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ABSTRACT 

This paper describes an approach to using compactly supported 
spline wavelets to model the residual signal in a real-time (frame-
by-frame) spectral modelling system. The outputs of the model are 
time-varying parameters (gain, centre frequency and bandwidth) for 
filters which can be used in a subtractive resynthesis system.  

1. INTRODUCTION 

Extraction of the sinusoidal part of an audio signal, leaving a resid-
ual, is a common approach to spectral modelling [1]. Whereas the 
sinusoidal part of the signal consists of long-term, narrow-band 
components, the residual is comprised of both long- and short-term 
broad-band components.  Systems have been proposed that separate 
these two types of residual component, classifying them as tran-
sients or noise, such as in [2]. A multiresolution approach to resid-
ual modelling, such as that offered by wavelets, can enable the good 
time localisation required for transients, along with the generality 
required for more stationary components. This paper introduces 
such an approach. 
 
The analysis system described here was developed for use in a real-
time spectral modelling system. In this context real-time means 
frame-by-frame; decisions about model parameters are made, and 
time-domain resynthesis is executed, within the current frame to 
minimise the delay between input and output. Because it produces 
complex analysis data it is possible to obtain estimates for the cen-
tre frequency of components. Also, through use of the wavelet split-
ting method which is used in wavelet packet decomposition, the 
bandwidth of components can be estimated. This allows the resyn-
thesis filters to adapt their time-frequency localisation properties to 
the analysed signal. B-spline wavelets are used since they also offer 
control over the time-frequency localisation of the analysis filters. 
 
Whilst critically sampled orthogonal wavelets are often useful in 
situations where sparseness in the analysis data is required, for 
analysis-modelling-transformation applications over-complete (re-
dundant) wavelet representations are usually more desirable. How-
ever such representations come at greater computational cost and 
highly redundant analysis may well be prohibitively expensive in a 
real-time application where the analysis-modelling-transformation-
resynthesis cycle for a single frame must take less time than for that 
frame to be played out and the next frame to be acquired. To offer 
some mediation between cost and redundancy a ‘partially deci-
mated’ transform is used where the amount of decimation can be 
controlled by the user (and potentially by the system in response to 
other processing demands). 

Section 2 of this paper provides an introduction to the existing lit-
erature that describes B-spline wavelets and their properties. Sec-
tion 3 gives an overview of the context in which they are used here 
and the spectral subtraction method used to obtain the residual. 
Section 4 describes the complex wavelet system employed while 
Section 5 assesses its cost and proposes partial decimation as a way 
of offering flexibility in this regard. Section 6 presents a method for 
estimating the bandwidth of components of the residual. Section 7 
briefly describes a context in which the system is employed. 

2. B-SPLINE WAVELETS 

This section summarises the existing literature on B-splines and 
their associated wavelets. For further information the reader is di-
rected to the references cited, particularly [3], [4] and [5].  
 
A B-spline (‘basis’ spline) curve through a set of points consists of 
the linear combination of shifted B-spline basis functions of a given 
order. A zeroth order spline curve is constructed from a series of 
constant functions at the height of each data point. A first order 
spline curve is constructed from a series of straight lines that join 
each data point. A second order spline curve is constructed from a 
series of quadratic functions that span three data points and so on, 
with each ‘piece’ of the curve having its own weighting coefficient, 
meaning that a function can be described by: 
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Higher orders are obtained by repeated (m times) convolution of the 
zeroth order B-spline. For example the cubic (third order) B-spline 
is obtained by convolution of the zeroth order with itself three 
times. An order m B-spline can be found directly (without convolu-
tion) from: 
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where  
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is the one-sided power function [3]. It should be noted that, for high 
order splines, there are stability problems when using (3) with finite 
precision. A version of (3) which exploits the symmetry inherent in 
the repeated convolution of a box function is proposed and used 
here. This is given by 
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The constant (zeroth order) B-spline basis leads to a model which is 
not continuous (since it is piecewise constant). The first order basis 
offers a continuous (piecewise linear) underlying model but it is not 
smooth since the first derivative is not continuous. The second order 
(quadratic) basis is continuous and smooth but its rate of change of 
curvature (second derivative) changes in a piecewise constant fash-
ion. The third order (cubic) basis exhibits the ‘minimum curvature 
property’ since the second derivative is continuous and so for many 
applications the cubic B-spline is considered the most appropriate 
underlying continuous piecewise function. However, if better fre-
quency localisation is required (at the cost of poorer time localisa-
tion) then the B-spline order can be increased. 
 
