
Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

IMPLEMENTING DIGITAL AUDIO EFFECTS USING A HARDWARE/SOFTWARE
CO-DESIGN APPROACH

Markus Pfaff, David Malzner, Johannes Seifert, Johannes Traxler, Horst Weber, Gerhard Wiendl

FH-OÖ/Hagenberg, Dept. HSSE
Softwarepark 11, A-4232 Hagenberg/Austria

ABSTRACT

Digital realtime audio effects as of today are realized in
software in almost all cases. The hardware platforms used
for this purpose reach from multi purpose processors like
the Intel Pentium class over embedded processors (e.g. the
ARM family) to specialized DSP.

The upcoming technology of complete systems on a sin-
gle programmable chip contrasts such a software centric so-
lution, because it combines software and hardware via some
co-design methodology and makes for a promising alterna-
tive for the future of realtime audio. Such systems are able
to combine the vast amount of computing power provided
by dedicated hardware with the flexibility offered by soft-
ware in a way the designer is free to influence.

While the main realization vehicles for these systems –
FPGAs – were already promising but unfortunately offered
limited possibilities a decade ago [1] they have made rapid
progress over the years being one of the product classes that
drive the silicon technology of tomorrow.

We describe an example for such a realtime digital ef-
fects system which was developed using a hardware/soft-
ware co-design method. While digital realtime audio pro-
cessing takes place in low latency dedicated hardware units
the control and routing of audio streams is done by software
running on a 32 bit NIOS II softcore processor. Implemen-
tation of the hardware units is done using a DSP centric
methodology for raising the abstraction level of VHDL de-
scriptions while still making use of standard of the shelf
FPGA synthesis tools. The physical implementation of the
complete system uses a rapid prototyping board tailored for
communications and audio applications based on an Altera
Cyclone II FPGA.

1. INTRODUCTION

Software running on a DSP or a common CPU is the preva-
lent vehicle of digital real-time audio effects implementa-
tion today. Realization of such effects in dedicated hard-
ware has some appealing advantages especially in low la-
tency and high reliability applications [2]. Little flexibility
and a much more complicated design process than software
does offer are the other side of the coin. These severe draw-

backs have prevented dedicated hardware design from gain-
ing ground in the digital audio effects realm at least in its
consumer and semiprofessional floors.

Using the arithmetic package described in [3] which pro-
vides a fractional data type for fixed point digital data pro-
cessing the abstraction level in terms of data handling and
arithmetic expressions raised a lot over what is possible us-
ing the integer types typically encountered in such descrip-
tions: signed and unsigned. The work described in [4] gave
proof of concept for the general usefulness of the fractional
package for digital signal processing as it is done in ap-
plications typically found in the communications industry.
Such applications seldom make use of the large amount of
dynamic parameters that many audio applications demand.
Flexibility of a description simply is no issue in this case.

The desire to broaden the application area of our ap-
proach led to the decision to implement effects from the
audio domain in hardware using a rapid prototyping board.
The project DAFX [5] was launched at the University of Ap-
plied Sciences of Upper Austria at Hagenberg in October
2006 which aimed the evaluation the feasibility of a com-
bined hardware/software approach for targeting the audio
effects application field. Parameterization of the hardware
audio effect modules is done through software running on
a 32 bit softcore processor which is implemented together
with the effects on an FPGA as a re-programmable System-
on-Chip. Hardware and software subsystems together built
a complete hardware/software co-design. The software con-
trolled processor core also controls the data streams con-
necting the different hardware effect units.

We will point out advantages as well as disadvantages
found while realizing a digital audio system this way. We
start by describing the rapid prototyping system used as the
realization platform. The second part of the paper deals with
the used components and the basic setup for effect develop-
ment followed by the description of the implementation and
design funcional simulation based verification of effects.

2. RAPID PROTOTYPING BOARD SANDBOXX

The platform chosen for the realization of the system de-
scribed in this paper is the rapid prototyping board Sand-

DAFX-1

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

boxX which has been developed at the University of Ap-
plied Sciences of Upper Austria at Hagenberg and is used
for educational and research purpose.

