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ABSTRACT

Block based physical modeling requires to provide a libraryof
modeling blocks for standard components of real or virtual mu-
sical instruments. Complex synthesis models are built by connect-
ing standard components in a physically meaningful way. These
connections are investigated for modeling a resonating structure as
a distributed parameter system. The dependence of a resonator’s
spectral structure on the termination of its ports is analyzed. It is
shown that the boundary conditions of a distributed parameter sys-
tem can be adjusted by proper termination only. Examples show
the corresponding variation of the resonator’s spectral structure in
response to variations of the external termination.

1. INTRODUCTION

1.1. Block Based Physical Modeling

There is a rich set of tools available for digital sound synthesis:
wavetable synthesis, frequency modulation (FM), additiveand sub-
tractive synthesis, granular and concatenative synthesis, and vari-
ous flavors of physical modeling. Rather than generating more
and more new synthesis methods, recent advances have focused
on the combination of different synthesis methods. In the context
of physical modeling, a methodology for the block-wise synthesis
of virtual musical instruments has been developed under thename
of block based physical modeling.

Block based modeling separates the tasks ofcomponent de-
sign andmodel building. Component design means that various
components of real or virtual instruments like strings, membranes,
air columns, piano hammers, mallets, etc. are modeled and im-
plemented independently of each other. The resulting component
models (theblocks) are stored in a block library for later use.
Model building means to built a virtual instrument from its com-
ponents by selecting the appropriate blocks from the library and to
connect them in a meaningful way. An overview on methods and
synthesis tools for block based modeling can be found in [1] and
the literature cited there; a detailed account of the fundamentals is
given in [2].

1.2. Signals and Ports

This procedure is well known from signal based simulation envi-
ronments like SIMULINK or programming languages for audio
signals like Pure Data (PD). The block structure in these imple-
mentations resembles signal flow graphs known from systems and
control theory. Blocks for processing signals have well defined
inputs and outputs. The connection of the output of one blockto
the input of the next one does not change the values of the output

signal. This property is easy to implement in software but itis also
shared by specialized hardware like analog modular synthesizers.
In detail, electronic circuitry with low output impedance and high
input impedance ensures that the output signal is not affected by
connections to a limited number of inputs.

The situation is different when the blocks model physical com-
ponents. At first, the related quantities (e.g. pressure andparticle
velocity in a pipe) are not per se given as input or output signals.
Furthermore, connecting two blocks will affect all relatedquanti-
ties. This situation is usually described by so called ports, a com-
bination of two or more variables like pressure and flow, force and
velocity, or voltage and current. Connecting two physical model-
ing blocks means to connect the respective port variables, which
in turn will change the behavior of both blocks.

1.3. Boundary Conditions

Designing blocks for physical modeling frequently requires to con-
sider distributed parameter systems like strings, membranes, and
air columns. Their implementation is based on a mathematical
description in the form of partial differential equations (PDEs)
and their respective boundary conditions. In musical instruments,
boundary conditions are given e.g. by the fixing of a string, amem-
brane, or a plate, or by the termination of an air column. The
type of boundary conditions determines the sound of a resonat-
ing structure, as is well known from string, brass, and woodwind
instruments or from organ pipes.

Boundary conditions of distributed parameter systems are
closely related to the port variables of their block implementa-
tions. In short, the port variables are the values of the block model
at the interface to the outside world, i.e. to other block models.
Conditions on the port variables imposed by block connections or
terminations constitute the boundary conditions for the distributed
parameter block. Examples are the excitation of a string, which
is zero at a fixed end or the pressure in a pipe which is zero at an
open end.

The mathematical literature classifies boundary conditions of
the first, second, and third kind [3, 4]. Boundary conditionsof
the first and second kind prescribe the values of port variables or
their derivatives. Boundary conditions of the third kind prescribe
relations between the port variables. These relations may be real
or complex valued and are given in terms of reflection factorsor
impedances. Methods for the investigation of resonance modes
in a one-dimensional medium with two resistive boundaries have
been compared in [5].
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1.4. Connecting Blocks

At this point, the separation of component design and model build-
ing discussed above poses a problem which is the topic of this
contribution: During component design, i.e. when a distributed
parameter model is implemented, the boundary conditions for the
use of this component for model building are not known. More-
over, a certain block has to work in a physically meaningful way
in different kinds of connections.

