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ABSTRACT

Block based physical modeling requires to provide a librafry
modeling blocks for standard components of real or virtual m
sical instruments. Complex synthesis models are built loyeot-
ing standard components in a physically meaningful way.s&he
connections are investigated for modeling a resonatingtsire as

a distributed parameter system. The dependence of a resenat
spectral structure on the termination of its ports is aredy4t is
shown that the boundary conditions of a distributed paranssfs-
tem can be adjusted by proper termination only. Examplew sho
the corresponding variation of the resonator’s spectratgire in
response to variations of the external termination.

1. INTRODUCTION

1.1. Block Based Physical Modeling

There is a rich set of tools available for digital sound sesth:
wavetable synthesis, frequency modulation (FM), adddive sub-
tractive synthesis, granular and concatenative synthasisvari-
ous flavors of physical modeling. Rather than generatingemor

signal. This property is easy to implement in software bigtdiso
shared by specialized hardware like analog modular syizérss
In detail, electronic circuitry with low output impedancedshigh
input impedance ensures that the output signal is not affieloy
connections to a limited number of inputs.

The situation is different when the blocks model physicaheo
ponents. At first, the related quantities (e.g. pressurepantitle
velocity in a pipe) are not per se given as input or outputaign
Furthermore, connecting two blocks will affect all relatpsanti-
ties. This situation is usually described by so called p@rtsom-
bination of two or more variables like pressure and flow, éomad
velocity, or voltage and current. Connecting two physicaldel-
ing blocks means to connect the respective port variablaghw
in turn will change the behavior of both blocks.

1.3. Boundary Conditions

Designing blocks for physical modeling frequently regsit@con-
sider distributed parameter systems like strings, menas;aand

and more new synthesis methods, recent advances have docuseajr columns. Their implementation is based on a matheniatica

on the combination of different synthesis methods. In thetext
of physical modeling, a methodology for the block-wise &sis
of virtual musical instruments has been developed undemdhee
of block based physical modeling.

Block based modeling separates the tasksoofiponent de-
sign and model building. Component design means that various
components of real or virtual instruments like strings, rbeames,
air columns, piano hammers, mallets, etc. are modeled and im
plemented independently of each other. The resulting compo
models (theblocks) are stored in a block library for later use.
Model building means to built a virtual instrument from itsne-
ponents by selecting the appropriate blocks from the ljbaaid to
connect them in a meaningful way. An overview on methods and
synthesis tools for block based modeling can be foundlin fit] a
the literature cited there; a detailed account of the furefaais is

given in [2].

1.2. Signalsand Ports

This procedure is well known from signal based simulatiovi-en
ronments like SIMULINK or programming languages for audio
signals like Pure Data (PD). The block structure in theseemp
mentations resembles signal flow graphs known from systehs a
control theory. Blocks for processing signals have well rofi
inputs and outputs. The connection of the output of one btock
the input of the next one does not change the values of theibutp
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description in the form of partial differential equatiorBOES)
and their respective boundary conditions. In musical imetnts,
boundary conditions are given e.g. by the fixing of a stringpem-
brane, or a plate, or by the termination of an air column. The
type of boundary conditions determines the sound of a résona
ing structure, as is well known from string, brass, and waodw
instruments or from organ pipes.

Boundary conditions of distributed parameter systems are
closely related to the port variables of their block implerae
tions. In short, the port variables are the values of thekoodel
at the interface to the outside world, i.e. to other block eled
Conditions on the port variables imposed by block connastar
terminations constitute the boundary conditions for ttstritiuted
parameter block. Examples are the excitation of a string¢chvh
is zero at a fixed end or the pressure in a pipe which is zero at an
open end.

The mathematical literature classifies boundary condstiain
the first, second, and third kind|[3] 4]. Boundary conditiais
the first and second kind prescribe the values of port vabt
their derivatives. Boundary conditions of the third kinegcribe
relations between the port variables. These relations reagal
or complex valued and are given in terms of reflection factors
impedances. Methods for the investigation of resonanceesiod
in a one-dimensional medium with two resistive boundariageh
been compared in [5].
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1.4. Connecting Blocks

At this point, the separation of component design and madgitl-b

ing discussed above poses a problem which is the topic of this y2(0,1) &——

contribution: During component design, i.e. when a distel
parameter model is implemented, the boundary conditionthfo
use of this component for model building are not known. More-
over, a certain block has to work in a physically meaningfayw
in different kinds of connections.