The board shown in Fig. 2 is built around an Altera Cy-
clone II FPGA (EP2C35F). Peripherals (see Fig. 1) of the
FPGA are 16 megabytes of SDRAM, a Texas Instruments
audio codec (TLV320AIC23B), a MIDI Interface, a PS/2 in-
terface and a programmable clock IC (ICS307). Further
hardware units such as a PCI Bus connector are available on
the board, but were not used in the project. The board pow-

Figure 1: Hardware for the audio effects

Figure 2: Silkscreen of the rapid prototyping board Sand-
boxX.

ers up with a default clock frequency of 25 MHz. Because
the system uses a clock frequency of 48 MHz, we needed
to reprogram the clock frequency. This is done on startup
by software on the NIOS II processor. For configuration an
SPI interface is used.

The audio codec can be configured and is capable of
transferring audio data in several different ways. For our ap-
plication we used the I2S interface to transfer audio data and
the SPI interface to configure the codec. The audio codec
is used in slave mode, so that the clock for the codec has
to be generated with a hardware frequency divider imple-
mented on the FPGA. This makes it easier to keep the sys-
tem synchronous. The serial I2S audio data is converted to
a 24 bit parallel signal by a hardware unit. A valid bit in-
dicates when new data arrives. Sending audio data to the

audio codec works the other way round making use of a
parallel to serial converter unit.

The analog audio data is pre-amplified and routed to
audio connectors, so that the SandboxX can be used stan-
dalone for creating audio effects. A disadvantage of the
prototyping board with regard to the analog signal quality
is the low-cost power supply by an USB port. This keeps
cost down, but results in a higher noise floor of the supply
creeping into the audio signal domain.

The SDRAM is connected via an address / data bus with
32 data lines. Because the SDRAM is placed beside the
FPGA and we use a relatively high clock frequency for the
memory (48 MHz system clock), we had to shift the clock’s
phase with an integrated PLL of the FPGA to meet timing
requirements.

The MIDI and PS/2 interfaces are connected to the FPGA
via appropriate level conversion and an opto-coupler. The
MIDI interface is used to connect the MIDI foot controller
described in section 3.5. A PS2-compatible mouse was used
during the debugging phase to change the bandpass center-
frequency of the WahWah effect (see section 4.5).

The configuration data for the FPGA is automatically
loaded from an SPI Flash ROM on the board by a program-
mer implemented in a separate CPLD.

3. SYSTEM DESIGN

The aim of our work is to implement audio effects as dedi-
cated hardware units without losing system flexibility. The
system had to have the capability to be configured and pa-
rameterized easily. Our proposed solution is the use of a
softcore processor leading to a hardware/software co-design
as proposed in [6] which is implemented on a single chip.
We used the NIOS II softcore processor supplied by the
FPGA vendor Altera to run the software part of the system.
The effects are implemented as dedicated hardware units to
do the signal processing while the processor core and thus
the software controls signal routing.

The used prototyping platform SandboxX offers only a
single SDRAM chip with direct interconnect to the FPGA.
This kind of memory needs a special controller in order to
be accessed in a correct way. In our system the SDRAM
is connected to the bus system of the softcore processor via
the SDRAM controller provided by the Altera NIOS II de-
velopment system. While the SDRAM cannot be directly
accessed by the audio effect units which might use quite
large amounts of memory (especially delay based effects)
the use of software to control the audio data streams through
the SDRAM posed no performance problems. The proces-
sor just has to forward data so that little processing power is
needed.

For communication between the NIOS II processor and
the audio effects we used general purpose IOs instead of

DAFX-2

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

Figure 3: Hardware/Software system

integration with the processor system bus (Fig. 5). This
has the advantage that the softcore processor could be eas-
ily exchanged and the interface needs less implementation
effort. This approach also offers an easy access of inter-
rupt sources. The drawback with respect to a direct system
bus connection is the smaller peak performance that can
be gained. In our system the throughput was by far high
enough to prevent dropping of audio date in any case. In fu-
ture applications the processor’s system bus (Altera Avalon
Bus) could be used together with some kind of audio stream
switching matrix implemented as a dedicated hardware unit
to make the system even more independent of software per-
formance irregularities.

The software manages and controls the system to keep
the trade-off between performance and flexibility. A MIDI
control unit (e.g. foot switch) can be connected to the sys-
tem. With such a device one can choose and control differ-
ent effects in realtime.

The processor is the only instance that has access to the
SDRAM. An effect can give the processor a request of writ-
ing data to it’s effect memory or read data from it. The used
hardware-software interaction scheme is depicted in Fig. 4.

