to reach a more approximative solution if we start 
the algorithm from the step 2: We can tune directly the second 
order sections in the continuous time domain: 
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More details concerning the second order sections for the con-
tinuous time and the discrete time case can be found in [3], [13], 
[21]. 
 
In the following graph (figure 7) the deviation in the resonating 
frequency is depicted between the 2-pole filter in the continuous 
time domain and after the discretization scheme used in 
CORDIS-ANIMA. We observe that for frequencies smaller than 
1000 Hz the difference is negligible-less than 1 Hz. So when we 
design filters in the region 0-1000Hz we can design them di-
rectly in the continuous time domain. 
 

 
 

Figure 7 : Deviation in the resonating frequency 

 
 
For a Cauer expansion to correspond to a realizable ladder net-
work, all the coefficients of the expansion must be positive. The 
CORDIS-ANIMA simulation system on the other hand, permits 
to use negative coefficients.  

6. RESULTS-A TANGIBLE FILTERING PARADIGM 

 
Several filters were synthesized using the previous algorithm. 
All the scripts were written in matlab® and the results were 
transferred to GENESIS. We will present a simple example of a 
filter with resonating frequencies 200Hz, 240Hz, 450Hz and 
530Hz and !=Q which means that the filter will starts ringing 
in its resonating frequencies.  The filter is designed with method 
described in the previews chapter. It has an admittance function 
given by the following formula: 
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We verified that the algorithm is very accurate. The final 

physical model has the same admittance function as with that 
one we started from in the design phase of the filter. In figure 8 
is illustrated this admittance function.  

 

 

Figure 8: Graph of the admittance function of the 
CORDIS-ANIMA realization of the filter 

 
The block diagram in figure 9 depicts a parallel form realiza-

tion of the filter which is widely used in the digital signal proc-
essing domain. The control is based on the direct access to the 
parameters of the structure: the multipliers of the feedforward 
and the feedback paths.  Every possible method can be used to 
translate the user actions into these parameters value.  

The block diagram in figure 10 presents a CORDIS-ANIMA 
realization of the filter. This structure offers directly another type 
of control based on the “Physical Instrumental Interaction”. We 
don’t affect the parameters of the model -even though it is possi-
ble and previewed within the CORDIS-ANIMA system- but we 
apply forces to the <MAT> elements of the model using <LIA> 
elements. In this example we can interact physically with the 
masses M1, M2, M3 and M4.  

It is straightforward that this type of control is totally physi-
cal and energetic coherent. Since physical models enable an 
intuitive representation of the action we perform with real ob-
jects we can imagine several physical gestures to play with our 
filter: dumping, pulling, pushing, e.t.c. This is still true for non 
real-time simulations and without the use of force feedback 
gestural interfaces but by designing models that simulate the 
physical gesture. The deferred-time simulation permits to design 
accurate and valid models of the control gesture with a precision 
that is not possible in the real-time situations. Figure 11, which 
is a snapshot taken for the GENESIS software, illustrate the 
physical model for the filtering operation described earlier and a 
physical model for the physical control of the filter. For the 
control we use a periodical gesture that dumps the movement of 
the string used as a filter when it reaches it.  

 
 

 

Figure 10: A CORDIS-ANIMA filter realization 
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Figure 9: A parallel form filter realization 

 
 

 

Figure 11: GENESIS example of a virtually mechanical 
filter controlled by another physical structure 

 

7. CONCLUSION AND FUTURE WORKS  

A method to synthesize filters using the mass interaction scheme 
was presented. Adopting the Cauer technique from the domain 
of the electrical networks, we designed physical models for 
filtering purposes.  This permitted to benefit some of the advan-
tages of the physical modeling in the audio signal filtering do-
main like the control based on physical interactions.  

Even if the Cauer synthesis procedure goes further from the 
driving point immittance functions and may reach the implemen-
tation of a specified transfer function, in this study it was not 
crucial to reach this point. The main intention was more to tune 
up physical structures – strings in our case to a pre-given set of 
frequencies than to realize and implement a given transfer func-
tion. Several other methodologies were also examined. Amongst 
them, optimization algorithms were used i.e. the Newton 
method, which provides less precision but is much more general 
and can be applied for all kind of structures like pyramids, spi-
rals, membranes [22]. These results could be the subject of 
another article.  It is clear that the methodology using the opti-
mization algorithms can be viewed as special case of the inverse 
problem: the values of some model parameters i.e. M, K and Z 
must be obtained by the observed/desired data.  

The synthesis technique presented in this study may easily 
be transferred to other widely used physical modeling ap-
proaches like the digital waveguides [23]. In our case all the 

needed scripts were written in matlab® and the results were 
transferred in GENESIS environment for further physical ma-
nipulation, control and compositional research based on “physi-
cal thinking”.  

The applications of physical modeling for sound synthesis 
are numerous. However the power of physical modeling for 
sound processing has not been explored yet. Filtering is the basic 
signal manipulation mechanism so it is straight forward why this 
research concerned audio filters and physical models. 

This article is a part of a wider research focused on the de-
sign of physical models that would transform and process sounds 
using the CORDIS-ANIMA formalism. The objective is to offer 
to the transformation procedure an instrumental “character” with 
the purpose of hopefully getting more “warm” or “live” audio 
effects, and setting up a relation between the system and the 
musician of the type instrument/instrumentalist. 
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