For the m order B-spline wavelet transform the scaling and wavelet 
functions and their associated discrete filter sequences are given by 
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where 2 [ ]
m

u n , the interpolation (approximation) filter, is the bino-

mial kernel of order m given by 
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and g[n], the wavelet (detail) filter, is given by 
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where 
m

b is the mth order B-spline sampled at the integers [4], [6]. 
Figure 1 shows the wavelet functions associated with B-splines of 
order zero (the Haar wavelet), one, three and twenty, at scale one. 
 

 

Figure 1: Underlying wavelet functions for B-splines of dif-
ferent orders. The horizontal axis values are samples. 

As the order of the B-spline increases so the shape of the 
wavelet function tends to a modulated Gaussian (Gabor 
function) which has optimum time-frequency localisation 
properties. For a cubic B-spline it has been shown that the 
error in approximating a Gabor function is less than 3% and 
the localisation is within 2% of the optimum [5]. Unfortu-
nately only the zeroth B-spline wavelet transform is energy 
preserving. At higher orders the wavelet and scaling filters 
are not the power complements of each other. Figure 2 
shows the magnitude responses of these filters for orders 
zero, one and three. This lack of orthogonality can be over-
come by over-sampling in both time (partial or no decima-
tion) and scale domain (parallel transforms of the input at 
different sample rates) and by taking account of the ap-
proximate Gaussian shape of the filters in the Fourier do-
main. Knowledge of the filter shape, along with estimation 
of a component’s width and centre frequency, allows for 
magnitude correction of estimates [8]. 

 

Figure 2: Magnitude response of wavelet and scaling filters 
at orders zero (solid line), one (dashed) and three (dotted). 

3. DERIVATION OF THE RESIDUAL 

The real-time spectral modelling system in which the analysis 
method described here is used is discussed in [7] and described in 
detail in [8]. The system models and synthesizes the sinusoidal part 
of monophonic audio signals as successive non-overlapping frames 
with piecewise quadratic phase and piecewise linear amplitude on a 
frame by frame basis. Only the phase is aligned between frames for 
continuing sinusoids; discontinuities in frequency and amplitude at 
synthesis frame boundaries are usually very small due to the high-
accuracy analysis method employed.  
 
The Spectral Modelling Synthesis system (SMS, see [1]) uses time 
domain subtraction to produce the residual; the entire sinusoidal 
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signal is synthesized and subtracted from the original input signal. 
An advantage of this approach is that having a time domain repre-
sentation of the residual means that spectral analysis of it can be 
performed with optimised parameters, such as a shorter analysis 
frame, for what is assumed to be a stochastic signal. In a real-time 
system which produces output from input on a frame by frame basis 
it is not possible to employ this approach. Unless there is no overlap 
between frames (only possible with a rectangular window) the syn-
thesis and analysis frames will be of a different length and so short-
time time domain subtraction is not available either. For this reason 
spectral subtraction is employed here to calculate the residual sig-
nal. Once this has been performed the data is finally transformed 
back to the time domain in analytic form after Hilbert transforma-
tion in the Fourier domain, ready for the complex B-spline wavelet 
analysis described in this paper. 
 
An assumption of SMS is “that the residual is fully described by its 
amplitude and its general frequency characteristics. It is unneces-
sary to keep either the instantaneous phase or the exact spectral 
shape information” [9]. Augmentations of the SMS model to in-
clude a third signal component type (transients) acknowledge that 
this assumption is not valid in some cases [2]. Whilst it is the case 
that for long term stationary noise the phase spectrum does not 
contain important information the situation for short duration broad 
band (i.e. impulsive) components is that both the phase and magni-
tude are needed to retain perceptually relevant fast changing tempo-
ral detail. The spectral modelling technique used here for the resid-
ual is intended to be capable of capturing the temporal detail of 
transient components and the spectral resolution of longer term 
stochastic components. Since both the phase and magnitude of non-
sinusoidal components remain intact after spectral subtraction, the 
inherent timing information contained within these components is 
passed onto the complex wavelet analysis combining both transient 
and long term noise in the one model. 
 
