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ABSTRACT

This paper describes an approach to using compaatyported
spline wavelets to model the residual signal irea-time (frame-
by-frame) spectral modelling system. The outputthefmodel are
time-varying parameters (gain, centre frequencykamtiwidth) for
filters which can be used in a subtractive resysithgystem.

1. INTRODUCTION

Extraction of the sinusoidal part of an audio sigleaving a resid-
ual, is a common approach to spectral modelling \\fereas the
sinusoidal part of the signal consists of long-temarrow-band
components, the residual is comprised of both I@mgt short-term
broad-band components. Systems have been profiedeskparate
these two types of residual component, classifyimgm as tran-
sients or noise, such as in [2]. A multiresolutagproach to resid-
ual modelling, such as that offered by wavelets,ar@able the good
time localisation required for transients, alonghwihe generality
required for more stationary components. This papgpduces
such an approach.

The analysis system described here was developeséoin a real-
time spectral modelling system. In this contextl-teme means
frame-by-frame; decisions about model parametezsnaade, and
time-domain resynthesis is executed, within theremtrframe to
minimise the delay between input and output. Bezauproduces
complex analysis data it is possible to obtainmestés for the cen-
tre frequency of components. Also, through uséefwavelet split-
ting method which is used in wavelet packet decaition, the

bandwidth of components can be estimated. Thisvallihe resyn-
thesis filters to adapt their time-frequency logation properties to
the analysed signal. B-spline wavelets are usex shey also offer
control over the time-frequency localisation of #ralysis filters.

Whilst critically sampled orthogonal wavelets atften useful in
situations where sparseness in the analysis dateqisred, for
analysis-modelling-transformation applications evemplete (re-
dundant) wavelet representations are usually mesgable. How-
ever such representations come at greater commahtcost and
highly redundant analysis may well be prohibitivekpensive in a
real-time application where the analysis-modellirazrsformation-
resynthesis cycle for a single frame must taketiess than for that
frame to be played out and the next frame to beieed, To offer

some mediation between cost and redundancy a afigrtieci-

mated’ transform is used where the amount of degmacan be
controlled by the user (and potentially by the sgsin response to
other processing demands).

Section 2 of this paper provides an introductiorhi® existing lit-
erature that describes B-spline wavelets and {h@iperties. Sec-
tion 3 gives an overview of the context in whiclk\thare used here
and the spectral subtraction method used to olifenresidual.
Section 4 describes the complex wavelet system aragl while
Section 5 assesses its cost and proposes paciglat®n as a way
of offering flexibility in this regard. Section Ggsents a method for
estimating the bandwidth of components of the resdidSection 7
briefly describes a context in which the systemngployed.

2. B-SPLINE WAVELETS

This section summarises the existing literatureBagplines and
their associated wavelets. For further informatioe reader is di-
rected to the references cited, particularly [8],dnd [5].

A B-spline (‘basis’ spline) curve through a setpoints consists of
the linear combination of shifted B-spline basisdiions of a given
order. A zeroth order spline curve is constructennfa series of
constant functions at the height of each data pdinfirst order

spline curve is constructed from a series of ditaliges that join

each data point. A second order spline curve istcocted from a
series of quadratic functions that span three paiats and so on,
with each ‘piece’ of the curve having its own weigh coefficient,

meaning that a function can be described by:

f() =D, (B (x- K @)

kOz

where ,Bm is the B-spline curve of order m angk) are the
weighting coefficients. The zeroth order B-spliagjiven by
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Higher orders are obtained by repeateditnes) convolution of the
zeroth order B-spline. For example the cubic (tluirder) B-spline
is obtained by convolution of the zeroth order witkelf three
times. An ordem B-spline can be found directly (without convolu-
tion) from:
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where

(x)T:{X X0 (4

0,x<0

is the one-sided power function [3]. It should ln¢eal that, for high
order splines, there are stability problems whengu€3) with finite
precision. A version of (3) which exploits the syetny inherent in
the repeated convolution of a box function is psgmband used
here. This is given by

m
1 mtl/ m+1 m+1
ﬁ'“(x):—Z( ) j(—l)k(—IXI—k+ . ) (5).

