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ABSTRACT

The diode clipper circuit with an embedded low-pass filtes lat
the heart of both diode clipping “Distortion” and “Overdgivor
“Tube Screamer” effects pedals. An accurate simulatiohisfdir-
cuit requires the solution of a nonlinear ordinary différanequa-
tion (ODE). Numerical methods with stiff stability — Backwda
Euler, Trapezoidal Rule, and second-order Backward Eiffee
Formula — allow the use of relatively low sampling rates atdhst

of accuracy and aliasing. However, these methods regenaion

at each time step to solve a nonlinear equation, and thediféde
this complexity must be evaluated against simple expli@thm
ods such as Forward Euler and fourth order Runge-Kutta, lwhic
require very high sampling rates for stability. This papawvsys
and compares the basic ODE solvers as they apply to simglatin
circuits for audio processing. These methods are compared t
static nonlinearity with a pre-filter. It is found that imgiti or semi-
implicit solvers are preferred and that the filter/statiolihtearity
approximation is often perceptually adequate.

1. INTRODUCTION

Guitarists tend to feel that digital implementations oftalison
effects sound inferior to the original analog gear. This kvat-
tempts to provide a more accurate simulation of guitar disto
and a physics-based method for designing the algorithmen th
same manner physical modeling is done for acoustic instntene
Guitar effects consists of circuits that are accuratelycdesd in
the audio frequency band by nonlinear ordinary differémttpa-
tions (ODEs). Often the circuits are comprised of lineageta
that can be efficiently implemented by infinite impulse rewe
(IIR) digital filters. The remaining nonlinear ODEs may neded
be solved by a numerical method or other approximation.

The diode clipper circuit with an embedded low-pass filter
forms the basis of both diode clipping “Distortion” and “Ove
drive” or “Tube Screamer” effects pedals[1]. An accurat@isi
lation of this circuit requires the solution of a nonlineadioary
differential equation (ODE). Numerical methods with sstébil-
ity, Backward Euler, Trapezoidal Rule, and second orderkBac
ward Difference Formula (BDF, also called Gear) allow the ok
low sampling rates at the cost of accuracy and aliasing[2jwH
ever, these methods require iteration at each time stephte ao
nonlinear equation, and the tradeoff for this complexitysirie
evaluated against simple explicit methods such as Forwaler E
and fourth-order Runge-Kutta, which require very high skmgp
rates for stability.

1.1. Related work

A nonlinear system can be represented analytically as @ivalt
series. There has been work to form finite-order Volterrasdor
simulating electronics[3,14]. However, these are intémgsbnly
for low order, whereas for highly nonlinear systems, digntu-
lation by numerical methods is more computationally efficig].

Numerical solution of ODEs is a very mature topic in applied
mathematics and many sophisticated algorithms exist fprom
ing accuracy and speed [2,[6/7, 8]. Backward Euler, Trapetoi
Rule, and BDF (called Gear in SPICE) are options to solve the
nonlinear ODEs in circuit$ [9, 10]. Most algorithms are desid
with a variable step size (sampling rate) to maintain a $igelcac-
curacy. The error is typically specified in the time-domanad &
related to an order of the step size. Matlab features a riith ofi
ODE solvers[[11] that can be used for experimentation anairgi
experience with the solution of ODEs.

Although not presented as such, an example of numerical sim-
ulation of ODEs for musical application is12]. The WDF is an
alternate implementation of the trapezoidal rule. It isiegjent to
trapezoidal rule integration and results in the same it@rateing
solved because the nonlinearity is expressed in K-vasfble

1.2. Error criterion

Most applications for ODE solvers have a different set ofinex
ments than those for audio. The error criterion for genentaless
adaptively adjusts the step size to an excessively smaiéval

A fixed sampling rate is better suited for implementation in
real-time audio processing. In addition, borrowing frore ffeld
of perceptual audio codin@[1L3], the error specificationgfodio is
best defined perceptually in the short-time frequency domai

For audio, using a larger step size to reduce computational
costs may increase aliasing, but this is tolerable if belmwhask-
ing threshold of the desired audio signal. Also, the oribamalog
electronics have a relatively high noise floor which wouldskna
low level aliasing.

In this paper, the audio band is defined to be 0-20 kHz, where
a match to the accurate solution of the ODE is desired. Sibson
frequencies are included because they may mix through thienno
earity and cause perceptible amplitude modulation of thpudu
High frequencies are assumed to be sufficiently low due teofol
of typical spectra that mixing products are negligible.