However mathematical rigor requires that the boundary condi-
tions are included in the definition of a distributed parameter model
in order to constitute a properly posed problem. This means that a
distributed parameter block at first has to be designed and imple-
mented for a certain set of boundary conditions and later used in
block connections which impose other boundary conditions.

This problem can also be expressed in musical terms. When
a block model of e.g. a string with fixed ends is connected with
another block, e.g. a sound board, will the spectral structure of
the block model change accordingly? Is it sufficient to provide the
correct port connections to the existing blocks or is it necessary to
redesign the string model?

This problem is discussed here for a specific case. A block
model for an air column with standard boundary conditions ister-
minated by an external component and the resulting spectralprop-
erties are investigated. The answer to the question above isgiven
by formulating the problem as a feedback structure and by analyz-
ing it in terms of basic control theory.

2. PROBLEM DESCRIPTION

This section describes the problem in general terms. Block mod-
els of distributed parameter systems are introduced, the boundary
conditions are formulated, and an example for wave propagation
is presented.

2.1. Block Models of Distributed Parameter Systems

A general distributed parameter system with one spatial dimen-
sion is shown in Fig. 1. It may represent a vibrating string, an
air column, or another type of waveguide. The spatial coordinate
is denoted byx, the model is defined within the one-dimensional
spatial regionV = [0, l] with the boundary∂V = {0; l}. For all
boundary pointsxb ∈ ∂V , i.e. xb ∈ {0; l}, the behavior is de-
termined by two physical variablesy1(xb) andy2(xb). They con-
stitute the port variables introduced above. These variables may
represent force and deflection, pressure and particle velocity, or
other pairs of across and through variables, depending on the na-
ture of the distributed system. Two of these variables are sufficient
to describe simple resonating structures. More involved models
with more than two variables can be investigated in the same way,
but they are not discussed here.

The internal behavior of the system in Fig. 1 is described in
terms of a vector partial differential equation (1). The vectory(x, t)
consists of the two variablesy1(x, t) andy2(x, t), the vectorv(x, t)
describes a possible excitation function. The matricesB1 andB2

describe the partial differential operators in detail. An example is
given in Sec. 2.3.

[

B1
∂

∂x
+ B2

∂

∂t

]

y(x, t) = v(x, t) , x ∈ V (1)

0 l
x

y1(l, t)

y2(l, t)

y1(0, t)

y2(0, t)

Figure 1: Sketch of a spatially one-dimensional block model. The
boundary consists of two pointsxb ∈ {0; l}.

The port variables, i.e. the the outcome at the boundariesy(x, t)
for x = xb are given by

y(0, t) =

(
y1(0, t)
y2(0, t)

)

, y(l, t) =

(
y1(l, t)
y2(l, t)

)

. (2)

2.2. Boundary Behavior

The port variables are neither inputs nor outputs in the sense that
e.g.y1(xb) is independent ofy2(xb) and y2(xb) is determined
only by y1(xb). If the port variablesy(x, t) for x = xb are con-
nected to the port variables of another block, then their values are
determined by the interaction of both blocks.

This interaction happens instantly for continuous-time systems.
For discrete-time systems, it is necessary to ensure computability
by avoiding delay-free loops. To this end, the elements ofy(xb, t)
or combinations thereof have to be divided into input and output
variables. The formal description of this division requires to intro-
duce the normal component of the differential operator (see[2])

Bn = n1B1 + n2B2 (3)

with the normal vector

nb =

(
n1

n2

)

. (4)

This notation allows for rather general boundary conditions includ-
ing time-varying boundaries. For the consideration of boundary
conditions at time-invariant boundary points,nb has the values

nb =

(
−1

0

)

for x = 0, nb =

(
1
0

)

for x = l ,

(5)

such that

Bn = ±B1 . (6)