m! k=0 +

The constant (zeroth order) B-spline basis leadsrtmdel which is
not continuous (since it is piecewise constantg fitst order basis
offers a continuous (piecewise linear) underlyingded but it is not
smooth since the first derivative is not continuditge second order
(quadratic) basis is continuous and smooth butiks of change of
curvature (second derivative) changes in a pieeeadsnstant fash-
ion. The third order (cubic) basis exhibits thenimmum curvature
property’ since the second derivative is continuanig so for many
applications the cubic B-spline is considered thastrappropriate
underlying continuous piecewise function. Howevemhetter fre-
quency localisation is required (at the cost ofrpodime localisa-
tion) then the B-spline order can be increased.

For them order B-spline wavelet transform the scaling ardelet
functions and their associated discrete filter seges are given by

00

B (x/2)= D u B (x-n 6)
w(¥2)= 2. dns" (x- 1) ™

where u;n [n] , the interpolation (approximation) filter, is théeno-
mial kernel of ordem given by

1 ({m+1
m W , 0sm<n+1
u, [ =42 n (8)

0, otherwise

andg[n], the wavelet (detail) filter, is given by

ot =da* ((2)" d n} ((2)"87Em) @

where b™ is themth order B-spline sampled at the integers [4], [6].

Figure 1 shows the wavelet functions associatetl ®isplines of
order zero (the Haar wavelet), one, three and yaiscale one.
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Figure 1:Underlying wavelet functions for B-splines of dif-
ferent orders. The horizontal axis values are sasipl

As the order of the B-spline increases so the slodpbe
wavelet function tends to a modulated Gaussian ¢Gab
function) which has optimum time-frequency locdiiza
properties. For a cubic B-spline it has been shtian the
error in approximating a Gabor function is lesstB& and
the localisation is within 2% of the optimum [5]nfdrtu-
nately only the zeroth B-spline wavelet transfosnenergy
preserving. At higher orders the wavelet and sgdiiters
are not the power complements of each other. Figure
shows the magnitude responses of these filterorders
zero, one and three. This lack of orthogonality barover-
come by over-sampling in both time (partial or rezitha-
tion) and scale domain (parallel transforms of itigut at
different sample rates) and by taking account ef &ip-
proximate Gaussian shape of the filters in the ieowto-
main. Knowledge of the filter shape, along withirestion

of a component’s width and centre frequency, alldors
magnitude correction of estimates [8].

o
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Figure 2:Magnitude response of wavelet and scaling filters
at orders zero (solid line), one (dashed) and tHckmted).

3. DERIVATION OF THE RESIDUAL

The real-time spectral modelling system in whicke thnalysis
method described here is used is discussed inn@]dascribed in
detail in [8]. The system models and synthesizessthusoidal part
of monophonic audio signals as successive nonameirig frames
with piecewise quadratic phase and piecewise lingglitude on a
frame by frame basis. Only the phase is aligneddset frames for
continuing sinusoids; discontinuities in frequerasyd amplitude at
synthesis frame boundaries are usually very smadltd the high-
accuracy analysis method employed.

The Spectral Modelling Synthesis system (SMS, &feuges time
domain subtraction to produce the residual; théreersinusoidal
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signal is synthesized and subtracted from the malginput signal.

An advantage of this approach is that having a timmain repre-
sentation of the residual means that spectral aisabf it can be
performed with optimised parameters, such as atehanalysis

frame, for what is assumed to be a stochastic kigna real-time

system which produces output from input on a fréyné&ame basis
it is not possible to employ this approach. Untbsse is no overlap
between frames (only possible with a rectanguladaw) the syn-

thesis and analysis frames will be of a differemgith and so short-
time time domain subtraction is not available gitff®r this reason
spectral subtraction is employed here to calculaeresidual sig-
nal. Once this has been performed the data islyfiti@nsformed

back to the time domain in analytic form after lditbtransforma-

tion in the Fourier domain, ready for the complesBine wavelet

analysis described in this paper.