1The term “K-variable” means “Kirchoff variable,” such as altage
or current. In contrast, WDFs use “W-variables” (“wave ghies”). K-
variables can be converted to W-variables and vice versa dgnmof a
two-by-two matrix multiply as in[{B).
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Figure 1:Small signal approximation of diode clipper

1.3. Diodeclipper equation

Often nonlinearities for virtual analog modeling are assdro be
memoryless. The derivation below proves this to be an ilecorr
assumption, although cascading filters with a memorylegstimo
earity may be used as a perceptually close approximatiomt Th
the nonlinearity has memory is also suggested_in [14], wheze
measurement technique to find the nonlinear transfer cunvas
tube amp does not find a smooth nonlinearity, but rather aynois
one due to hysteresis.

The diode clipper in guitar circuits is typically a RC lowsgsa
filter with a diode limiter across the capacitor (Fig). 1). Tdiede
clipper limits the voltage excursion across the capacg@tiout a
diode drop in either direction about signal ground.

The model of the pn diode is

Iy = I ("""

- 1)7 (1)
where the reverse saturation currépntand thermal voltag&; of
the device are model parameters that can be extracted fran me
surement.

The nonlinear ODE of the diode can be derived from Kirch-
hoff’s laws:

dv,
dt

‘/7,'7‘/0 Is .
RO 725smh(Vo/Vt),

)

whereV;, V, are the input and output signals respectively.
This small-signal interpretation (Fi§] 1) of this circuiore

tradicts the assumption of a memoryless nonlinearity bezat

yields a low-pass filter whose pole location changes witleg.

2. NUMERICAL METHODS

2.1. Basic methods

The basic methods solve equations of the form

& == f(t,0) @)
where the system stateis, in general, a vector, anf(t, v) is a
nonlinear function which encompasses any inp(#) to the sys-
tem. Time,t, is the independent variable of integration for ODEs
that describe circuits.

In the case of a linear constant-coefficient differentialaq

tion, (3) can be written in state space form:

0(t) = Av(t) + Bu(t) 4)
where the eigenvalues of are the poles of the system. Linear
filters are efficient solvers of this special case of ODEs.

Explicit methods are those whose output depend only on state
from previous time steps. Implicit formulas may depend or cu
rent state and require iteration if the ODE is nonlinear. evs
method is the most popular solver, in part because it is bleata
higher dimensions. For single dimensional equations cbise or
bracketing provides predictable convergende [2].

In the literature for numerical methods, the methods are no-
tated with subscripts denoting the time index dntbr step size
(sampling period). Here the methods are presented usirgresqu
brackets to denote the time index afidor step size as for digital
filters.

2.1.1. Forward Euler (FE)
vin] =vn —1] 4+ To[n — 1], (5)

wherewv[n] is the system state at discrete timeand 7 is the
sampling interval. This is an explicit, first-order method.

2.1.2. Backward Euler (BE)
v[n] = vin — 1] + T0[n], (6)
Note that this is similar td{5) except this is an implicit etjon.

2.1.3. Trapezoidal Rule (TR)

@)

Trapezoidal rule is similar to the Euler methods, usingdadtthe
average of the derivatives at timeandn—1, resulting in a second-
order method.

Itis known that the trapezoidal rule has the smallest trtiona
error of any method of order twb [10]. It is also equivalenttie
discretization of a continuous-time transfer function fy bilinear
transform. The trapezoidal rule is also the only practicaleo
preserving method that does not introduce artificial dagnpihen
discretizing continuous time systems.

oln] = vl — 1]+ 3 (6] + [ — 1)),

2.1.4. Wave Digital Filter implementation of Trapezoidal
Rule integration

The wave digital filter (WDF) is an alternate implementatiain
the trapezoidal rule integration where K-variablés I (values
corresponding to physical voltages and currents) are ceglay
W-variablesa, b by the mapping[12,15]

a | |1 14
b | |1 I
Summarizing the approach in_]15,]16], to make a nonlinear

WDF, one may usé{1), which is in the form= (V') and substi-
tute into [8) and obtain the wave variables:

Ro

—Ro (8)

9)
(10)

a=f(V)=V+RIYV)
b=g(V)=V —RI(V)
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Given an incident wave and an invertiblef(V'), one may
find V' and then usd(10) to finl Because (V) is the nonlinear
function [3), this requires an iterative method. Note thatitera-
tion involves the K-variablé’. Therefore, the resulting iterations
are identical to the direct application of the trapezoidde ito the
ODE.

