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ABSTRACT

The diode clipper circuit with an embedded low-pass filter lies at
the heart of both diode clipping “Distortion” and “Overdrive” or
“Tube Screamer” effects pedals. An accurate simulation of this cir-
cuit requires the solution of a nonlinear ordinary differential equa-
tion (ODE). Numerical methods with stiff stability – Backward
Euler, Trapezoidal Rule, and second-order Backward Difference
Formula – allow the use of relatively low sampling rates at the cost
of accuracy and aliasing. However, these methods require iteration
at each time step to solve a nonlinear equation, and the tradeoff for
this complexity must be evaluated against simple explicit meth-
ods such as Forward Euler and fourth order Runge-Kutta, which
require very high sampling rates for stability. This paper surveys
and compares the basic ODE solvers as they apply to simulating
circuits for audio processing. These methods are compared to a
static nonlinearity with a pre-filter. It is found that implicit or semi-
implicit solvers are preferred and that the filter/static nonlinearity
approximation is often perceptually adequate.

1. INTRODUCTION

Guitarists tend to feel that digital implementations of distortion
effects sound inferior to the original analog gear. This work at-
tempts to provide a more accurate simulation of guitar distortion
and a physics-based method for designing the algorithm in the
same manner physical modeling is done for acoustic instruments.
Guitar effects consists of circuits that are accurately described in
the audio frequency band by nonlinear ordinary differential equa-
tions (ODEs). Often the circuits are comprised of linear stages
that can be efficiently implemented by infinite impulse response
(IIR) digital filters. The remaining nonlinear ODEs may needto
be solved by a numerical method or other approximation.

The diode clipper circuit with an embedded low-pass filter
forms the basis of both diode clipping “Distortion” and “Over-
drive” or “Tube Screamer” effects pedals[1]. An accurate simu-
lation of this circuit requires the solution of a nonlinear ordinary
differential equation (ODE). Numerical methods with stiffstabil-
ity, Backward Euler, Trapezoidal Rule, and second order Back-
ward Difference Formula (BDF, also called Gear) allow the use of
low sampling rates at the cost of accuracy and aliasing[2]. How-
ever, these methods require iteration at each time step to solve a
nonlinear equation, and the tradeoff for this complexity must be
evaluated against simple explicit methods such as Forward Euler
and fourth-order Runge-Kutta, which require very high sampling
rates for stability.

1.1. Related work

A nonlinear system can be represented analytically as a Volterra
series. There has been work to form finite-order Volterra series for
simulating electronics [3, 4]. However, these are interesting only
for low order, whereas for highly nonlinear systems, directsimu-
lation by numerical methods is more computationally efficient [5].

Numerical solution of ODEs is a very mature topic in applied
mathematics and many sophisticated algorithms exist for improv-
ing accuracy and speed [2, 6, 7, 8]. Backward Euler, Trapezoidal
Rule, and BDF (called Gear in SPICE) are options to solve the
nonlinear ODEs in circuits [9, 10]. Most algorithms are designed
with a variable step size (sampling rate) to maintain a specified ac-
curacy. The error is typically specified in the time-domain and is
related to an order of the step size. Matlab features a rich suite of
ODE solvers [11] that can be used for experimentation and gaining
experience with the solution of ODEs.

Although not presented as such, an example of numerical sim-
ulation of ODEs for musical application is [12]. The WDF is an
alternate implementation of the trapezoidal rule. It is equivalent to
trapezoidal rule integration and results in the same iterations being
solved because the nonlinearity is expressed in K-variables.1

1.2. Error criterion

Most applications for ODE solvers have a different set of require-
ments than those for audio. The error criterion for general solvers
adaptively adjusts the step size to an excessively small value.

A fixed sampling rate is better suited for implementation in
real-time audio processing. In addition, borrowing from the field
of perceptual audio coding [13], the error specification foraudio is
best defined perceptually in the short-time frequency domain.

For audio, using a larger step size to reduce computational
costs may increase aliasing, but this is tolerable if below the mask-
ing threshold of the desired audio signal. Also, the original analog
electronics have a relatively high noise floor which would mask
low level aliasing.