Time domain subtraction is a straightforward and, provided the 
instantaneous frequencies and amplitudes of the sinusoids are well 
predicted by the model, effective operation. Spectral subtraction is a 
more complex process since individual sinusoidal components are 
not represented by individual points in the Fourier domain. Finite 
length windowing smears components into multiple bins and non-
stationarity exacerbates this: frequency change widens the main 
lobe and amplitude change narrows the main lobe but increases the 
level of side lobes, increasing the spread of energy to distant bins. A 
single sinusoid is represented by a single complex number in the 
Fourier domain only in a very specific situation: a rectangular 
analysis window is used, the analysed sinusoid has stationary ampli-
tude and frequency and its frequency coincides exactly with the 
centre of an analysis bin (i.e. the length of the analysis window is an 
integer multiple of the sinusoidal period). 
 
In [10] a spectral subtraction technique was described which was 
developed for use in a transform based thresholding process, 
Wavethresh. This technique used knowledge of the window power 
spectrum to predict the contribution made to adjacent bins made by 
a stationary sinusoid for a given deviation of the sinusoid’s fre-
quency from that of the bin centre. This was necessary since 
Wavethresh used a non zero-padded FFT. This produces large varia-
tions in energy localisation around a sinusoidal peak for different 
deviations of the mean frequency from that of the centre of the 
analysis bin. For the sinusoidal analysis employed here a zero-
padding factor of 8 is used which significantly reduces the variation 

in energy localisation. In fact the number of bins that require zero-
ing in order to produce a desired level of attenuation does not 
change as a function of the distance of a component from the centre 
frequency of an analysis bin (for example 30 bins either side of, and 
including, the sinusoidal peak require zero-ing to achieve 48 dB of 
attenuation for an 8 times zero-padded 1025 sample frame, regard-
less of frequency).  
 
Since the spectral data is available in zero-padded form there are 
two approaches that can be taken to obtain a time domain version of 
the residual: decimation in the frequency domain or in the time 
domain. Following inverse transformation decimation in time is 
performed by discarding samples beyond the time support of the 
analysis window. Since the spectral subtraction process can spread 
some of the remaining component energy outside the support of the 
analysis window this also helps to reduce the sinusoidal energy in 
the residual signal. The disadvantage of not decimating before 
transformation to the time domain is the increased cost of the IFFT. 
The time domain decimation method is used here since this greatly 
simplifies the spectral subtraction process and offers much greater 
consistency in the relationship between the number of bins that are 
zeroed and the attenuation of deterministic components. 
 
Non-stationarity must also be accounted for in the spectral subtrac-
tion process. Frequency non-stationarity causes a widening of the 
main lobe but there is little change in the energy contained in distant 
bins. There is no analytic method for expressing a window’s power 
spectrum where there is frequency non-stationarity. However, the 
number of bins that need to be zeroed for a given level of attenua-
tion for a particular intra-frame frequency change can be reasonably 
well modelled by a second order polynomial as shown in Figure 3.  
This illustrates the number of bins, actual and predicted, that need 
to be zeroed to produce an attenuation of 48 dB for a given fre-
quency change. 
 

 
Figure 3: Number of bins zeroed either side of peak to produce an 
attenuation of -48 dB for a non-stationary sinusoid versus amount 
of intra-frame frequency change. 
 
Amplitude non-stationarity can produce a significant de-localisation 
in the Fourier domain of a sinusoidal component. This is due to the 
localisation in the time domain that is produced by the amplitude 
change; the greater the amplitude change, the more impulse-like the 
component becomes. The more impulsive a component becomes the 
less energy it contains compared to a stationary sinusoid with the 
same peak amplitude. A positive amplitude change localises energy 
at the end of the frame and negative change localises energy at the 
beginning of a frame. These are the parts of the frame that experi-
ence the greatest attenuation when a window is applied.  
The lower energy in a component with non-stationary amplitude 
combined with the attenuation introduced by the windowing process 
offsets the energy spreading in the Fourier domain: although zero-
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ing a given number of bins produces less attenuation for a compo-
nent with non stationary amplitude this loss of attenuation is com-
pensated. This is illustrated in Figure 4 which shows the attenuation 
produced by spectral zeroing of 60 bins and the attenuation pro-
duced by the amplitude non-stationarity.  It can be seen that the 
combined attenuation actually falls as the amplitude change in-
creases. For this reason the intra-frame amplitude change for a sinu-
soidal component is not considered in the spectral subtraction proc-
ess. 
 