Now the boundary inputs and boundary outputs can be defined
by introducing the boundary input operatorfb and the boundary
output operatorfo, both are two-element column vectors. They
define the input signalvb(xb) and the output signalyb(xb) at the
boundaryxb as

f
H
b Bnyb(xb) = vb(xb) input, (7a)

f
H
o Bnyb(xb) = yb(xb) output. (7b)

The superscriptH denotes the Hermitian vector or matrix. For real
valued boundary operators, it is equal to the transposed vector.
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The boundary input operatorfb and the boundary output oper-
atorfo can be combined to a matrix representation to replace (7a,7b)
by

(
fb fo

)H
Bny(xb) =

(
vb(xb)
yb(xb)

)

. (8)

This definition of input and output values is only meaningfulif
vb(xb) andyb(xb) are not identical, i.e. if

rank
{(

fb fo
)H

Bn

}

= rank {Bn} . (9)

Fig. 2 shows the relation (8) between the port variables at
x = l and the input and output signalsvb(l, t) andyb(l, t). The
assignment between the port variables and the input and output sig-
nals is defined by the boundary input operatorfb and the boundary
output operatorfo. Only the port atx = l is considered here.
Similar results hold also for the port atx = 0 with the appropiate
normal vector from (5).

y1(l, t)

y2(l, t)

vb(l, t)

yb(l, t)

(
fb fo

)H

Figure 2: Spatial one-dimensional model with a specific boundary
behavior described by equation (8).

2.3. Example: Wave Equation

As an example serves an air column with sound pressurep =
p(x, t), particle velocityv = v(x, t), mass density̺ 0, and speed
of soundc. A simple distributed parameter model is given by
[

I0
︸︷︷︸

B1

∂

∂x
+

(
0 −1

−1/c2 0

)

︸ ︷︷ ︸

B2

∂

∂t

] (
p

−̺0v

)

︸ ︷︷ ︸

y

=

(
0

−fe

)

︸ ︷︷ ︸

v

(10)

where the underbraces indicate the corresponding vectors and ma-
trices of the general system (1).

The normal component of the differential operator according
to (6) is given by

Bn = ±B1 = ±I0 , (11)

whereI0 denotes the identity matrix.
Meaningful boundary input and output operators have to sat-

isfy the rank condition

rank
{(

fb fo
)}

= rank {I0} = 2 (12)

If the case of hard reflecting walls on both sides (i.e. atx = 0
andx = l) is considered as boundary condition, then the parti-
cle velocity at the boundary must be zero. If (10) is regardedas
a PDE in terms of the sound pressure then these boundary condi-
tions are of the second kind (Neumann boundary conditions).This
assumption implies together with the rank condition (12)

(
fb2 fo2

)
=

(
0 1
1 0

)

, (13)

and thus the following assignment between port variables and the
input and output signals

(
0 1
1 0

) (
y1(l, t)
y2(l, t)

)

=

(
vb2(l, t)
yb2(l, t)

)

. (14)

The subscriptsb2 ando2 denote boundary conditions of the sec-
ond kind. The relation (14) is shown graphically in Fig. 3 by spe-
cializing the boundary operators from Fig. 2 to (13). Another type
of boundary conditions is considered in the following section.

y1(l, t)

y2(l, t)
vb2(l, t)

yb2(l, t)

Figure 3: Block model with boundary conditions of the second
kind.

3. ADJUSTABLE BOUNDARY CONDITIONS

This section describes a different kind of boundary conditions
which include adjustable parameters. If not connected to another
block, this kind of boundary conditions is equivalent to a port ter-
mination.

3.1. Boundary Conditions of the Third Kind

The assignment of boundary conditions of the second kind (14)
declares one port signal (y1(l, t)) to be the output (yb2(l, t)) and
the other port signal (y2(l, t)) to be the input (vb2(l, t)). But it
is also possible to declare a certain linear combination of the port
signals to be the output and another linear combination to bethe
input. Such an assignment corresponds to boundary conditions
of the third kind (also called Robin’s boundary conditions)and is
given by

(
fb fo

)
=

(
1 g2

g−1
1 1

)

with g1 6= g2 , (15)

whereg1 andg2 are real admittances. Their physical dimensions
have to be compatible with the port variablesy1(l, t) andy2(l, t).
The rank condition (12) requiresg1 6= g2.