The trapezoidal rule is implied in the use of the bilineansra
form to locally discretize capacitors and inductors. Thalimear
WDF can thus be viewed as an alternative implementationef th
trapezoidal rule solver for nonlinear ODEs.

The WDF poses the advantage that the nonlinear equations a
solved locally for each nonlinear element, minimizing tihee of
the matrix equation to be inverted, even if the circuit corganany
nodes or elements.

2.1.5. Backward Difference Formula

The Backward Difference Formula of order two (BDF2) is com-
monly used in circuit simulation and deserves mention hkris.
a multi-step method that only requires a single functioruation

of @).
2T .
—v

: CED

[n]

v %v[n—l]— %v[n—Q]—&— [n]

2.1.6. Runge-Kutta

A popular higher-order one-step method is the explicit tiour
order Runge-Kutta formula (RK4).

ki = Tf(?’l - 171}[“ - 1])7

ko =Tf(n—1/2,v[n—1]+ k1/2),

ks =Tf(n—1/2,v[n — 1] + k2/2),

ka = Tf(n,v[n - 1] +k3)7

fn,v) =v(n,v) = % — 21_5 sinh(v/V4),
v[n]zv[n71]+%+k—;+%+%

The function evaluations at times in between samples coeld b
inconvenient for digital audio. The only time dependencéhim
diode clipper ODE is the input voltage. Therefore, RK4 reggli
input at twice the sampling rate of the output. On the coptrar
method should have a higher output rate than input rate becau
the nonlinearity causes the output to have a wider bandwidth
the input.

2.1.7. Semi-implicit methods

Because the Newton method converges to the solution quitkly
the initial guess is close to the final result, often one ftera
is sufficient for oversampled methods. This is the semi-icitpl
method[2], which has predictable cost.

0.5¢

V0 (Volts)

-0.5t

0
Vi (Volts)

Figure 2:Tabulated static nonlinear function

nonlinearity. The comparison also demonstrates what ldrigc
when static nonlinearities are used.

The nonlinearity used is the DC approximation of the actual
nonlinearity (Fig[2), which can be derived frofd (2) by gt

C— = 0. This is implemented using a lookup table aslih [1]

and is also known as waveshaping distortion. It is foundukatg
a first-order low-pass filter before the nonlinearity with wetadf
frequency determined by thie andC' of the diode limiter reduces
aliasing while maintaining accurate output.

2.2. Order and Accuracy

The traditional measure of accuracy is Local TruncationoErr
(LTE), which is the lowest order difference between the dayl
series expansion of the solution and the result of the method
Other manifestations of error are aliasing and frequenaying.
Oversampling reduces error by the order of the method. Becau
aliasing is more a function of the nonlinearity than of thetmoe,

it determines the minimum oversampling factor requirede-Fr
gquency warping is not a concern in the audio band at these high
sampling rates.

2.3. Stability

Consider the linear system described By (4) with= 0. Substi-
tuting this into the Forward Euler methdd (5), for exampie]ds:

Yn = ([ + TA)y"_l + TBUn—l (12)

This is stable if1 + T'A| < 1 for each eigenvalug of matrix A.
The stability of an ODE method depends on the ratio between th
sampling frequency and the largest eigenvalue of the sygtem

2.3.1. Explicit methods

The plot of the region of stability on tHE — A plane often forms
a bounded region where the method is stable. Explicit method
result in polynomial stability condition§][6], which tracet a sta-

Another way to save computation is to compute the Jacobian bility region that is a subset of the left hatplane. Consequently,

once and use it several times in the iterations (chord mgfhtid

2.1.8. Approximation of ODE by static nonlinearity and digi
tal filters

this places a limit on the largest magnitude negative eiglesvthe
system may assume to assure bounded behavior.