 
 
Figure 4: Maximum component energy for a given amplitude due to 
intra-frame amplitude change (dotted line), energy reduction due to 
spectral subtraction (dashed) and combined attenuation (solid) 

4. COMPLEX B-SPLINE WAVELET ANALYSIS 

Once the spectrum of the residual has been obtained via the subtrac-
tion process described in the previous section its analytic time do-
main version is computed. First the Hilbert transform is performed 
in the Fourier domain by 
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where N is the zero-padded transform size. The inverse transform is 
then computed and the output truncated so that it is the same length 
as the input frame. Then the B-spline wavelet transform is applied 
separately to the real and imaginary parts of the analytic signal. The 
reasons for this approach are twofold. Firstly, a major advantage of 
the B-spline wavelets is their compact support (both for computa-
tional speed and because only short-frames are being analysed). By 
having two parts of the analytic signal of the same length and ana-
lysing these separately with the B-spline filters a saving, in terms of 
the convolutional demands, is made over analysing the same real 
signal with two different transforms, one of whose filters would not 
be compactly supported. Secondly, since the data is already in the 
Fourier domain the Hilbert transform can be easily implemented at 
very little additional cost. 
 
When the wavelet transform is considered as a multiresolution 
analysis (MRA) the sampled sequence which forms the input to the 
transform is considered to be the approximation of the underlying 
continuous signal at scale 0. However, this sequence is not the 
equivalent of projection of the continuous function (in this case 
band-limited by the anti-aliasing filter) on to the vector subspace 
that this scale represents. Projection is achieved by convolution of 
the input with a filter that is the inner product of the sinc function 

and the dual scaling function (the scaling function itself if the trans-
form is orthogonal rather than biorthogonal) [11]. For the B-spline 
case this is achieved by convolution of the input with the sampled 
B-spline of the same order as that of the B-spline transform to be 
applied [4].  
 
As discussed in Section 2 the B-spline wavelet approximates a Ga-
bor function. The centre frequency of the wavelet is given by 
 

 0
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where k is the analysis scale and 0f  = 0.4092 [5]. However it has 

been found here that (11) fails at scale 1 and that correct initialisa-
tion is only achieved by multiplication in the Fourier domain of the 
input with 
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which is the Fourier transform of the continuous, rather than sam-
pled, B-spline of order m. If (12) is implemented in the Fourier 
domain then (11) holds at all scales including 1 and since the data is 
already in the Fourier domain there is no more expense in this filter-
ing operation, despite the far fewer coefficients of the sampled B-
spline filter in the time domain. Figure 5 shows the frequency re-
sponse of the wavelet at scale 1 for both initialisation filters for a 
cubic B-spline. In this figure the shape given by the filter calculated 
from (12) is visually indistinguishable from the Gaussian function it 
approximates. 
 

 
Figure 5: Normalised magnitude response of the cubic B-spline 
wavelet at scale 1 for initialisation of the input sequence by the 
sampled (solid line) and continuous (dotted) cubic B-splines. The 
sample rate of the input sequence is 44.1 kHz. 
 
With this improved initialisation a multiresolution analysis is 
achieved which is akin to an atomic decomposition with Gabor 
functions which are successively dilated by a factor of 2. Since the 
critically sampled decomposition of Mallat is achieved by decima-
tion of coefficients at each scale, aliasing is present and the trans-
form is shift-variant [12]. A shift-invariant, non-aliased alternative 
to the decimated transform is the ‘algorithme à trous’ (algorithm 
with holes). This algorithm achieves dilation of the underlying 
wavelet and scaling functions by inserting a zero (placing a hole) in 
between each sample of the filters, rather than by decimating their 
outputs, at each successive scale [13]. Figure 6 shows the time do-
main, and Figure 7 the Fourier domain, shape of the wavelet filters’ 
impulse responses at the first five analysis scales for a 1025 sample 
frame. Some spreading of the response in Figure 6 can be observed 
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at scale 1, this is an unavoidable artefact of the Hilbert transform 
due to its inherent band-limiting of the signal. 
 

 
Figure 6: The undecimated time-domain magnitude response of the 
complex cubic B-spline wavelet for an impulse at the centre of a 
1025 sample frame. The responses widen with increasing scale. 
 