The measurement of the processor usage at the mem-
ory intensive delay effect results in 33% usage for the data
transport (audio codec, SDRAM) and 66% usage for the
main loop.

Figure 4: Hardware-software interaction scheme.

3.1. Field-Programmable Gate Arrays

Field-programmable gate arrays (FPGAs) are on the verge
of revolutionizing digital signal processing in the manner
that programmable digital processors (PDSPs) did nearly
two decades ago [7, 8]. Many front-end digital processing
algorithms, such as FFTs, FIR or IIR filters, to name just
a few, previously built with ASICs or PDSPs, can now be
replaced by FPGAs. Modern FPGA families provide DSP
support with multipliers and fast-carry chains that are used
to implement DSP algorithms at high speed, with low over-
head and low costs [2].

3.2. Embedded Processor

The reason why we used the NIOS II softcore processor is
the good support for custom processor system design of-
fered by the Altera Quartus II tool set. We were able to
build a specific system exactly tailored to our purpose with
all the peripherals needed. They can be configured to adopt
specific user needs. An example are the ports used for audio
data, because they can be generated with the exact bit width
delivered by the audio codec. Further, we can add as many
SPI and UART interface units as we need for our periph-
erals (MIDI, programmable clock generator, audio codec).
Detailed information concerning functionality of NIOS II
peripherals is contained in [9].

The processor core was generated with the "standard"
settings (NIOS II/s), featured with instruction cache, branch
prediction, a hardware multiplier as well as a hardware di-
vider. The debugging interface was generated with configu-
ration "level 2". This means that two hardware breakpoints
and data triggers are supported and debugging of the sys-
tem via JTAG-interface is possible. For the hardware MIDI
interface an UART module from the Altera SOPC Builder
development tool was integrated into the processor system.

The system clock of the processor and all peripherals is
set to 48 MHz and the internal RAM size implemented in
FPGA internal RAM blocks is set to 15 KByte.

3.3. Software Development

The software for the NIOS II is written in C. It’s main tasks
are the parameterization of the hardware effects in reaction
to the incoming MIDI data. Besides that the software is
controlling the audio data flow from one effect to an other
effectively acting as an audio routing matrix and also con-
figures and initializes the audio codec. Altera offers a soft-
ware development environment based on Eclipse for the
NIOS II family. This environment includes a (fee free) GCC
compiler optimized for the NIOS II instruction set. The
SOPC Builder tool also generates processor specified li-
braries. Such libraries can be included into the develop-
ment environment and provide the function of a hardware

DAFX-3

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

abstraction layer.
Although possible, an operating system is currently not

used.

3.4. Interface of Effects Units

The interface between the control unit and a single hardware
effect unit plays an important role in the overall system de-
sign. The user should be provided with maximum flexibil-
ity when using the audio effects, which of course includes
the way in which audio signal is routed through the effects.
There are several implementation strategies, which fall into
consideration:

• Static effects-line: This attempt leans against the tech-
nique used with the common guitar gadget boxes. It
means, that there is a fixed order how the effects are
joined together and the user just can switch on or off.

• Multiplexing structure: An expanded structure of
the static effects-line could be a huge multiplexing
matrix, so that the effects order is more flexible.

• PIO: In order to gain flexibility some software may
be required. This branch stands for the easy way of
connecting hardware effects to the softcore processor,
namely through simple PIOs (Parallel Input/Output).

• Avalon Bus: This method is the advanced strategy of
PIOs. We used the NIOS II softcore, which main bus
system is an Avalon Bus. Each hardware effect may
provide an Avalon Bus-connection, which is faster
than PIOs.

In a software DSP system the routing of the data stream
is done in a similar way the data processing is done. Be-
cause dedicated hardware units are used for audio process-
ing the routing has to be done by a special unit that acts as
a central switch node connecting all processing nodes.

Here the flexibility of the embedded NIOS II softcore
comes into play. SOPC-Builder allows any number of port
peripheral units needed. Consequentially each individual
effect got it’s own data and control ports which are directly
connected to the NIOS II giving software full control of the
routing of audio data. Audio inputs as well as outputs of
all processing units are also connected directly to the soft-
core so that the user is able to pass the audio data through
different effects in different order (see Fig. 3).