The input and output variablesvb3(l, t) andyb3(l, t) are as-
signed by

(

1 g−1
1

g2 1

) (
y1(l, t)
y2(l, t)

)

=

(
vb3(l, t)
yb3(l, t)

)

. (16)

The subscriptsb3 ando3 denote boundary conditions of the third
kind.

Due to the definition of input and output variables by (16), the
port variablesy1(l, t) andy2(l, t) themselves are not computed in
a specific order. However, to establish a relation with boundary
conditions of the second kind, now consider arbitrarilyy1(l, t) as
an output variable of the port atx = l. To realize the boundary
block from Figure 2, one has to solve fory2(l, t) andyb3(l, t)

y2(l, t) = g1 · vb3(l, t) − g1 · y1(l, t) , (17a)

yb3(l, t) = 1 · y2(l, t) + g2 · y1(l, t) . (17b)

Fig. 4 shows the lattice structure of the corresponding signal flow
graph.
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y1(l, t)

y2(l, t)

vb3(l, t)

yb3(l, t)

g1

g2

Figure 4: Block model with boundary conditions of the third kind.

3.2. Port Termination

Here no connection to other blocks is considered and therefore the
input signalvb3(l, t) is zero and the output signalyb3(l, t) is not
required. Then the realization of boundary conditions of the third
kind simplifies to a termination of the port atx = l with boundary
conditions of the second kind (see Fig.3) by a negative admittance
g1 as shown in Fig. 5. Adjusting the coefficient−g1 changes the
character of this termination.

y1(l, t)

y2(l, t)

−g1

Figure 5: Simplified boundary conditions, the boundary input is
zero and the boundary output is not required.

3.3. Realization of Adjustable Boundary Conditions

Based on the results of Sec. 3.1 and 3.2, adjustable boundarycon-
ditions with a parameterg1 may be realized by block based physi-
cal modeling as follows:

• Design a standard block model according to Sec. 2.3 with
boundary conditions of second kind. According to Fig. 2
one port variable is the input variable and the other one is
the output variable. This block can be designed during com-
ponent design and stored in a block library for later use.

• For realization of adjustable boundary conditions during
model building, use the previously designed block and ap-
ply an external termination to its port atx = l. It consists of
a feedback of the scaled port output back to the port input.
The scaling multiplier may be any real number. According
to Fig. 4 and Fig. 5 this procedure realizes boundary condi-
tions of the third kind from an existing block model.

4. INTERPRETATION

Although the results of the previous section follow directly from
the boundary conditions from equation (17), they do not explain
the resulting change in the spectral structure of the initial block
model. This section gives an interpretation of the previousresults
based on tools from basic control theory, i.e. transfer function
formulation and feedback analysis.

4.1. Transfer Function Formulation

Now apply the procedure from Sec. 3.3 for a discrete-time block
model:

• design a discrete-time model with boundary conditions of
second kind.

• turn it into a model with boundary conditions of third kind
by termination with a suitable admittance.

H(z)

Yb2(l, z)

Vb2(l, z)

Vb3(l, z)

Yb3(l, z)

g1

g2

Figure 6: Block model with boundary conditions of third kind.

Fig. 6 shows the discrete-time version of Fig. 4.Vb2(l, z) and
Yb2(l, z) arez-transforms of discrete-time approximationsvb2[l, k]
andyb2[l, k] of their continuous counterpartsvb2(l, t) andyb2(l, t).
Corresponding relations hold forVb3(l, z) andYb3(l, z). H(z) is
the transfer function of a discrete approximation of the distributed
system with boundary conditions of the second kind with respect
to its port variables, i.e.

H(z) =
Yb2(l, z)

Vb2(l, z)
=

N(z)

D(z)
. (18)

N(z) andD(z) denote the numerator and the denominator poly-
nomial, respectively.

The form ofH(z) depends on the kind of discrete-time ap-
proximation of the distributed system. An example for a realiza-
tion with the functional transformation method is given in Sec-
tion 4.2. Other physical modeling methods like e.g. the digital
waveguide method [6, 7] yield different transfer functionswith
similar behavior.