However mathematical rigor requires that the boundary ieond
tions are included in the definition of a distributed parasnetodel
in order to constitute a properly posed problem. This melaaisat
distributed parameter block at first has to be designed apteim
mented for a certain set of boundary conditions and lated irse
block connections which impose other boundary conditions.

This problem can also be expressed in musical terms. When

a block model of e.g. a string with fixed ends is connected with
another block, e.g. a sound board, will the spectral stractd
the block model change accordingly? Is it sufficient to pdevihe
correct port connections to the existing blocks or is it Isseey to
redesign the string model?

This problem is discussed here for a specific case. A block
model for an air column with standard boundary conditiortelis
minated by an external component and the resulting spgrtpt
erties are investigated. The answer to the question abayedn
by formulating the problem as a feedback structure and blyana
ing it in terms of basic control theory.

2. PROBLEM DESCRIPTION

This section describes the problem in general terms. Bloo#-m
els of distributed parameter systems are introduced, thadary
conditions are formulated, and an example for wave proj@gat
is presented.

2.1. Block Models of Distributed Parameter Systems

A general distributed parameter system with one spatiakdim
sion is shown in Figl. 1. It may represent a vibrating string, a
air column, or another type of waveguide. The spatial cotgi

is denoted byz, the model is defined within the one-dimensional
spatial regionl” = [0, /] with the boundanpV" = {0;!}. For all
boundary pointsey, € 0V, i.e.x, € {0;1}, the behavior is de-
termined by two physical variableg (x1,) andy:z(z). They con-
stitute the port variables introduced above. These vagabiay
represent force and deflection, pressure and particle itglac
other pairs of across and through variables, depending®ndh
ture of the distributed system. Two of these variables affecent

to describe simple resonating structures. More involvedetso
with more than two variables can be investigated in the same w
but they are not discussed here.

The internal behavior of the system in Fid. 1 is described in
terms of a vector partial differential equation (1). Theteeg (z, t)
consists of the two variables (z, t) andyz (z, t), the vectow (x, t)
describes a possible excitation function. The matrBesandB.
describe the partial differential operators in detail. A@ample is

given in Sed. 2.3.

1)

0 0
{31% +BQE:| y(z,t) =v(z,t), z€V
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y1(0,1) & — yi(l,1)

—® U2 (la t)

0 l

Figure 1: Sketch of a spatially one-dimensional block modiae
boundary consists of two points, € {0;1}.

The port variables, i.e. the the outcome at the boundgiiest)
for x = xy, are given by

OUR

2.2. Boundary Behavior

The port variables are neither inputs nor outputs in theesémet
e.g.y1(xp) is independent ofj2(x1,) andyz(x,) is determined
only by yi (xv). If the port variablesy (x, t) for z = x, are con-
nected to the port variables of another block, then theiesre
determined by the interaction of both blocks.

This interaction happens instantly for continuous-timgtems.
For discrete-time systems, it is necessary to ensure caitityt
by avoiding delay-free loops. To this end, the elements(af,, t)
or combinations thereof have to be divided into input angout
variables. The formal description of this division regsite intro-
duce the normal component of the differential operator [8pe

B, =n1B1 + n2Bo (3
with the normal vector
m= (). @

This notation allows for rather general boundary condgimelud-
ing time-varying boundaries. For the consideration of latzug
conditions at time-invariant boundary poinis, has the values

nb:<_(1)) for =0, nb:(é) for z=1,
(5)

such that
B, =4+B; . (6)

Now the boundary inputs and boundary outputs can be defined
by introducing the boundary input operatyr and the boundary
output operatoff,, both are two-element column vectors. They
define the input signal, (z) and the output signal, (zy) at the
boundaryz, as

fi Buyn (zb)
£3' Buyn (zn)

(7a)
(7b)

input,
output.

vp(Tb)

yb(2n)

The superscripl denotes the Hermitian vector or matrix. For real
valued boundary operators, it is equal to the transposedivec
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The boundary input operaté and the boundary output oper-

atorf, can be combined to a matrix representation to replade (¥a,7binput and output signals

by

Ub (CL‘b)

Yo (b) ®

(6 ) Byt = ).
This definition of input and output values is only meaningful
vp(x1) andyy (zp) are not identical, i.e. if

9)

Fig.[2 shows the relation [8) between the port variables at
z = [ and the input and output signals(l,¢) andy(l,¢). The
assignment between the port variables and the input andtsitp
nals is defined by the boundary input operdtpand the boundary
output operatoff,. Only the port atz = [ is considered here.
Similar results hold also for the port at= 0 with the appropiate
normal vector from(5).

rank{( f, f, )HBH} =rank {B,} .