2.3.2. Implicit methods

This is not an ODE method but approximates the result. It pro- For implicit methods, the stability region extends to irtfnin

vides a baseline to evaluate the significance of the mematyein

the negative half-plane, thereby placing no limit on the imeaxn
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Figure 3: Time-domain waveform for 110Hz + 155 Hz input,
Trapezoidal (TR) and static approx., 8x oversampling. Tdey
indistinguishable in the figure.

magnitude of an eigenvalue of a system, if it is not complexi a
allows a low sampling rate. For Trapezoidal, Backward Eatet
BDF2, the regions encompass all of the left half-plane, lsstable
systems will map to stable discrete time systems (“A-sitshjl
Backward Euler and BDF2 will introduce artificial damping to
higher-frequency poles, while Trapezoidal Rule applieskin-
ear transform to the poles and introduces no additional damp

2.3.3. Stiff stability

For the ODEs found in circuits, it has been found in practics t
implicit methods drastically reduce the sampling rate negoent
relative to explicit methods, and are ultimately more edfit[10].
In the ODE literature this property is known as “stiffnesStiffly
stable solvers place no requirement on the minimum samditeg
needed to ensure a bounded solution. Instead, considesdto
accuracy, in this case aliasing, govern the choice of st&p si

All explicit methods are not stiffly stabl&][6] and they requi
a minimum sampling rate to operate properly. The left hahgl
eigenvalue of the diode clipper can be found from a smaltadig
linearization of the circuit. The linearized circuit is sho in
Fig. [. WhenV, is large the linearized diode resistance will
dominate over?, making this eigenvalue approximately

76’2‘? sech(V,/V4). (13)

Aclip ~

3. COMPARATIVE RESULTS AND DISCUSSION

3.1. Single-frequency sine

The implicit and semi-implicit methods 8t oversampling gen-
erate almost identical time-domain responses in resporesdual-
tone excitation (110 and 155 Hz, 4.5 V peak), so only the Trape
zoidal Rule (TR) and static approximation are shown in Elg. 3
Figs.[4E% plot the error relative to an accurate solution jgotad
with an oversampling factor of 32. All of the numerical medso
exhibit similar error profiles with very low error. The apgima-
tion shows noticeably larger error than the numerical sslvieut
itis typically less than -40 dB.

A spectral comparison better represents the audible differ
ences. The numerical solvers all produce similar outputtspe

—40) I I BE |
\ dl ' Nl - = TR
/ I
ol T e BDF2||
Q N2 m;‘lrnl NN | - — — static
= NS
S -80
w
-100
-120 ;
0 5 10 15 20 25
Time (ms)

Figure 4: Time-domain dB error for 110Hz + 155 Hz input, 8x
oversampling. Backward Euler, Trapezoidal, BDF2, andistap-
prox.

|Error| (dB)

5 10 15 20 25
Time (ms)

Figure 5: Time-domain dB error for 110Hz + 155 Hz input, BE,

TR and semi-implicit versions, 8x oversampling.

and are represented in Fig. 6 by the semi-implicit trapedaide,

which is very accurate at eight times oversampling as inelcchy

the time domain error. This is compared to the static appmaxi
tion, which is a close approximation that reproduces moshef
major peaks and contour of the spectrum.

A high-level, high-frequency sine-wave excitation (4.5 V,
15001 Hz) reveals inadequacies in the semi-implicit method
which exhibit overshoot in the time-domain plots (Fig. 7)dan
spurious tones in the frequency domain. The static noniityea
produces phase error at high frequencies, although theitnegn
of the fundamental is correct. The spectra of trapezoidahis
implicit trapezoidal, and static approximation are pldtie Fig.[8
with a reference spectrum generated by a trapezoidal rute wi
oversampling of 32.

3.2. Sine sweep

A high-amplitude, sinusoidal, exponential-frequency sgvérom

0 to 20 kHz was processed by the methods. The oversampling fac
tor of eight is chosen so the method is well-behaved througthe
test. The output is downsampled to 96 kHz and displayed ag a lo
spectrograni[17]. All of the ODE methods produce almosttiden
cal output if stable, so only the spectrograms for trapesaidle,

its semi-implicit version, and the static nonlinearity ar@wn in
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(b) Static nonlinearity approximation
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Figure 6:Spectra of responses for 110Hz + 155 Hz input.
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Figure 7:Time domain waveform for 15001 Hz input, implicit and
semi-implicit methodss x oversampling.

Fig.[3.