 
Figure 7: Magnitude responses derived from Figure 6. The sample 
rate for this and subsequent plots  is 44.1 kHz. 
 
As is the case for the DFT, the mean instantaneous frequency of a 
spectral component can be estimated using the complex wavelet 
transform, particularly since the wavelet used so closely approxi-
mates a windowed sinusoid. Reassignment is used for frequency 
estimation for the prior sinusoidal analysis in this system since an 
estimate can be obtained from a single analysis frame [10]. Unlike 
the STFT the wavelet transform provides more than one coefficient 
at each scale (apart from the highest scale of a critically sampled 
wavelet transform). This implies that the mean instantaneous fre-
quency can be estimated from the first order difference of the phase 
between consecutive coefficients in a given scale within a single 
frame:  
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for an undecimated transform, where n is the index at the scale k, 
and φ  is the phase, of the coefficients, and 
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for a decimated transform. The kth power of 2 in (14) is present 
since the temporal distance between indices is doubled for each 
increment in scale. Whilst (14) is effective for the lower half of the 
frequency band occupied by each scale, a correction must be ap-
plied to prevent negative frequency estimates in the upper half: 
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An additional problem when using the decimated transform is alias-
ing caused by high energy in nearby out-of-scale components. A 
straightforward solution to this problem is to not decimate the out-
put detail coefficients at each scale. Whilst this doubles the number 
of coefficients produced at each scale it does not increase the com-
putational burden since the detail coefficients are not used in further 
iterations of the decimated algorithm, it is only the approximation 
coefficients that are used recursively. This prevents aliasing at scale 
1 however aliasing still occurs at higher scales since the number of 
detail coefficients at each scale is reduced by decimation of the 
approximation coefficients at the previous scale. The ideal solution 
is to use the undecimated transform however this comes at a signifi-
cantly increased cost than its decimated counterpart.  
 
Circular convolution is not desirable for time-scale analysis since 
the purpose is to describe where events occur in (linear) time. In 
this analysis system the synthesis frame width is determined by the 
frame overlap. If frames overlap then encroachments due to circular 
convolution near frame boundaries can be ignored; the greater the 
overlap factor, the more samples that can be ignored near the 
boundaries. For example, with an overlap factor of 4 and a frame 
size of 1025 the wavelet coefficients of concern correspond to the 
middle 257 samples of the frame. However where circular convolu-
tion is employed a component is likely at higher scales, where the 
filter response is longer, to wrap into the region of interest. There-
fore, for short-time wavelet analysis, circular time within frames, as 
opposed to linear time, makes matching of components at synthesis 
frame boundaries difficult. Although linear convolution is more 
expensive than its circular counterpart, since it increases the length 
of the output of each scale and, therefore, the input to the next scale, 
it is better suited to this application.  

5. TRANSFORM COST AND PARTIAL DECIMATION 

The costs of the decimated and undecimated transforms are now 
considered in terms of the number of multiply and add operations 
for the linear convolution case. For the mth order spline wavelet the 
length of the low and high pass filters in samples, at scale 1 are 
given by: 
 

 LPF 2L m= +  (16) 

 HPF 3 2L m= +  (17) 

 
When a sequence of length S is convolved with a filter of length L 
the length of the output is 1S L+ − . For the undecimated transform 
the input sequence at one scale is the approximation of the previous 
scale which is achieved by convolution with the dilated low pass 
filter. Therefore, for the undecimated transform, the sequence 
length before low pass filtering at scale k is given by: 
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where N is the analysis frame length. This gives a total cost for the 
transform of: 
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where K is the total number of scales. For the decimated transform 
the filter output is decimated at each scale and so the sequence 
length at scale k, before filtering and decimation, is given by: 
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Allowing for rounding up of numbers of coefficients when an odd 
length sequence is decimated the approximate total cost is given by: 
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In order to offer some mediation between these two extremes the 
partially decimated wavelet transform is proposed here. The princi-
ple is straightforward: the algorithm begins by filtering the signal 
and inserting holes into the filter until a given decomposition level 
(scale) is reached, at which point the filter remains the same and the 
output is decimated for subsequent iterations. The only other wave-
let analysis that combines decimated and undecimated transforms in 
this way is the over complete DWT (OCDWT) described in [14]. 
However, this system begins with decimation and then at higher 
scales switches to filter dilation. This order is reversed in the system 
proposed here since this reduces shift variance at all scales.  
 