U (lvt)

—<+— wu(l,1)

(f £ )"

—— un(l,1)

y2(l7 t)

Figure 2: Spatial one-dimensional model with a specific lolauy
behavior described by equation (8).

2.3. Example: Wave Equation

As an example serves an air column with sound presgure
p(z,t), particle velocityv = v(z,t), mass densityy, and speed
of sounde. A simple distributed parameter model is given by

o (8 32
-~ Oz Y 0 ot —oov )\ —fe
B1 ——

Bso y v

(10)

where the underbraces indicate the corresponding veatdrana-
trices of the general systef (1).

The normal component of the differential operator accaydin
to (6) is given by

B, = +B; = £I, , (11)

wherel, denotes the identity matrix.
Meaningful boundary input and output operators have to sat-
isfy the rank condition
rank {( f,  f,

)} =rank {Io} =2

If the case of hard reflecting walls on both sides (i.ex at 0
andz = [) is considered as boundary condition, then the parti-
cle velocity at the boundary must be zero.[If](10) is regaraed

(12)

and thus the following assignment between port variablestiaa
Y1 (lvt) Ub2 (l7 t)

( (1) (1J ) ( y2(1,t) ): ( yo2(l,t) ) '

The subscript$2 ando2 denote boundary conditions of the sec-
ond kind. The relation (14) is shown graphically in Kig. 3 pes
cializing the boundary operators from Hig. 2[to](13). Anotlype

of boundary conditions is considered in the following seti

yl(l’ t)

(14)

Yb2 (la t)

——e———<«— ua(l, 1)
yQ(lat)

Figure 3: Block model with boundary conditions of the second
kind.

3. ADJUSTABLE BOUNDARY CONDITIONS

This section describes a different kind of boundary coodgi
which include adjustable parameters. If not connected tham
block, this kind of boundary conditions is equivalent to atper-
mination.

3.1. Boundary Conditions of the Third Kind

The assignment of boundary conditions of the second (14
declares one port signaj«((/,t)) to be the outputyy,2 (I, t)) and
the other port signal(,t)) to be the input{n2(l,¢)). But it

is also possible to declare a certain linear combinatiomefptort
signals to be the output and another linear combination tthée
input. Such an assignment corresponds to boundary conslitio
of the third kind (also called Robin’s boundary conditioasy is
given by

(fb;fo)z( ) With g1 # g2 |

whereg;, andg, are real admittances. Their physical dimensions
have to be compatible with the port variablgg/, t) andy2 (I, ).
The rank condition (12) requires # g-.

The input and output variables,s(I,¢) andyns(l, t) are as-

1 g2

_ 15
o (15)

signed by
(o ) (060) - (i) oo

The subscript$3 ando3 denote boundary conditions of the third
kind.

Due to the definition of input and output variables byl (168, th
port variablesy, (1, t) andy2 (I, t) themselves are not computed in
a specific order. However, to establish a relation with bauyd
conditions of the second kind, now consider arbitragily’, t) as
an output variable of the port at = [. To realize the boundary

a PDE in terms of the sound pressure then these boundary-condiPlock from Figure 2, one has to solve fgs(l, t) andyss(l, )

tions are of the second kind (Neumann boundary conditiortgs
assumption implies together with the rank condition (12)

(hat)= (7 o).

0 1

10 (23)
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y2(lit) = g -os(l,t) — g1 -yl t), (17a)

ybg(l,t) 1 ~y2(l,t) + g2 ‘y1(l,t) . (17b)
Fig.[4 shows the lattice structure of the correspondingadifjow
graph.
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yi(l,t)
vbs(l,t)
g2

Yb3 (l7 t)

y2(l7t)

Figure 4: Block model with boundary conditions of the thiidd

3.2. Port Termination

Here no connection to other blocks is considered and thex ¢fie
input signaluws (1, t) is zero and the output signabs (I, ¢) is not
required. Then the realization of boundary conditions eftthird
kind simplifies to a termination of the port at= [ with boundary
conditions of the second kind (see Fig.3) by a negative ddnté
g1 as shown in Fid. 5. Adjusting the coefficienty; changes the
character of this termination.

Y1 (l7 t)

—q1

y2(l7t)

Figure 5: Simplified boundary conditions, the boundary tnigu
zero and the boundary output is not required.