An assumption of SMS is “that the residual is fudlyscribed by its
amplitude and its general frequency characteristics unneces-
sary to keep either the instantaneous phase oexhet spectral
shape information” [9]. Augmentations of the SMSdabto in-

clude a third signal component type (transient®hawledge that
this assumption is not valid in some cases [2]. I8Vl is the case
that for long term stationary noise the phase spectdoes not
contain important information the situation for ghauration broad
band (i.e. impulsive) components is that both thase and magni-
tude are needed to retain perceptually relevabhtfamnging tempo-
ral detail. The spectral modelling technique useceHor the resid-
ual is intended to be capable of capturing the tealpdetail of

transient components and the spectral resolutiotomder term

stochastic components. Since both the phase andituae of non-

sinusoidal components remain intact after spestatraction, the
inherent timing information contained within thesemponents is
passed onto the complex wavelet analysis combibatly transient
and long term noise in the one model.

Time domain subtraction is a straightforward anchvjgled the
instantaneous frequencies and amplitudes of thessids are well
predicted by the model, effective operation. Smecmbtraction is a
more complex process since individual sinusoidahponents are
not represented by individual points in the Foudemain. Finite
length windowing smears components into multiplesbénd non-
stationarity exacerbates this: frequency changeengdthe main
lobe and amplitude change narrows the main lobénou¢ases the
level of side lobes, increasing the spread of gnerglistant bins. A
single sinusoid is represented by a single complaxber in the
Fourier domain only in a very specific situation:rectangular
analysis window is used, the analysed sinusoicsta®nary ampli-
tude and frequency and its frequency coincides tgxadgth the

centre of an analysis bin (i.e. the length of thalysis window is an
integer multiple of the sinusoidal period).

In [10] a spectral subtraction technique was dbedriwhich was
developed for use in a transform based thresholdgiracess,

WavethreshThis technique used knowledge of the window power

spectrum to predict the contribution made to adjabins made by
a stationary sinusoid for a given deviation of #ieusoid's fre-
quency from that of the bin centre. This was nemgssince
Wavethrestused a non zero-padded FFT. This produces lamig va
tions in energy localisation around a sinusoidalkptor different
deviations of the mean frequency from that of teate of the
analysis bin. For the sinusoidal analysis emplojiede a zero-
padding factor of 8 is used which significantly weds the variation

in energy localisation. In fact the number of bihat require zero-
ing in order to produce a desired level of atteiomatioes not
change as a function of the distance of a compdnemtthe centre
frequency of an analysis bin (for example 30 bitisee side of, and
including, the sinusoidal peak require zero-ingthieve 48 dB of
attenuation for an 8 times zero-padded 1025 safrqubee, regard-
less of frequency).

Since the spectral data is available in zero-padded there are
two approaches that can be taken to obtain a toneaih version of
the residual: decimation in the frequency domaininothe time
domain. Following inverse transformation decimationtime is
performed by discarding samples beyond the timgpaumf the
analysis window. Since the spectral subtractiorcgse can spread
some of the remaining component energy outsidsupeort of the
analysis window this also helps to reduce the sidas energy in
the residual signal. The disadvantage of not detimabefore
transformation to the time domain is the increasest of the IFFT.
The time domain decimation method is used heresdinis greatly
simplifies the spectral subtraction process andrsffnuch greater
consistency in the relationship between the nurobéins that are
zeroed and the attenuation of deterministic compitne

Non-stationarity must also be accounted for ingpectral subtrac-
tion process. Frequency non-stationarity causesdanmg of the
main lobe but there is little change in the energytained in distant
bins. There is no analytic method for expressingralow’s power
spectrum where there is frequency non-stationaHtywever, the
number of bins that need to be zeroed for a giegallof attenua-
tion for a particular intra-frame frequency chawge be reasonably
well modelled by a second order polynomial as showfigure 3.
This illustrates the number of bins, actual anddjoted, that need
to be zeroed to produce an attenuation of 48 dBafgiven fre-
quency change.
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Figure 3: Number of bins zeroed either side of peak to predrc
attenuation of -48 dB for a non-stationary sinusee&tsus amount
of intra-frame frequency change.