In this paper, the audio band is defined to be 0–20 kHz, where
a match to the accurate solution of the ODE is desired. Subsonic
frequencies are included because they may mix through the nonlin-
earity and cause perceptible amplitude modulation of the output.
High frequencies are assumed to be sufficiently low due to roll-off
of typical spectra that mixing products are negligible.

1The term “K-variable” means “Kirchoff variable,” such as a voltage
or current. In contrast, WDFs use “W-variables” (“wave variables”). K-
variables can be converted to W-variables and vice versa by means of a
two-by-two matrix multiply as in (8).
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Figure 1:Small signal approximation of diode clipper

1.3. Diode clipper equation

Often nonlinearities for virtual analog modeling are assumed to be
memoryless. The derivation below proves this to be an incorrect
assumption, although cascading filters with a memoryless nonlin-
earity may be used as a perceptually close approximation. That
the nonlinearity has memory is also suggested in [14], wherethe
measurement technique to find the nonlinear transfer curvesin a
tube amp does not find a smooth nonlinearity, but rather a noisy
one due to hysteresis.

The diode clipper in guitar circuits is typically a RC low-pass
filter with a diode limiter across the capacitor (Fig. 1). Thediode
clipper limits the voltage excursion across the capacitor to about a
diode drop in either direction about signal ground.

The model of the pn diode is

Id = Is(e
V/Vt − 1), (1)

where the reverse saturation currentIs, and thermal voltageVt of
the device are model parameters that can be extracted from mea-
surement.

The nonlinear ODE of the diode can be derived from Kirch-
hoff’s laws:

dVo

dt
=

Vi − Vo

RC
− 2

Is

C
sinh(Vo/Vt), (2)

whereVi, Vo are the input and output signals respectively.
This small-signal interpretation (Fig. 1) of this circuit con-

tradicts the assumption of a memoryless nonlinearity because it
yields a low-pass filter whose pole location changes with voltage.

2. NUMERICAL METHODS

2.1. Basic methods

The basic methods solve equations of the form

dv

dt
= v̇ = f(t, v) (3)

where the system statev is, in general, a vector, andf(t, v) is a
nonlinear function which encompasses any inputu(t) to the sys-
tem. Time,t, is the independent variable of integration for ODEs
that describe circuits.

In the case of a linear constant-coefficient differential equa-
tion, (3) can be written in state space form:

v̇(t) = Av(t) + Bu(t) (4)

where the eigenvalues ofA are the poles of the system. Linear
filters are efficient solvers of this special case of ODEs.

Explicit methods are those whose output depend only on state
from previous time steps. Implicit formulas may depend on cur-
rent state and require iteration if the ODE is nonlinear. Newton’s
method is the most popular solver, in part because it is scalable to
higher dimensions. For single dimensional equations, bisection or
bracketing provides predictable convergence [2].

In the literature for numerical methods, the methods are no-
tated with subscripts denoting the time index andh for step size
(sampling period). Here the methods are presented using square
brackets to denote the time index andT for step size as for digital
filters.

2.1.1. Forward Euler (FE)

v[n] = v[n − 1] + T v̇[n − 1], (5)

wherev[n] is the system state at discrete timen, andT is the
sampling interval. This is an explicit, first-order method.

2.1.2. Backward Euler (BE)

v[n] = v[n − 1] + T v̇[n], (6)

Note that this is similar to (5) except this is an implicit equation.

2.1.3. Trapezoidal Rule (TR)

v[n] = v[n − 1] +
T

2
(v̇[n] + v̇[n − 1]) , (7)

Trapezoidal rule is similar to the Euler methods, using instead the
average of the derivatives at timen andn−1, resulting in a second-
order method.

It is known that the trapezoidal rule has the smallest truncation
error of any method of order two [10]. It is also equivalent tothe
discretization of a continuous-time transfer function by the bilinear
transform. The trapezoidal rule is also the only practical order-
preserving method that does not introduce artificial damping when
discretizing continuous time systems.