3.3. Computational cost

Because the number of iterations in an ODE solver that emsploy
Newton’s method is related to the input in a complicated veay,
empirical measurement of cost is made. The number of iterati
for several test signals is given in Table 1. The inputs usecha

o
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-100 ‘ :
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Frequency (kHz)
(a) Solid: Trapezoidal, Dash-dot: reference
)
RS
]
=]
2
c
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=
-100 : : .
0 5 10 15 20
Frequency (kHz)
(b) Solid: Semi-implicit trapezoidal, Dash-dot: referenc
o
Z
[}
e]
2
c
()]
IS
=
-100 ‘ :
0 5 10 15 20
Frequency (kHz)

(c) Solid: Static approx., Dash-dot: reference

Figure 8:Magnitude spectra of responses to 15001 Hz normalized
to (32x) oversampled reference.

ized per audio sample at the base sampling rate of 48 kHz. For
iterative methods, the number of iteration$s assumed to be 1.2
as suggested by the actual guitar signals in Table 1.

3.4. Discussion

For audio-frequency input, the differences between thehoukst

are negligible in the audio band because the process isaowers
pled to reduce aliasing. The oversampling causes the wdou
der errors to be very low in the audio band and makes the effect
of frequency warping insignificant. It would seem then thata

exponential sine sweep from 0 to 20 kHz, an E power chord on the ble method of low order would be sufficient while guarantgein

low strings, and a riff with a bend.

The cost per sample in terms of function calls to compute the

derivative [[8) or the Jacobian in the iterative methods @shin

bounded output.
The time-domain outputs of the semi-implicit methods show
significant ringing for high-frequency inputs, but this irsextreme

Table[2. The cost of computing the derivative is assumed to be case because high amplitudes at these frequencies arg earel

similar to the cost of computing the Jacobian. The cost isnadr

countered in practical guitar signals.
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Figure 9: Log spectrogram of sine sweep, processedatover-
sampling,fs = 48 kHz, 80-dB dynamic range.

Input | BE BE s-i TR TRs-i BDF2
sine sweep | 1.381 1 1.370 1 1.367

power chord| 1.035 1 1.035 1 1.035
riff 1.1821 1 1.1814 1 1.1815

Table 1: Number of iterations for (semi-)implicit methods: Back-
ward Euler, semi-implicit BE, Trapezoidal, semi-implidiRR,
BDF2

Method | X  f-calls f-calls/sample

FE 38 1 38
RK4 30 4 120
BE 8 2n 19.2
BE s-i 8 2 16
TR 8 1+2n 27.2
TR s-i 8 3 24
BDF2 8 2n 19.2
static 8 lookup -

Table 2: Cost comparison of methods: Oversampling)(re-

quired. Calls to derivative or Jacobian function. Calls pardio

sample,n = 1.2 for iterative methods.n = # iterations; base
sampling rate = 48 kHz

The explicit methods, while simple, do not produce reliably
accurate results in the frequency domain unless they aldyhig
oversampled. The evaluation of cost validates prior finglinghe
circuit simulation literature that implicit or semi-implt methods
are preferred over explicit ones due to the large oversagpé-
quired for the explicit methods to be stable.

4. CONCLUSIONS

One important factor in deciding the sampling rate is theitable
problem of bandwidth expansion caused by a nonlinearitychvh
may result in aliasing in sampled systems. Because therneanh
ities are strong, bandwidth is expanded by a large factaess-
tating large oversampling rates. This constraint on thepsam
rate causes the different methods to be negligibly diffenenhe
audio frequency band. One can conclude that the simplest pos
sible method that produces stable output should be usedvéo sa
computational cost.

The amount of iterations taken by implicit methods depends
on the frequency of the input signal. Quickly moving sigrela-
tive to the step size cause the initial estimate of the stabetfar
from the solution, requiring many iterations. Because tloeg@ss
is already highly oversampled relative to the bandwidth ezfl+
istic guitar signals to reduce aliasing, semi-implicit hats may
work well. Future work could improve upon the convergence of
the semi-implicit methods by limiting the overshoot fortfagy-
nals.

The static approximation of the ODE, which involves a pre-
filter and the DC transfer curve, is seen to be a cheap andieéfec
approximation of the ODE, validating its widespread useigital
implementations of distortion effects. For future workisidesir-
able to find other low-cost approximations of the ODE thatiites
in better accuracy in the output spectrum.

At the very least, the application of ODE solvers to nonlinea
musical effects builds insight into the problem and prosideef-
erence point by which to evaluate more efficient approxiometi
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