Amplitude non-stationarity can produce a significde-localisation

in the Fourier domain of a sinusoidal components Thdue to the
localisation in the time domain that is producedthy amplitude

change; the greater the amplitude change, the immealse-like the

component becomes. The more impulsive a comporeaines the
less energy it contains compared to a stationamyssid with the

same peak amplitude. A positive amplitude changaliges energy
at the end of the frame and negative change lesaésergy at the
beginning of a frame. These are the parts of thmdrthat experi-
ence the greatest attenuation when a window iseabpl

The lower energy in a component with non-stationamplitude

combined with the attenuation introduced by thedwiming process
offsets the energy spreading in the Fourier domalthough zero-
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ing a given number of bins produces less attenudtio a compo-
nent with non stationary amplitude this loss oéitiation is com-
pensated. This is illustrated in Figure 4 whichvehithe attenuation
produced by spectral zeroing of 60 bins and thenattion pro-
duced by the amplitude non-stationarity. It canseen that the
combined attenuation actually falls as the ampdithange in-
creases. For this reason the intra-frame amplithdege for a sinu-
soidal component is not considered in the spestriairaction proc-
ess.

o

Component energy (dB)

40 60 80
Amplitude change (dB)

Figure 4: Maximum component energy for a given amplitudetdue
intra-frame amplitude change (dotted line), energguction due to
spectral subtraction (dashed) and combined atténngsolid)

4. COMPLEX B-SPLINE WAVELET ANALYSIS

Once the spectrum of the residual has been obtaindtie subtrac-
tion process described in the previous sectiomantytic time do-
main version is computed. First the Hilbert transfas performed
in the Fourier domain by

X(Kk), k= 0,5

X anayic (K) =1 2X(K), 1< ks ($)-1 (10)

0.(5)+1sksn-1

whereN is the zero-padded transform size. The inversesfioam is
then computed and the output truncated so thattita same length
as the input frame. Then the B-spline wavelet fans is applied
separately to the real and imaginary parts of tiaysic signal. The
reasons for this approach are twofold. Firstly,ganadvantage of
the B-spline wavelets is their compact support{ldfot computa-
tional speed and because only short-frames arg lagialysed). By
having two parts of the analytic signal of the sdergth and ana-
lysing these separately with the B-spline filteisaaing, in terms of
the convolutional demands, is made over analysiegsame real
signal with two different transforms, one of whdiers would not
be compactly supported. Secondly, since the daddrésdy in the
Fourier domain the Hilbert transform can be eaisilplemented at
very little additional cost.

When the wavelet transform is considered as a restiution
analysis (MRA) the sampled sequence which formsrtpet to the
transform is considered to be the approximatiothefunderlying
continuous signal at scale 0. However, this sequeacnot the
equivalent of projection of the continuous functiin this case
band-limited by the anti-aliasing filter) on to thector subspace
that this scale represents. Projection is achidyedonvolution of
the input with a filter that is the inner produdttbe sinc function

and the dual scaling function (the scaling funciigelf if the trans-
form is orthogonal rather than biorthogonal) [1Bér the B-spline
case this is achieved by convolution of the inpithwhe sampled
B-spline of the same order as that of the B-spliaasform to be
applied [4].

As discussed in Section 2 the B-spline wavelet @pprates a Ga-
bor function. The centre frequency of the wavedagiven by

f0 Fs

centrek = k-1

2

f (11)

wherek is the analysis scale anf} = 0.4092 [5]. However it has

been found here that (11) fails at scale 1 anddbatct initialisa-
tion is only achieved by multiplication in the Farrdomain of the
input with

m+1 ( ("))
F(w) = sinc — (12)
2

which is the Fourier transform of the continuowgher than sam-
pled, B-spline of ordem. If (12) is implemented in the Fourier
domain then (11) holds at all scales including d since the data is
already in the Fourier domain there is no more rgpeén this filter-
ing operation, despite the far fewer coefficientshe sampled B-
spline filter in the time domain. Figure 5 shows frequency re-
sponse of the wavelet at scale 1 for both initdii filters for a
cubic B-spline. In this figure the shape given hy filter calculated
from (12) is visually indistinguishable from the @aian function it
approximates.