4.2. Example: Functional Transformation Method

The functional transformation method (FTM) is used for physi-
cal modeling digital sound synthesis of resonating structures like
strings, bars, air columns, membranes, plates, and alike. It starts
from a PDE description of the continuous-time, continuous-space
model and derives a discrete-time model in the form of a paral-
lel arrangement of simple transfer functions. More detailson the
procedure and examples for the use of multidimensional transfer
function models can be found in [2, 8].

Here it is sufficient to show the complex representation of a
typical configuration in Fig. 7. It consists of a parallel arrangement
of first order systems with complex feedback coefficientaµ and
further multipliersbµ andcµ derived from certain eigenvalue prob-
lems [2, 8]. These eigenvalue problems (so-called Sturm-Liouville
problems) consider the boundary conditions of the system, here
boundary conditions of the second kind.

The transfer function of a single first order system is

Hµ(z) = bµcµ

z

z − aµ

=
dµz

z − aµ

with dµ = bµcµ . (19)

The complete transfer function is given by the sum of allN first
order systems from (19) as (see Fig. 7)

H(z) =
N∑

µ=1

Hµ(z) =
N∑

µ=1

dµz

z − aµ

. (20)
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Vb2(z)

Yb2(z)

bµ

aµ

cµ

z−1

Figure 7: Structure of the discrete-time implementation achieved
with the FTM, see for instance [8]. A finite number ofN first
order transfer functions with complex feedback coefficientaµ are
arranged in parallel.

The denominatorD(z) of (20) is the product of the denomi-
natorsz − aµ of the first order systems (19)

D(z) =
N∏

ν=1

(z − aν) . (21)

The transfer functionH(z) from (20) turns with

Dµ(z) =
D(z)

(z − aµ)
=

N∏

ν=1

ν 6=µ

(z − aν) (22)

into

H(z) =
∑

µ

dµzDµ(z)

(z − aµ)Dµ(z)
=

N(z)

D(z)
, (23)

with the numerator

N(z) = z
∑

µ

dµDµ(z) . (24)

4.3. Feedback Analysis

In Sec. 3 it has been shown that boundary conditions of the third
kind can be realized by external termination of a system with
boundary conditions of the second kind. Now the relation between
the transfer functions

H(z) =
Yb2(l, z)

Vb2(l, z)
=

N(z)

D(z)
, Hb3(z) =

Yb3(l, z)

Vb3(l, z)
=

Nb3(z)

Db3(z)
.

(25)

is derived, whereVb2(l, z), Yb2(l, z) andVb3(l, z), Yb3(l, z) cor-
respond to Fig. 6. Contrary to the example in Sec. 4.2 no specific
implementation ofH(z) is assumed.

The lattice structure from Fig. 6 is represented in matrix nota-
tion by (see (14) and (16))

(

1 g−1
1

g2 1

) (
Yb2(l, z)
Vb2(l, z)

)

=

(
Yb3(l, z)
Vb3(l, z)

)

(26)

or

Yb2(l, z) + g−1
1 Vb2(l, z) = Vb3(l, z) (27)

g2Yb2(l, z) + Vb2(l, z) = Yb3(l, z) . (28)

The transfer functionHb3(z) follows from the division of (28)
by (27) as (some arguments are omitted for convenience)

Hb3(z) =
Yb3

Vb3
=

g2Yb2 + Vb2

Yb2 + g−1
1 Vb2

. (29)

Dividing by Vb2 and using (18) gives

Hb3(z) =
g2H(z) + 1

H(z) + g−1
1

=
g2

N(z)
D(z)

+ 1

N(z)
D(z)

+ g−1
1

. (30)

Multiplying by D(z) results in

Hb3(z) =
g2N(z) + D(z)

N(z) + g−1
1 D(z)

. (31)

Multiplication with g1 finally gives

Hb3(z) = g1
D(z) + g2N(z)

D(z) + g1N(z)
=

Nb3(z)

Db3(z)
. (32)

Thus the transfer function for boundary conditions of the third
kind Hb3(z) is expressed by the numeratorN(z) and denomi-
natorD(z) of the transfer function for boundary conditions of the
second kind.