Some effects may require buffer memory also. Unfor-
tunately it’s neither affordable to spend each effect it’s own
SD-RAM nor was it possible to do so on our prototyping
board. The single external SD-RAM (16 MB) is managed
by the NIOS II via a SD-RAM controller peripheral. If an
effect needs to buffer data, it can use the RAM-ports as
shown in Fig. 5. The RAM address is a relative one, the

softcore converts it and forwards the data physically to the
SD-RAM.

Nios-II
embedded processor Audio effect

Clock, Reset

AudioData dry 24

AudioData dry valid

AudioData wet 24

AudioData wet valid

Parameter settings

RamWriteAddress X

RamWriteData 24

RamWriteValid

RamReadAddress X

RamReadData 24

RamReadValid

Figure 5: Interface between NIOS-II softcore and effects.

3.5. MIDI Control Interface

The human control interface is a MIDI foot controller. There
are two different types of pedals on the foot controller: ten
foot switches, which are used to switch through effects and
two expression pedals, which are used to parameterize the
active effect. The software on the NIOS II is sensitive on
the used MIDI control sequences. If a valid command is re-
ceived, the parameters for the chosen effect are calculated
and transmitted from the processor to the hardware effects
block. Changing effects disposes a recalculation of the pa-
rameters.

4. EFFECTS

4.1. Chorus

The Chorus effect simulates playing various instruments si-
multaneously. When more musicians play instruments si-
multaneously, they will not play exactly synchronously. A
fixed and a variable time difference between the instruments
exists. The chorus effect does the same thing. It adds an au-
dio signal several times to itself where each instance of the
audio signal (i.e. the summands) is delayed by some amount
in time. The delayed signal is generated by adding a fixed
delay in the range of 15 – 20 milliseconds and a sweeping
delay of 4 – 8 milliseconds (see Fig. 6). In our implementa-
tion, the sweeping delay has the waveform of a triangle and

DAFX-4

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007
D

el
ay

Fi
x

D
el

ay
V

ar
ia

bl
e

D
el

ay

Figure 6: Delay of Chorus

a frequency of 1 – 5 Hz. Another common used waveform
for the sweeping delay in the chorus effect is a sine wave.
The advantage of a sine wave is that it is a very smooth func-
tion and creates a harmonic sound. The sweeping frequency
is a parameter which can be changed while the system is in
use. As an option there could be also used a logarithmic
or sine waveform for the low frequency oscillator to change
the variable delay.

4.2. Delay

Depending on delay time the effect has different names be-
cause of the particular character of the resulting sound. If
the delay is in the range between 10 and 25 ms, we will hear
a quick repetition named slapback or doubling. If the delay
is greater than 50 ms we will hear an echo [10]. One can use
a single hardware unit for both of these delay based effects
while the splitting into two different effects can be done in
software.

Address calculation for the RAM used as audio buffer is
implemented in hardware in the manner of a ringbuffer. Via
the parameter delaytime the size of this ringbuffer can be
controlled. The output is calculated in a feedback loop. This
means the output is computed by the input sample and a
former output value read from the buffer. The output values
are scaled with the parameter level and written to the buffer
memory.

4.3. Echo Cancellation

An emerging topic in audio signal processing is echo can-
cellation. Especially the extensive use of Voice over IP,
hands-free kits and conference calls enhanced the public-
ity and the technology of canceling interfering reflections.
This problem occurs due to the fact that the spherical radia-
tion of loudspeakers is reflected by objects. Since acoustic
waves are expanding at an almost fixed speed, different time
shifted reflections, depending on the place where they are
measured, are created. Consequently, rooms have different
acoustic characteristics, which means that e.g. a small room

with reflecting walls is totally different to a big room with
walls that are reflecting hardly anything.

The major problem in conjunction with these reflections
arises due to the use of acoustic transmission. Because data
is sent in packages there has to be a buffering at first, addi-
tionally time delays occur during the transmission. Such a
delay could be a packet loss or a busy resource. Fig. 7 il-
lustrates the problem. At first participant A is sending data,
so there is a delay caused by buffering at point A as well
as the transmission delay to point B. Accordingly the data
is played at point B, reflected, recorded, buffered again and
sent back to point A. Consequently the sender gets the in-
terfering reflections with the sum of all delays, which is just
annoying in the slightest case but can also render the phone
useless.

A

B

Signal 1

Signal 2

Figure 7: Delayed audio transmission.