1 ‘ : —

Magnitude
o
(3]

5 10 15 20
Frequency kHz)

Figure 5: Normalised magnitude response of the cubic B-spline

wavelet at scale 1 for initialisation of the inpséquence by the
sampled (solid line) and continuous (dotted) cuBisplines. The
sample rate of the input sequence is 44.1 kHz.

With this improved initialisation a multiresolutioanalysis is
achieved which is akin to an atomic decompositidath viGabor
functions which are successively dilated by a faofo2. Since the
critically sampled decomposition of Mallat is acréd by decima-
tion of coefficients at each scale, aliasing isspr¢ and the trans-
form is shift-variant [12]. A shift-invariant, noaliased alternative
to the decimated transform is the ‘algorithme aistqalgorithm
with holes). This algorithm achieves dilation ofetunderlying
wavelet and scaling functions by inserting a z@taging a hole) in
between each sample of the filters, rather thaddmymating their
outputs, at each successive scale [13]. Figureo@/sithe time do-
main, and Figure 7 the Fourier domain, shape ofwineelet filters’
impulse responses at the first five analysis sdalea 1025 sample
frame. Some spreading of the response in Figuente observed
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at scale 1, this is an unavoidable artefact ofHHbert transform
due to its inherent band-limiting of the signal.

0.25 ‘
® 0.2 // ////\\l\\ \\
ELRE //ﬂm\\ \\\
§ 0.1 // \ \\
E0.05 /// H \\\\
0%00 450 500 550 600
Sample

Figure 6: The undecimated time-domain magnitude respondeeof t
complex cubic B-spline wavelet for an impulse & tentre of a
1025 sample frame. The responses widen with incrgasale.
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Figure 7: Magnitude responses derived from Figure 6. The g&amp
rate for this and subsequent plots is 44.1 kHz.

As is the case for the DFT, the mean instantan&easiency of a
spectral component can be estimated using the esmphvelet
transform, particularly since the wavelet used Esely approxi-
mates a windowed sinusoid. Reassignment is usedrdquency
estimation for the prior sinusoidal analysis instliystem since an
estimate can be obtained from a single analysmdrfl0]. Unlike
the STFT the wavelet transform provides more thaa apefficient
at each scale (apart from the highest scale oftiaadly sampled
wavelet transform). This implies that the meanantineous fre-
guency can be estimated from the first order difiee of the phase
between consecutive coefficients in a given scathinva single
frame:

feonna = (¢detai|k 17 P detailk n) 2_5 (13)
Vs

for an undecimated transform, wheres the index at the scale
and ¢ is the phase, of the coefficients, and

FS
feonna = (¢detai|k,n+ 17 @ detailk n) - (14)
Vs

for a decimated transform. Theh power of 2 in (14) is present
since the temporal distance between indices is lddufor each
increment in scale. Whilst (14) is effective foetlower half of the
frequency band occupied by each scale, a correctiost be ap-
plied to prevent negative frequency estimateseénugbper half:

Fe — —
— =+

T _ f estimated< 0
corrected —

estimated

(15)

f f estima\ted2 0

estimated

An additional problem when using the decimateddiam is alias-

ing caused by high energy in nearby out-of-scalmpmments. A

straightforward solution to this problem is to migtcimate the out-
put detail coefficients at each scale. Whilst thosibles the number
of coefficients produced at each scale it doesnoease the com-
putational burden since the detail coefficientsraveused in further
iterations of the decimated algorithm, it is onte tapproximation
coefficients that are used recursively. This prévatiasing at scale
1 however aliasing still occurs at higher scaleseithe number of
detail coefficients at each scale is reduced byinton of the

approximation coefficients at the previous scalee Tdeal solution
is to use the undecimated transform however thisesoat a signifi-

cantly increased cost than its decimated counterpar

Circular convolution is not desirable for time-ganalysis since
the purpose is to describe where events occuririeaf) time. In
this analysis system the synthesis frame widttetsrthined by the
frame overlap. If frames overlap then encroachmeuésto circular
convolution near frame boundaries can be ignoteel;greater the
overlap factor, the more samples that can be ighorear the
boundaries. For example, with an overlap factod @nd a frame
size of 1025 the wavelet coefficients of concerrrespond to the
middle 257 samples of the frame. However whereutarcconvolu-
tion is employed a component is likely at highealss, where the
filter response is longer, to wrap into the regadrinterest. There-
fore, for short-time wavelet analysis, circular ¢iwithin frames, as
opposed to linear time, makes matching of companansynthesis
frame boundaries difficult. Although linear convidn is more
expensive than its circular counterpart, sincadtéases the length
of the output of each scale and, therefore, thetitgpthe next scale,
it is better suited to this application.