Equations (18) – (21) can be combined to calculate the cost of the 
partially decimated transform. The cost of calculating the undeci-
mated scale coefficients can be calculated directly from (19) where 
N is the length of the input sequence and K = U is the number of 
undecimated scales. The cost of calculating the subsequent deci-
mated coefficients is given by a modified version of (21): 
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where D is the number of decimated scales and undecN is the length 

of the final approximation sequence output from the undecimated 
part of the transform, given by (18) where 1k U= + , which is then 
halved (since this sequence is decimated before the next filtering 

stage).  dLPFL is the length of the dilated LPF and is given by 
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Figure 8: Time-domain magnitude response at scale 8 of the com-
plex cubic B-spline wavelet transform for differing amounts of deci-
mation. 

Figure 8 shows the time domain magnitude response at scale 8 for 
an impulse in the centre of the analysis frame for different ratios of 
numbers of decimated to undecimated scales. 

6. SPLIT WAVELETS FOR BANDWIDTH ESTIMATION 

The frequency-splitting ‘trick’ described in [15], and used to pro-
duce the full binary tree decomposition used in wavelet packets, is 
used here to produce estimates of the bandwidth of components at 
each scale. At one extreme, the instantaneous mean centre frequen-
cies of the scale filter and the two split filters will coincide for an 
impulse in the frequency domain and, at the other, their centre fre-
quencies will be the same as those of the fixed filters for an impulse 
in the time domain. Therefore the proximity of the derived centre 
frequencies for the two complex split filters can be used to estimate 
the width of the underlying component. 
 
For the undecimated transform the split at each scale is achieved by 
filtering of the detail coefficients at that scale. The filters are ob-
tained by dilation by a factor of two of the high and low pass filters 
used to derive the approximation and detail coefficients. For the 
decimated transform the split can be achieved by convolution of the 
decimated detail coefficients with the existing filters. However this 
would produce fewer split than scale coefficients meaning that there 
could not be a one-to-one mapping of a scale coefficient to its lower 
and upper split coefficients. Therefore, in the split implementation 
described here, the filters are dilated and the scale coefficients left 
undecimated whether the split is occurring for a decimated or un-
decimated scale in the partially decimated transform. It should be 
noted that where splitting is performed then not decimating the 
detail coefficients at each scale (discussed earlier as a method of 
reducing aliasing) will increase the computational cost. 
 
Splitting at a given scale is achieved by convolution of the detail 
signal with the low and high pass wavelet filters dilated by a factor 
of two from those used to generate the approximation and detail 
coefficients at that scale. Dilation of a filter’s impulse response in 
the time domain is equivalent to an equal contraction of its response 
in the frequency domain. Therefore the frequency responses of the 
split wavelets’ filters are given by: 
 

 ( ) ( )
lower scale scale(2 )HPFω ω ωΨ = Ψ  (24) 

 ( ) ( )
upper scale scale(2 )LPFω ω ωΨ = Ψ  (25)

   
where Ψ and XPF are the Fourier transforms of the various filters. 
The perhaps counter-intuitive result that the upper split wavelet is 
produced by convolution with the LPF and the lower split by con-
volution with the HPF is explained by the fact that it is the aliased 
(reflected) parts of the filters’ frequency responses (which are con-
tracted by a factor of 2 in the above equations) that coincide with 
the region where the response of the wavelet filter is greatest. The 
upper part of Figure 9 shows the magnitude frequency responses of 
the wavelet and its upper and lower splits at scale 1. The lower part 
of this figure shows the shape of the underlying continuous func-
tions. As would be expected of the dilation and convolution opera-
tions of the splitting operations, the split wavelets have greater time 
support but are more localised in frequency than the parent wavelet. 
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Figure 9: Magnitude frequency response (top) and time domain 
shape of cubic B-spline wavelet and its splits at scale 1. 
 