A solution of this problem can be filtering of the reflec-
tions which are created on the side of each participant. The
basic solution of this problem was already solved 50 years
ago by Norbert Wiener. He found a way to calculate the co-
efficients of a filter for filtering just a specific signal. There-
fore the inverse autocorrelation of the received signal, as
well as the cross correlation between the received signal and
the sent signal is needed:

hopt = R−1
xx r(λ)

xs (1)

Now it would basically be possible to measure the auto-
correlation and the cross correlation in advance, for calcu-
lating the optimal impulse response to create an echo can-
celer. But since the reflections are different for every place
and even differ when moving an object, the calculations
have to be done during filtering. This requires the use of
an adaptive filter.

Adaptive filters (see Fig. 8) are calculating the impulse
response iteratively by minimizing the error signal. They
start with an assumption for the impulse response. With
this assumption the first convolution is calculated, then the
result is used for generating an error signal that can be used
to update the filters coefficients again. Thus, the impulse re-
sponse is converging to the optimum Wiener solution with
each iteration. An algorithm which is commonly used for
this purpose is the NLMS, the normalized least mean square
algorithm. Therefore the variable µ is used for the step-size

DAFX-5

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

parameter to control the attended adaptation time as well
as the residual error. The normalization of this equation is
done by the use of the squared Euclidean norm. Haykin
[11] describes the effect as lowering the adaption for large
signals and increasing the adaptation for small signals. This
produces a lower noise which stabilizes the calculation and
increases the adaptation time. Since for our simulations and
implementations we are using a range of values between -1
and +1, the division has to be exchanged with a multipli-
cation to achieve the same effect. Consequently it can be

Adaptive weight-
control mechanism +

u(n)

Input signal

e(n) d(n)

d'(n)

Output signal

Transversal filter

Figure 8: Adaptive filter

summarized that the calculation effort takes about M mul-
tiplications and M additions for the convolution of the FIR
filter and additionally 3M multiplications and M additions
for the recursive algorithm.

ŵ(n + 1) = ŵ(n) +
µ̃

||u(n)||2
u(n)e∗(n) (2)

To achieve a good performance it should be considered
that the length of the filter has to be at least as long as the
reflection takes to be recorded. Assuming a delay path of
10 meters it takes about 30 ms until the delay will be recog-
nized. This leads to a minimal order of

M = 30 ms × 44117
Values

s
= 1300

for using audio quality sample rates. Such a high or-
der goes along with very high demands for the processing
speed, since it takes about 6M=7800 calculations per value,
or 340M calculations per second, for using CD quality sam-
ple rate. Based on the fact that the used IC is working with
a clock of 48 MHz it can be assumed that

steps =
48MHz

44117Hz
= 1088

steps are needed to calculate the adaptive filter between
two arriving audio values. This already shows that the im-
plementation could be a challenge, because the proportion
between calculations and time is 7:1. So in order to solve
this problem the parallel advantages of the FPGA have to
be used. This can be done by dividing the filter into sev-
eral parts, calculating them separately at the same time and

combining them finally together. This possible realization
differs from a digital signal processor in that way, that the
maximum number of fragmentation is much higher and that
the unused hardware parts are not affected at all. The used
IC offers for example 35 embedded 18 bit multiplier. Fur-
thermore a VHDL simulation shows that in order to realize
350M calculations in a second, the filter has to be divided in
5 different parts which would just just 15% of the available
multiplier. And while the resources of a DSP would have
been depleted by this filter, the implementation on a FPGA
would still have a lot of calculation power left.

4.4. Flanger

The flanger is a delay based effect like the echo, so the ar-
chitecture of the delay effect can be used as a starting point.
The difference is that in the echo effect a linear addressing
scheme is used while the flanger effect uses a delay time
that varies at a low frequency. The various frequencies dif-
fer with steps by 1

44,1kHz , thus no fractional interpolation is
needed. We create a sinusoidal oscillation via a direct digi-
tal synthesis (DDS) unit. DDS is a technique using a look-
up table to store the values of a function which should be
generated. This oscillation is added to the linear addressing
used for the ringbuffer as shown in Fig. 9. The frequency
can be controlled by a parameter.

Figure 9: Flanger effect architecture.