5. TRANSFORM COST AND PARTIAL DECIMATION

The costs of the decimated and undecimated transfare now
considered in terms of the number of multiply add aperations
for the linear convolution case. For timth order spline wavelet the
length of the low and high pass filters in sampkgsscale 1 are
given by:

Lipe =m+2

(16)
a7

LPF

Lypp =3m+ 2

"
When a sequence of leng®is convolved with a filter of length
the length of the output is + L-1. For the undecimated transform
the input sequence at one scale is the approximafithe previous
scale which is achieved by convolution with theatditl low pass
filter. Therefore, for the undecimated transforrhge tsequence
length before low pass filtering at scéles given by:

N, = N+(LLPF—1)§2”’1)= N+ (L -2 (27 -9 (18)

whereN is the analysis frame length. This gives a totest dor the
transform of:
K
C=(Lpe + LHPF)kZ_lNk

=(Lipr + LHPF)(NK +(('-|_PF -2 -1-K )))

(19)
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whereK is the total number of scales. For the decimataasform
the filter output is decimated at each scale andhsosequence
length at scalg, before filtering and decimation, is given by:

N =[ N2 s (L - 1) (1- 2070) ]

= |72_(k_1) (N ~Lipe * 1) +Lipe - 1—|

(20)

Allowing for rounding up of numbers of coefficientghen an odd
length sequence is decimated the approximatedostlis given by:

C=(Lipe + Lipe) D Ny (1)

=(Lier +LHPF)(K

=

TR

L

—

Lipr _l) +(N ~Lier +1)(2_ Z(Kil)))

In order to offer some mediation between these éwtoemes the
partially decimated wavelet transform is proposetehThe princi-
ple is straightforward: the algorithm begins byefing the signal
and inserting holes into the filter until a giveeacdmposition level
(scale) is reached, at which point the filter ramsaghe same and the
output is decimated for subsequent iterations. drilg other wave-
let analysis that combines decimated and undecitriedasforms in
this way is the over complete DWT (OCDWT) described14].
However, this system begins with decimation anc the higher
scales switches to filter dilation. This orderd@sersed in the system
proposed here since this reduces shift variana# stales.

Equations (18) — (21) can be combined to calcutatecost of the
partially decimated transform. The cost of caldntatthe undeci-
mated scale coefficients can be calculated dirdmiyn (19) where
N is the length of the input sequence &d U is the number of
undecimated scales. The cost of calculating thesesyent deci-
mated coefficients is given by a modified versidfai):

0 22
C:(LLPF+LHPF)%Nd (22)

=(Lipe + LHPF)(D(LdLPF =1+ (Nyndec L aupet l)( 2- 2’(D’1>))

whereD is the number of decimated scales ang,..is the length

of the final approximation sequence output from tnelecimated
part of the transform, given by (18) wheke= u +1, which is then
halved (since this sequence is decimated beforendixe filtering

stage). L, o is the length of the dilated LPF and is given by
U -1
Loer = (LLPF _1) 2 +1 (23)
0.25
0.2r
(]
So.15
£ :
& 0.1r
= ---Undecimated (0:8)
0.05- —Partially decimated (4:4)
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Figure 8: Time-domain magnitude response at scale 8 of the co
plex cubic B-spline wavelet transform for differimgnounts of deci-
mation.

Figure 8 shows the time domain magnitude responseade 8 for
an impulse in the centre of the analysis framealffferent ratios of
numbers of decimated to undecimated scales.