The centre frequencies of the split wavelets at each scale are given 

by (11) where 0f  = 0.2919 for the lower and 0.4678 for the upper 

splits respectively [8]. Therefore the maximum difference (i.e. that 
due to an impulse) between split filters at scale k is given by: 
 

 
1

0.1760

2

s

k

F
f

−
∆ =  (26) 

 
Figure 10 illustrates how differences between frequency estimates 
at a single scale occur where a component has spectral breadth. The 
frequency estimates at scale 1 for the wavelet and its splits are 
shown for a sinusoid and for a single impulse which occurs in the 
middle of the frame (sample 513). There is a clearly visible differ-
ence in estimates for the impulse whereas, at the same scaling of the 
vertical axis, there is no difference in estimates for a stationary 
sinusoid. 
 

 
Figure 10: Frequency estimates for a sinusoid (top) and an impulse 
at the centre of the frame (bottom). 
 
The cost of the split transform is the cost of the non-split transform, 
given by equations (18) to (23), plus the cost of filtering that pro-
duces the splits at each scale. The split at each scale is achieved by 
high pass filtering of the detail coefficients at that scale followed by 
high and low pass filtering with filters which are dilated by a factor 
of two from those used to produce the approximations and details at 

that scale. For the undecimated transform the sequence length, kNs   

(the s indicates ‘split’), before the high and low pass split filtering is 
given by: 
 

 ( )( ) ( )
1

1

1

1 2 2 1
k

n k

k LPF k HPF
n

Ns N L N L
−

−

=

= + − = + −∑  (27) 

 
and so the combined cost of the all the splitting stages is given by: 

 

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )( )

1

1 1

1

1

2 1

( 1)(2 1 ) 1 2

( 1)(2 1 ) 1 2 1

j j

K K
k

LPF HPF LPF HPF HPF
k k

K
k k

LPF HPF LPF HPF
k

K K
LPF HPF LPF HPF

Cs L L Ns L L N L

L L NK L K L

L L NK L K L

−

= =

−

=

= + = + + −

= + + − − − + −

= + + − − − + − −

∑ ∑

∑
 (28) 

 
and the total cost of the transform is given by adding (19) and (28). 
For the decimated transform the sequence prior to splitting is the 
detail sequence at that scale. This is given by 
 

 ( )( 1)
2 1 2

k

k LPF LPF HPFNs N L L L
− −

= − + + + −    (29) 

 
and the total cost of the splitting stage is given by adapting (21): 
 

( ) ( ) ( )( ) ( )( )( 1)1 1 2 2 1K
LPF HPF LPF LPF HPFC L L L N L J LK − −= + − + − + − + − (30) 

 
The total cost of the split decimated transform is given by adding 
(21) and (30). The cost of the splitting stage of the partially deci-
mated transform can be calculated for the undecimated levels by the 
same sum. The cost of splitting at the decimated levels is given by a 
modification of (30) 
 

( )
( ) ( )( ) ( )( )( 1)1 1 2 2 1

LPF HPF

K
dLPF undec dLPF dHPF

C L L

K L N L K L− −

= +

− + − + − + −×

 (31) 

 

where 
dHPF

L is given by 

 

 ( ) 1
1 2 1

U

dHPF HPFL L
−

= − +  (32) 

 
Finally, the total cost of the partially decimated split wavelet trans-
form is given by adding (22) and (32). Figure 11 shows the compu-
tational cost of the split and un-split, decimated and undecimated 
complex cubic spline wavelet transforms for linear convolution. For 
comparison the cost of a 1024 and 8192 point FFT are also shown. 
 

 
Figure 11: Number of complex multiply and odd operations re-
quired for various complex cubic B-spline wavelet transforms of a 
1025 sample frame. 
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7. APPLICATION 

The complex wavelet analysis system described is able to adapt to 
different types of input component. The frame-by-frame spectral 
modelling system in which it is used employs biquadratic paramet-
ric equalisers applied to a white noise source for resynthesis of the 
residual.  Two examples are now given which demonstrate how this 
system performs on different types of input signal. The top part pf 
Figure 12 shows a resynthesized sequence of unity impulses. In this 
case the time localisation is good, with energy focussed in a small 
number of samples. At the other extreme the bottom part shows the 
time domain input, output and magnitude frequency response of a 
stationary sinusoid. Although such a component is unlikely to form 
part of the residual, it demonstrates the ability of the resynthesis 
filters to adapt their bandwidth to give good frequency localisation 
and to shift their centre frequency to that of the input component. 
This time-frequency adaptation is made possible by the bandwidth 
estimation described in this section.  
 