Investigating the denominator ofHb3(z) yields the interpreta-
tion of the spectral effect of the external termination. Obviously,
the resonances ofHb3(z) are given by the poles of the denomina-
tor polynomialDb3(z)

Db3(z) = D(z) + g1N(z) . (33)

Therefore the real coefficientg1 allows to shift the pole locations
according to the boundary conditions of third kind in equation (15).
The effect of the external termination is shown by examples in the
next section.

5. RESULTS

For a more intuitive illustration of the results from the previous
sections, the modeling scenario as depicted in Fig. 8 is applied.
The underlying PDE is the wave equation as given in (10). The
input of the model isy2(0, t) while it is solved for the output
variabley1(l, t). According to the definition of the vectorial out-
comey(x, t) in (10) this corresponds to the particle velocity at the
left side as the input and the pressure at the right side for output.

0 l
x

y1(l, t)

y2(l, t)

y1(0, t)

y2(0, t)

FTM realization −g1

Figure 8: Sketch of the complete spatially one-dimensionalblock
model. The boundary consists of two pointsxb ∈ {0; l}.

The boundary conditions at the left side are of the second kind,
while the boundary conditions on the right side are adjustable via
the parameterg1. As well known from basic acoustics [9, 10],
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boundary conditions of third kind (as given in (15)) directly corre-
spond to a specific reflection factorα. In this scenario, this factor
can be calculated by

α =
1 + cg1

1 − cg1
, (34)

wherec is the speed of sound in the medium. A discrete realiza-
tion of the model is achieved with the FTM (see [8] for instance).
The sampling periodT is chosen to result inN = 17 first or-
der systems, one withaµ equal to zero and eight pairs of complex
conjugate systems. The resulting discrete time transfer function

G(z) =
Y1(l, z)

Y2(0, z)
(35)

is depicted in Fig. 9 for four different reflection coefficients. The
transfer function in Fig. 9(a) represents boundary conditions of the
second kind atx = l. The model obviously represents a comb
filter what is the expected behavior, as the traveling waves are per-
fectly reflected at all boundaries. The other extremum is depicted
in Fig. 9(d), where the reflection coefficientα is zero. The right
side absorbs all incoming waves as good as possible, such that the
impulse response fromy2(0, t) to y1(l, t) is a simple Dirac im-
pulse. The de facto transfer function in Fig. 9(d) however isnot
constant for all frequencies, as only 17 modes are considered in
the simulation. Figs. 9(b) and 9(c) show intermediate casesfor
α = 0.8 andα = 0.5.

Obviously there is a gradual variation of the spectral properties
of the system in Fig. 8, although the air column model itself does
not change. The variations of the transfer functionG(ejΩ) are
only caused by adjusting the feedback coefficientg1.
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(b) α = 0.8
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(c) α = 0.5
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(d) α = 0

Figure 9: Normalized transfer functionG(z) from (34) evaluated
at the unit circlez = ejΩ. The transfer function is depicted for
different reflection coefficientsα, which directly result from the
feedback coefficientg1 through (35).

6. CONCLUSIONS

The consideration of a simple example showed that models with
adjustable boundary conditions can be built from multidimensional
transfer functions with fixed boundary conditions. This result is
important for the practical application of physical modeling. It
is feasible to design components of musical instruments from the
physical description of resonating structures. Although their im-
plementation requires the assumption of fixed boundary conditions
for a correct mathematical description, the spectral properties can
be adjusted through proper port termination or, more general, by
suitable connection to other modeling blocks.

These results have been obtained by considering one-dimen-
sional transfer functions between suitably chosen port variables.
The technique of calculating the denominator polynomial ofa feed-
back structure from the corresponding open-loop transfer function
is well-known in control theory as the root locus method. Con-
sidering the modeling block of a resonating structure with fixed
boundary conditions as an open loop system (in control termsthe
plant), it is possible to adjust the properties of the closed loop sys-
tem only by variations in the feedback path (thecontroller).
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