6. SPLIT WAVELETSFOR BANDWIDTH ESTIMATION

The frequency-splitting ‘trick’ described in [15nd used to pro-
duce the full binary tree decomposition used in eletvpackets, is
used here to produce estimates of the bandwidttom@iponents at
each scale. At one extreme, the instantaneous oedre frequen-
cies of the scale filter and the two spilit filtewdll coincide for an
impulse in the frequency domain and, at the ottheiy centre fre-
guencies will be the same as those of the fix¢erélfor an impulse
in the time domain. Therefore the proximity of ttierived centre
frequencies for the two complex split filters canused to estimate
the width of the underlying component.

For the undecimated transform the split at eactessachieved by
filtering of the detail coefficients at that scalhe filters are ob-
tained by dilation by a factor of two of the highdalow pass filters
used to derive the approximation and detail coeffis. For the
decimated transform the split can be achieved byalation of the
decimated detail coefficients with the existingefi. However this
would produce fewer split than scale coefficientsaning that there
could not be a one-to-one mapping of a scale aieffi to its lower
and upper split coefficients. Therefore, in thatdpiplementation
described here, the filters are dilated and théesmeefficients left
undecimated whether the split is occurring for aimated or un-
decimated scale in the partially decimated tramsfdt should be
noted that where splittings performed then not decimating the
detail coefficients at each scale (discussed eambea method of
reducing aliasing) will increase the computatiorgst.

Splitting at a given scale is achieved by convolutof the detail

signal with the low and high pass wavelet filteilatdd by a factor
of two from those used to generate the approximagiod detail

coefficients at that scale. Dilation of a filteifepulse response in
the time domain is equivalent to an equal contoactif its response
in the frequency domain. Therefore the frequenspeoases of the
split wavelets’ filters are given by:

(24)
(25)

qJlower (w) = qJscale((")) HPFscalgzw)

unpper ((4)) =v scale( (")) LPF scalgzw)

where W and XPF are the Fourier transforms of the various filters.
The perhaps counter-intuitive result that the upgit wavelet is
produced by convolution with the LPF and the losplit by con-
volution with the HPF is explained by the fact titas the aliased
(reflected) parts of the filters’ frequency respesmgwhich are con-
tracted by a factor of 2 in the above equationaj toincide with
the region where the response of the wavelet fitagreatest. The
upper part of Figure 9 shows the magnitude frequeesponses of
the wavelet and its upper and lower splits at stalEhe lower part
of this figure shows the shape of the underlyingtiomious func-
tions. As would be expected of the dilation andvobution opera-
tions of the splitting operations, the split wavslbave greater time
support but are more localised in frequency tharptrent wavelet.
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Figure 9: Magnitude frequency response (top) and time domain

shape of cubic B-spline wavelet and its splitscates 1.

The centre frequencies of the split wavelets ah e@ale are given
by (11) wheref, = 0.2919 for the lower and 0.4678 for the upper

splits respectively [8]. Therefore the maximum eliéince (i.e. that
due to an impulse) between split filters at séakegiven by:

0.176CF,

k-1
2

(26)

Figure 10 illustrates how differences between fesmy estimates
at a single scale occur where a component hasrapbotadth. The
frequency estimates at scale 1 for the wavelet ind@plits are
shown for a sinusoid and for a single impulse whachurs in the
middle of the frame (sample 513). There is a deaidible differ-
ence in estimates for the impulse whereas, ataime scaling of the
vertical axis, there is no difference in estimates a stationary
sinusoid.
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Figure 10: Frequency estimates for a sinusoid (top) and aruls®
at the centre of the frame (bottom).

The cost of the split transform is the cost of tlee-split transform,
given by equations (18) to (23), plus the costiltérfng that pro-

duces the splits at each scale. The split at ezale & achieved by
high pass filtering of the detail coefficients laait scale followed by
high and low pass filtering with filters which adédated by a factor
of two from those used to produce the approximatamd details at

that scale. For the undecimated transform the seguength,Ns,

(the s indicates ‘split’), before the high and Ipass spilit filtering is
given by:

k-1
NS, :(N+(LLPF _1)22n_1)= Nk+2k( LHPF_]) @7)

and so the combined cost of the all the splittitagss is given by:

K K
Cs=(Lpe + LHPF)kz:;N§:( Lpe + Lpe) 2 N*’Zk_l( lype—1)

k=1
K 0 (28)
:(LLPF+LHPF)(NK+((LLPF—1)(ZK—1—K))+(LHPF—])kz:é(
=)