Figure 13 demonstrates how the residual synthesis can adapt in a 
single frame. The time localisation at the onset is good but this 
changes to good frequency localisation later on in the frame (the 
analysis overlap factor is 2 so the synthesis frame is half the size of 
the analysis frame). During the last half of the frame the sinsusoidal 
oscillator ramps on exponentially, ‘taking over’ from the residual 
synthesis by the next frame. 
 

 

 
Figure 12: Residual resynthesis of time domain (top) and frequency 
domain impulses (bottom). 
 

 
Figure 13: Windowed sinusoid with sudden onset (top), residual 
after spectral subtraction (middle) and resynthesized residual (bot-
tom).  

8. SUMMARY 

A multiresolution analysis system which produces estimates of 
magnitude, mean instantaneous frequency and bandwidth of com-
ponents, and is suited to a residual modelling system has been pre-
sented and placed in the context of a frame-by-frame spectral mod-
elling system. The properties of the wavelet analysis, its cost, and 
partial decimation as a means of negotiating between computational 
cost and shift-variance\aliasing have been described. Further work 
will look at how the synthesis and analysis filters can be better 
matched whilst retaining the simplicity of the resynthesis method. A 
more detailed treatment and analysis of the work presented here 
(including measures of aliasing and shift-invariance for different 
levels of partial decimation) can be found in [8]. 

9. REFERENCES 

[1] X.Serra, “A System for Sound 
Analysis/Transformation/Synthesis Based on a Deterministic 
plus Stochastic Decomposition”, PhD thesis, Stanford Univer-
sity, USA, 1989. 

[2] T. Verma and T. Meng, “An Analysis\Synthesis Tool for 
Transient Signals”, Computer Music Journal, vol. 24, pp. 47-
59, Summer 2000. 

[3] M. Unser, “Splines, A Perfect Fit for Signal and Image Proc-
essing”, IEEE Signal Processing Magazine, pp. 22-38, No-
vember 1999. 

[4] M. Unser et al, “A Family of Polynomial Spline Wavelet 
Transforms”, Signal Processing, vol. 30, pp. 141-162, January 
1993. 

[5] M. Unser et al, “On the Asymptotic Convergence of B-Spline 
Wavelets to Gabor Functions”, IEEE Trans. on Information 
Theory, vol. 38, pp. 864-872, March 1992. 

[6] C. Chui and J. Wang, “On Compactly Supported Spline Wave-
lets and a Duality Principle”, Trans. of the American Mathe-
matical Society, vol. 330, pp. 903-915, April 1992. 

[7] J. Wells and D. Murphy, “High-Accuracy Frame-by-Frame 
Non-Stationary Sinusoidal Modelling”, Proc. of the Int. Conf. 
on Digital Audio Effects (DAFx-06), pp.253-258, 2006. 

[8] J. Wells, “Real-Time Spectral Modelling of Audio for Creative 
Sound Transformation”, PhD Thesis, University of York, 
January 2006, Available at http://www.jezwells.org 

[9] X. Amatriain, “Spectral Processing”, chapter in (ed. Zölzer), 
DAFX – Digital Audio Effects, John Wiley, Chichester, 2002. 

[10] J. Wells and D. Murphy, “Real-Time Spectral Expansion for 
Creative and Remedial Sound Transformation”, Proc. of the 
Int. Conf. on Digital Audio Effects (DAFx-03), pp. 61-64, 
2003. 

[11] P. Abry and P. Flandrin, “On the Initialization of the Discrete 
Wavelet Transform”, IEEE Signal Processing Letters, vol. 1, 
pp. 32-34, February 1994. 

[12] S. Mallat, “A Wavelet Tour of Signal Processing”, Academic 
Press, San Diego, 1999. 

[13] M. Shensa, “The Discrete Wavelet Transform: Wedding the À 
Trous and Mallat Algorithms”, IEEE Trans. on Sig. Proc., vol. 
40, pp. 2464-2482, October 1992. 

[14] A. Bradley, “Shift-Invariance in the Discrete Wavelet Trans-
form”, Proc. of the 7th Conf. on Digital Image Computing: 
Techniques and Applications, pp. 29-38, December 2003. 

[15] I. Daubechies, “Ten Lectures on Wavelets”, Society for Indus-
trial and Applied Mathematics, Philadelphia, 1992. 