2.1.4. Wave Digital Filter implementation of Trapezoidal
Rule integration

The wave digital filter (WDF) is an alternate implementationof
the trapezoidal rule integration where K-variablesV , I (values
corresponding to physical voltages and currents) are replaced by
W-variablesa, b by the mapping [12, 15]

[

a
b

]

=

[

1 R0

1 −R0

] [

V
I

]

(8)

Summarizing the approach in [15, 16], to make a nonlinear
WDF, one may use (1), which is in the formI = I(V ) and substi-
tute into (8) and obtain the wave variables:

a = f(V ) = V + RI(V ) (9)

b = g(V ) = V − RI(V ) (10)
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Given an incident wavea and an invertiblef(V ), one may
find V and then use (10) to findb. BecauseI(V ) is the nonlinear
function (1), this requires an iterative method. Note that the itera-
tion involves the K-variableV . Therefore, the resulting iterations
are identical to the direct application of the trapezoidal rule to the
ODE.

The trapezoidal rule is implied in the use of the bilinear trans-
form to locally discretize capacitors and inductors. The nonlinear
WDF can thus be viewed as an alternative implementation of the
trapezoidal rule solver for nonlinear ODEs.

The WDF poses the advantage that the nonlinear equations are
solved locally for each nonlinear element, minimizing the size of
the matrix equation to be inverted, even if the circuit contains many
nodes or elements.

2.1.5. Backward Difference Formula

The Backward Difference Formula of order two (BDF2) is com-
monly used in circuit simulation and deserves mention here.It is
a multi-step method that only requires a single function evaluation
of (3).

v[n] =
4

3
v[n − 1] −

1

3
v[n − 2] +

2T

3
v̇[n] (11)

2.1.6. Runge-Kutta

A popular higher-order one-step method is the explicit fourth-
order Runge-Kutta formula (RK4).

k1 = Tf(n − 1, v[n − 1]),

k2 = Tf(n − 1/2, v[n − 1] + k1/2),

k3 = Tf(n − 1/2, v[n − 1] + k2/2),

k4 = Tf(n, v[n − 1] + k3),

f(n, v) = v̇(n, v) =
Vi[n] − v

RC
− 2

Is

C
sinh(v/Vt),

v[n] = v[n − 1] +
k1

6
+

k2

3
+

k3

3
+

k4

6

The function evaluations at times in between samples could be
inconvenient for digital audio. The only time dependence inthe
diode clipper ODE is the input voltage. Therefore, RK4 requires
input at twice the sampling rate of the output. On the contrary, a
method should have a higher output rate than input rate because
the nonlinearity causes the output to have a wider bandwidththan
the input.

2.1.7. Semi-implicit methods

Because the Newton method converges to the solution quicklyif
the initial guess is close to the final result, often one iteration
is sufficient for oversampled methods. This is the semi-implicit
method[2], which has predictable cost.

Another way to save computation is to compute the Jacobian
once and use it several times in the iterations (chord method)[11].

2.1.8. Approximation of ODE by static nonlinearity and digi-
tal filters

This is not an ODE method but approximates the result. It pro-
vides a baseline to evaluate the significance of the memory inthe
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Figure 2:Tabulated static nonlinear function

nonlinearity. The comparison also demonstrates what is lacking
when static nonlinearities are used.

The nonlinearity used is the DC approximation of the actual
nonlinearity (Fig. 2), which can be derived from (2) by setting

C
dV

dt
= 0. This is implemented using a lookup table as in [1]

and is also known as waveshaping distortion. It is found thatusing
a first-order low-pass filter before the nonlinearity with a cutoff
frequency determined by theR andC of the diode limiter reduces
aliasing while maintaining accurate output.

2.2. Order and Accuracy

The traditional measure of accuracy is Local Truncation Error
(LTE), which is the lowest order difference between the Taylor
series expansion of the solution and the result of the method.
Other manifestations of error are aliasing and frequency warping.
Oversampling reduces error by the order of the method. Because
aliasing is more a function of the nonlinearity than of the method,
it determines the minimum oversampling factor required. Fre-
quency warping is not a concern in the audio band at these high
sampling rates.

2.3. Stability

Consider the linear system described by (4) withB = 0. Substi-
tuting this into the Forward Euler method (5), for example, yields:

yn = (I + TA)yn−1 + TBun−1 (12)

This is stable if|1 + Tλ| < 1 for each eigenvalueλ of matrix A.
The stability of an ODE method depends on the ratio between the
sampling frequency and the largest eigenvalue of the systemA.