= (Lipr * L) (NK+ ((Lp -2 - 1-K) # (L -9 (£ - 9)

and the total cost of the transform is given byiagld19) and (28).
For the decimated transform the sequence prioplittisg is the
detail sequence at that scale. This is given by

N = r2_(k_l) (N- Lpr * 1) + Lipe * Lype - 2—| (29)

and the total cost of the splitting stage is gibgradapting (21):
Cc= ( Lipe + LHPF)(K ( Lipe _l) +( N-Lipe +l)(2‘ 2_(K_1))+ J( Lype— :I)) (30)

The total cost of the split decimated transforngiien by adding
(21) and (30). The cost of the splitting stagela partially deci-
mated transform can be calculated for the undeeithigtvels by the
same sum. The cost of splitting at the decimateeldes given by a
modification of (30)

C =(Lipr + Lpe) 31)
X(K (LdLPF _1) +(Nundec_ L dLPF+1)(2_ 2(Kil)) * K( L orpe™ ]))
where L. is given by
U -1
Lavpr = (LHPF _l) 2 +1 (32

Finally, the total cost of the partially decimatgalit wavelet trans-
form is given by adding (22) and (32). Figure 1bwsh the compu-
tational cost of the split and un-split, decimatew! undecimated
complex cubic spline wavelet transforms for lineanvolution. For
comparison the cost of a 1024 and 8192 point FETalso shown.

x 10°
—Undecimated, split
---Decimated, split
Undecimated, non-split pd
---Decimated, split 7
—38192 point FFT (upper line)
—1024 point FFT (lower line) | _—

e

[2)]

N

Number of operations
'S
\
\

Number of gcales
Figure 11: Number of complex multiply and odd operations re-
quired for various complex cubic B-spline wavetahsforms of a
1025 sample frame.

DAFX-7



Proc. of the 10 Int. Conference on Digital Audio Effects (DAFx-0Bdrdeaux, France, September 10-15, 2007

7. APPLICATION

The complex wavelet analysis system described les tabadapt to
different types of input component. The frame-kanrfe spectral
modelling system in which it is used employs bica#id paramet-
ric equalisers applied to a white noise sourcerdsynthesis of the
residual. Two examples are now given which denratestiow this
system performs on different types of input sigfide top part pf
Figure 12 shows a resynthesized sequence of unfiylses. In this
case the time localisation is good, with energy$sed in a small
number of samples. At the other extreme the bottam shows the
time domain input, output and magnitude frequeragponse of a
stationary sinusoid. Although such a componennlgely to form
part of the residual, it demonstrates the abilitythe resynthesis
filters to adapt their bandwidth to give good fregay localisation
and to shift their centre frequency to that of ilngut component.
This time-frequency adaptation is made possibl¢hieybandwidth
estimation described in this section.

Figure 13 demonstrates how the residual synthesisadapt in a
single frame. The time localisation at the onsegded but this
changes to good frequency localisation later otha frame (the
analysis overlap factor is 2 so the synthesis frentlf the size of
the analysis frame). During the last half of thenie the sinsusoidal
oscillator ramps on exponentially, ‘taking overbrin the residual
synthesis by the next frame.
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Figure 12: Residual resynthesis of time domain (top) and feequ
domain impulses (bottom)
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Figure 13: Windowed sinusoid with sudden onset (top), residual

after spectral subtraction (middle) and resynthedizesidual (bot-
tom).

8. SUMMARY

A multiresolution analysis system which producesineses of
magnitude, mean instantaneous frequency and battdwfdcom-
ponents, and is suited to a residual modellingesydtas been pre-
sented and placed in the context of a frame-by-drapectral mod-
elling system. The properties of the wavelet ans)yits cost, and
partial decimation as a means of negotiating batveeenputational
cost and shift-variance\aliasing have been destribarther work
will look at how the synthesis and analysis filt&an be better
matched whilst retaining the simplicity of the rethesis method. A
more detailed treatment and analysis of the wodsgmted here
(including measures of aliasing and shift-invarearfor different
levels of partial decimation) can be found in [8].
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