3.3. Realization of Adjustable Boundary Conditions

Based on the results of Séc. 3.1 3.2, adjustable boundary
ditions with a parametey; may be realized by block based physi-
cal modeling as follows:

e Design a standard block model according to §ed. 2.3 with
boundary conditions of second kind. According to Fig. 2
one port variable is the input variable and the other one is
the output variable. This block can be designed during com-
ponent design and stored in a block library for later use.

e For realization of adjustable boundary conditions during
model building, use the previously designed block and ap-
ply an external termination to its portat= [. It consists of
a feedback of the scaled port output back to the port input.
The scaling multiplier may be any real number. According
to Fig.[4 and Fid. b this procedure realizes boundary condi-
tions of the third kind from an existing block model.

4. INTERPRETATION

Although the results of the previous section follow dirgdtom
the boundary conditions from equation {(17), they do not &ixpl
the resulting change in the spectral structure of the inftieck
model. This section gives an interpretation of the previ@ssilts
based on tools from basic control theory, i.e. transfer tionc
formulation and feedback analysis.

4.1. Transfer Function For mulation

Now apply the procedure from Séc. B.3 for a discrete-timelblo
model:

e design a discrete-time model with boundary conditions of
second kind.

e turn it into a model with boundary conditions of third kind
by termination with a suitable admittance.

Yol 2) Vas(l, 2)
b3\l,
g2
g1
Yb3 (l, Z)

ng (l7 Z)
Figure 6: Block model with boundary conditions of third kind

Fig.[6 shows the discrete-time version of Fig.V4.(l, z) and
Yu2(l, 2) arez-transforms of discrete-time approximatians|[l, k|
andywnz2|[l, k] of their continuous counterparts. (I, t) andypz (1, t).
Corresponding relations hold f&f,3 (1, z) andYus(l, z). H(z) is
the transfer function of a discrete approximation of théritisted
system with boundary conditions of the second kind with eesp
to its port variables, i.e.

_ sz(l, Z) _
Vbz(l,z)

N(z)

H(z) D)

(18)

N(z) and D(z) denote the numerator and the denominator poly-
nomial, respectively.

The form of H(z) depends on the kind of discrete-time ap-
proximation of the distributed system. An example for airzeal
tion with the functional transformation method is given iacS
tion[4.2. Other physical modeling methods like e.g. thetdigi
waveguide method [6, 7] yield different transfer functiomih
similar behavior.

4.2. Example: Functional Transformation Method

The functional transformation method (FTM) is used for phys
cal modeling digital sound synthesis of resonating stmestlike
strings, bars, air columns, membranes, plates, and alil&arts
from a PDE description of the continuous-time, continuspaee
model and derives a discrete-time model in the form of a paral
lel arrangement of simple transfer functions. More detailghe
procedure and examples for the use of multidimensionabfean
function models can be found in/[2, 8].

Here it is sufficient to show the complex representation of a
typical configuration in Fid.]7. It consists of a parallelargement
of first order systems with complex feedback coefficieptand
further multipliersb,, andc,, derived from certain eigenvalue prob-
lems[2] 8]. These eigenvalue problems (so-called Sturountiile
problems) consider the boundary conditions of the systesre h
boundary conditions of the second kind.

The transfer function of a single first order system is

z duz

H, =b
u(z) v a,  z-—a,

with d,, = buc, . (19)

The complete transfer function is given by the sum ofMélfirst
order systems from (19) as (see FFig. 7)

N
>
zZ—ay

p=1

H(z) =) Hu(2) = (20)
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< Vbz(z)

Yb2 (Z)

&
J
Y

Figure 7: Structure of the discrete-time implementatiohieced
with the FTM, see for instance [8]. A finite number &f first
order transfer functions with complex feedback coefficigntare
arranged in parallel.

The denominatoD(z) of (20) is the product of the denomi-
natorsz — a,, of the first order systems (1.9)

D) =1|l(z—a). (21)
v=1
The transfer functior (z) from (20) turns with
D N
Du) = A IIG-a) (22)
v#p
into
- d.zD,(z)  N(z)
0o =X toain b @
with the numerator
(24)

N(z) = deuDu(z) .

4.3. Feedback Analysis

In Sec! 3 it has been shown that boundary conditions of tid thi
kind can be realized by external termination of a system with
boundary conditions of the second kind. Now the relatiomieen

the transfer functions

_ Yie(lz) _ N(2) _ Yoa(l,2) _ Nug(2)

is derived, wherdi, (1, z), Yz (1, z) andVis(l, 2), Yus(l, z) cor-
respond to Fid.]6. Contrary to the example in $ecl. 4.2 no ipeci
implementation off (z) is assumed.