2.3.1. Explicit methods

The plot of the region of stability on theT − λ plane often forms
a bounded region where the method is stable. Explicit methods
result in polynomial stability conditions [6], which traceout a sta-
bility region that is a subset of the left halfs-plane. Consequently,
this places a limit on the largest magnitude negative eigenvalue the
system may assume to assure bounded behavior.

2.3.2. Implicit methods

For implicit methods, the stability region extends to infinity in
the negative half-plane, thereby placing no limit on the maximum
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Figure 3: Time-domain waveform for 110Hz + 155 Hz input,
Trapezoidal (TR) and static approx., 8x oversampling. Theyare
indistinguishable in the figure.

magnitude of an eigenvalue of a system, if it is not complex, and
allows a low sampling rate. For Trapezoidal, Backward Eulerand
BDF2, the regions encompass all of the left half-plane, so all stable
systems will map to stable discrete time systems (“A-stability”).
Backward Euler and BDF2 will introduce artificial damping to
higher-frequency poles, while Trapezoidal Rule applies the bilin-
ear transform to the poles and introduces no additional damping.

2.3.3. Stiff stability

For the ODEs found in circuits, it has been found in practice that
implicit methods drastically reduce the sampling rate requirement
relative to explicit methods, and are ultimately more efficient[10].
In the ODE literature this property is known as “stiffness.”Stiffly
stable solvers place no requirement on the minimum samplingrate
needed to ensure a bounded solution. Instead, considerations for
accuracy, in this case aliasing, govern the choice of step size.

All explicit methods are not stiffly stable [6] and they require
a minimum sampling rate to operate properly. The left half plane
eigenvalue of the diode clipper can be found from a small-signal
linearization of the circuit. The linearized circuit is shown in
Fig. 1. WhenVo is large the linearized diode resistance will
dominate overR, making this eigenvalue approximately

λclip ≈ −C
Vt

2Is
sech(Vo/Vt). (13)

3. COMPARATIVE RESULTS AND DISCUSSION

3.1. Single-frequency sine

The implicit and semi-implicit methods at8× oversampling gen-
erate almost identical time-domain responses in response to a dual-
tone excitation (110 and 155 Hz, 4.5 V peak), so only the Trape-
zoidal Rule (TR) and static approximation are shown in Fig. 3.
Figs. 4-5 plot the error relative to an accurate solution computed
with an oversampling factor of 32. All of the numerical methods
exhibit similar error profiles with very low error. The approxima-
tion shows noticeably larger error than the numerical solvers, but
it is typically less than -40 dB.

A spectral comparison better represents the audible differ-
ences. The numerical solvers all produce similar output spectra
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Figure 4: Time-domain dB error for 110Hz + 155 Hz input, 8x
oversampling. Backward Euler, Trapezoidal, BDF2, and static ap-
prox.
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Figure 5: Time-domain dB error for 110Hz + 155 Hz input, BE,
TR and semi-implicit versions, 8x oversampling.

and are represented in Fig. 6 by the semi-implicit trapezoidal rule,
which is very accurate at eight times oversampling as indicated by
the time domain error. This is compared to the static approxima-
tion, which is a close approximation that reproduces most ofthe
major peaks and contour of the spectrum.

A high-level, high-frequency sine-wave excitation (4.5 V,
15001 Hz) reveals inadequacies in the semi-implicit methods,
which exhibit overshoot in the time-domain plots (Fig. 7) and
spurious tones in the frequency domain. The static nonlinearity
produces phase error at high frequencies, although the magnitude
of the fundamental is correct. The spectra of trapezoidal, semi-
implicit trapezoidal, and static approximation are plotted in Fig. 8
with a reference spectrum generated by a trapezoidal rule with
oversampling of 32.

3.2. Sine sweep

A high-amplitude, sinusoidal, exponential-frequency sweep from
0 to 20 kHz was processed by the methods. The oversampling fac-
tor of eight is chosen so the method is well-behaved throughout the
test. The output is downsampled to 96 kHz and displayed as a log
spectrogram [17]. All of the ODE methods produce almost identi-
cal output if stable, so only the spectrograms for trapezoidal rule,
its semi-implicit version, and the static nonlinearity areshown in
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(b) Static nonlinearity approximation

Figure 6:Spectra of responses for 110Hz + 155 Hz input.
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Figure 7:Time domain waveform for 15001 Hz input, implicit and
semi-implicit methods,8× oversampling.