The lattice structure from Fi 6 is represented in matritano

tion by (seel(14) and (16))

1 g7t Yia(l,2) \ _ [ Yus(l,2)
( o 1 ) < Vel 2) >—< Via(l2) ) (26)
or
Yie(l,2) + g7 "Vea(l,z) = Vis(l,z2) (27)
g2§/b2(l7 Z) + ng(l7 Z) = Yb3(l, Z) (28)

The transfer functionH,3(z) follows from the division of [(28)
by (27) as (some arguments are omitted for convenience)

_ Yis g2Yb2 + Vo

H, = = == 29
bS(Z) ng Yb2 +g1_1Vb2 ( )
Dividing by V4,2 and using[(1B) gives
N(z)
g2H(2) +1 9250 +1
Hyps(2) = — . — . (30)
H(Z)+gl ! gézi g1 !
Multiplying by D(z) results in
92N(z) + D(2)
Hy3(z) = — . (31)
N(z) + g7 ' D(2)
Multiplication with g, finally gives
D(z) + g2N(2) N3z (2)
H = . 32
W =N BL NG Du() O

Thus the transfer function for boundary conditions of thiedth
kind Hys(z) is expressed by the numeratdk(z) and denomi-
natorD(z) of the transfer function for boundary conditions of the
second kind.

Investigating the denominator &fy,3(z) yields the interpreta-
tion of the spectral effect of the external termination. ©@bsly,
the resonances df,3(z) are given by the poles of the denomina-
tor polynomial Dy3(z)

Dyp3(2) = D(2) + g1 N(z) . (33)
Therefore the real coefficiemgt allows to shift the pole locations
according to the boundary conditions of third kind in eqo{i15).
The effect of the external termination is shown by exampigbé
next section.

5. RESULTS

For a more intuitive illustration of the results from the yioais
sections, the modeling scenario as depicted in[Fig. 8 isieghpl
The underlying PDE is the wave equation as given in (10). The
input of the model isy»(0,¢) while it is solved for the output
variabley, (I, t). According to the definition of the vectorial out-
comey(x,t)in this corresponds to the particle velocity at the
left side as the input and the pressure at the right side fimuou

Y1 (Oat) Y1 (l7t)
FTM realization Y 01
—— L 4
y2(07t) y2(l7t)
f f "
0 l

Figure 8: Sketch of the complete spatially one-dimensibiatk
model. The boundary consists of two poinis € {0;(}.

The boundary conditions at the left side are of the secordi kin
while the boundary conditions on the right side are adjustaia
the parametey;. As well known from basic acoustics|[9, |10],
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boundary conditions of third kind (as given in (15)) dirgatbrre- 6. CONCLUSIONS
spond to a specific reflection factar In this scenario, this factor
can be calculated by The consideration of a simple example showed that models wit
14 adjustable boundary conditions can be built from multidisienal
a=_19 (34) transfer functions with fixed boundary conditions. Thisutess
1 —cg important for the practical application of physical modgli It

wherec is the speed of sound in the medium. A discrete realiza- is feasible to design components of musical instruments fitte
tion of the model is achieved with the FTM (see [8] for instanc  physical description of resonating structures. Althouggirtim-

The sampling period” is chosen to result itV = 17 first or- plementation requires the assumption of fixed boundaryitond
der systems, one witt, equal to zero and eight pairs of complex for a correct mathematical description, the spectral pit@gsecan
conjugate systems. The resulting discrete time transfestion be adjusted through proper port termination or, more génleya
suitable connection to other modeling blocks.
G(z) = Yi(l,2) (35) These results have been obtained by considering one-dimen-
Y2(0, z) sional transfer functions between suitably chosen poitotes.

is depicted in Fig. © for four different reflection coeffictenThe ~ Thetechnique of calculating the denominator polynomiai tefed-
transfer function in Fig. 9(a) represents boundary coouitiofthe ~ back structure from the corresponding open-loop transiectfon
second kind at: = [. The model obviously represents a comb IS ngl-known in cqntrol theory as the root locus methoq. (‘Ton
filter what is the expected behavior, as the traveling waveper-  Sidering the modeling block of a resonating structure witiedi
fectly reflected at all boundaries. The other extremum isateg boundary conditions as an open loop system (in control ténes
in Fig. 9(d), where the reflection coefficientis zero. The right ~ Plant), itis possible to adjust the properties of the closed loap s
side absorbs all incoming waves as good as possible, sucthéha tem only by variations in the feedback path (twatroller).

impulse response from (0, ¢) to y1(l,¢) is a simple Dirac im-
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