Fig. 9.

3.3. Computational cost

Because the number of iterations in an ODE solver that employs
Newton’s method is related to the input in a complicated way,an
empirical measurement of cost is made. The number of iterations
for several test signals is given in Table 1. The inputs used are an
exponential sine sweep from 0 to 20 kHz, an E power chord on the
low strings, and a riff with a bend.

The cost per sample in terms of function calls to compute the
derivative (3) or the Jacobian in the iterative methods is shown in
Table 2. The cost of computing the derivative is assumed to be
similar to the cost of computing the Jacobian. The cost is normal-
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(a) Solid: Trapezoidal, Dash-dot: reference
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(b) Solid: Semi-implicit trapezoidal, Dash-dot: reference
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(c) Solid: Static approx., Dash-dot: reference

Figure 8:Magnitude spectra of responses to 15001 Hz normalized
to (32×) oversampled reference.

ized per audio sample at the base sampling rate of 48 kHz. For
iterative methods, the number of iterationsn is assumed to be 1.2
as suggested by the actual guitar signals in Table 1.

3.4. Discussion

For audio-frequency input, the differences between the methods
are negligible in the audio band because the process is oversam-
pled to reduce aliasing. The oversampling causes the various or-
der errors to be very low in the audio band and makes the effect
of frequency warping insignificant. It would seem then that asta-
ble method of low order would be sufficient while guaranteeing
bounded output.

The time-domain outputs of the semi-implicit methods show
significant ringing for high-frequency inputs, but this is an extreme
case because high amplitudes at these frequencies are rarely en-
countered in practical guitar signals.
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Figure 9: Log spectrogram of sine sweep, processed at8× over-
sampling,fs = 48 kHz, 80-dB dynamic range.

Input BE BE s-i TR TR s-i BDF2

sine sweep 1.381 1 1.370 1 1.367
power chord 1.035 1 1.035 1 1.035
riff 1.1821 1 1.1814 1 1.1815

Table 1:Number of iterations for (semi-)implicit methods: Back-
ward Euler, semi-implicit BE, Trapezoidal, semi-implicitTR,
BDF2

Method X f -calls f -calls/sample

FE 38 1 38
RK4 30 4 120
BE 8 2n 19.2
BE s-i 8 2 16
TR 8 1 + 2n 27.2
TR s-i 8 3 24
BDF2 8 2n 19.2
static 8 lookup -

Table 2: Cost comparison of methods: Oversampling (X) re-
quired. Calls to derivative or Jacobian function. Calls peraudio
sample,n = 1.2 for iterative methods.n = # iterations; base
sampling rate = 48 kHz

The explicit methods, while simple, do not produce reliably
accurate results in the frequency domain unless they are highly
oversampled. The evaluation of cost validates prior findings in the
circuit simulation literature that implicit or semi-implicit methods
are preferred over explicit ones due to the large oversampling re-
quired for the explicit methods to be stable.

4. CONCLUSIONS

One important factor in deciding the sampling rate is the inevitable
problem of bandwidth expansion caused by a nonlinearity, which
may result in aliasing in sampled systems. Because the nonlinear-
ities are strong, bandwidth is expanded by a large factor, necessi-
tating large oversampling rates. This constraint on the sampling
rate causes the different methods to be negligibly different in the
audio frequency band. One can conclude that the simplest pos-
sible method that produces stable output should be used to save
computational cost.

The amount of iterations taken by implicit methods depends
on the frequency of the input signal. Quickly moving signalsrela-
tive to the step size cause the initial estimate of the state to be far
from the solution, requiring many iterations. Because the process
is already highly oversampled relative to the bandwidth of real-
istic guitar signals to reduce aliasing, semi-implicit methods may
work well. Future work could improve upon the convergence of
the semi-implicit methods by limiting the overshoot for fast sig-
nals.

The static approximation of the ODE, which involves a pre-
filter and the DC transfer curve, is seen to be a cheap and effective
approximation of the ODE, validating its widespread use in digital
implementations of distortion effects. For future work, itis desir-
able to find other low-cost approximations of the ODE that result
in better accuracy in the output spectrum.

At the very least, the application of ODE solvers to nonlinear
musical effects builds insight into the problem and provides a ref-
erence point by which to evaluate more efficient approximations.
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