4.5. WahWah

The WahWah effect describes a time-varying bandpass fil-
ter. In this case the concept "second-order allpass" as found
in [10, p. 41] was realized. The idea is to create an allpass
filter with phase shifting by 360. The filtered signal has to
be subtracted from the original signal. When this elemen-
tary operation is done an allpass behavior results instead of
a bandpass (BP) behavior. Analogue to this fact, we can add

DAFX-6

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

the original signal to the filtered signal so that the result is a
band reject (BR) filter as seen in Fig. 10.

Figure 10: Blockdiagram of the allpass method

4.5.1. System Behavior

The cut-off frequency is the frequency at which the phase
is shifted by 180. When we consider the complete system
including subtraction, exactly the same point represents the
currently center frequency of the bandpass. The frequency
band for the complete phaseshift (-360) is the bandwidth of
the bandpass (see Fig. 11).

100 101 102 103 104
-10

-5

0
Phaseresponse; fc = 1500Hz, fb = 800Hz, fs = 48000Hz

100 101 102 103 104
0

200
400

|A
W

G
N

|

White noise

100 101 102 103 104
0

200
400

|B
P

|

Bandreject

100 101 102 103 104
0

200
400

|B
P

|

Bandpass

Figure 11: Demonstration of the allpass-method

Because the used filter is an IIR type of second order,
there are just 6 filter-coefficients. In addition there is the
special character of an allpass, which means that the infi-
nite filtercoefficients are mirrored to the finite filtercoeffi-
cients (equation 5). Also the first infinite filtercoefficient
has always the value 1. Accordingly we just need to cal-
culate 2 coefficients. Parameter c describes the bandwidth
of the bandpass, whereas parameter d describes the center
frequency.

c =
tan(πfb/fs) − 1
tan(πfb/fs) + 1

(3)

d = −cos

(
2π

fc

fs

)
(4)

hAllpass(z) =
−c + d(1 − c) · z−1 + z−2

1 + d(1 − c) · z−1 − c · z−2
(5)

One last problem which needs to be handled is the time-
variance. The user of the effects-processor should be able
to change the center frequency of the WahWah bandpass in
realtime. The filter coefficients therefore need to be cal-
culated depending on the desired center frequency. This
operation would require the calculation of the cosine (see
equation 4). A compromise was to pre-calculate a few pos-
sible coefficients and store them in a lookup table. Because
these lookup tables don’t need to be changed during system
uptime, we used the FPGA’s Block-RAM as ROM for this
matter.

4.5.2. Hardware Effort

The WahWah effect requires the implementation of a second-
order IIR filter. Therefore each order is represented by a
VHDL process including forward and recursive branch. 4
filter coefficients out of 6 are not equal to one, therefore the
filter needs 4 multiplications per sample. The Cyclone II
FPGA includes 35 multipliers with a bitwidth of 18 bits. In
order to gain maximum speed the multiplications are done
in parallel which means, that 4 multipliers are used.

As said above the pre-calculated filter coefficients need
to be saved. For this matter the FPGA’s internal memory
blocks are used. Considering the fact, that allpass-filter co-
efficients are mirrored (see [10]) and that the bandwidth is
a constant there is just one filter coefficient left, which need
to be saved. This single coefficient represents the center
frequency and was pre-calculated for a frequency range of
200Hz to 2kHz considering, that in the end 1024 24-Bit
values are ready to use. This results in 18432 bits of re-
quired memory space. The hardware unit itself uses about
400 logic elements containing 250 registers. The maximum
achievable clock frequency is 60 MHz.

5. ADVANTAGES, DISADVANTAGES TO A
DIGITAL SIGNAL PROCESSOR

The main advantage in implementing audio effects with as
dedicated hardware is the very high throughput and low la-
tency. Dedicated hardware also avoids the sometimes un-
predictable behavior of a software based implementation.
Because all the hardware blocks are working in parallel,
we can implement complex designs and as long as we have
enough free space on the chip, computing power is guaran-
teed. This offers us the possibility to have a huge range of
effects working in parallel, because each effect works in-
dependently from the others. If we want to implement our

DAFX-7

Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

effects "the traditional way" by using a digital signal pro-
cessor, we sooner or later will reach the calculation power
limit.

Some applications can be implemented easier in soft-
ware. In our case it was the control of the effects with the
MIDI pedal. Therefore we decided to use also a softcore
processor for managing the effects. Managing in this point
means to parameterize them. Implementing also the audio
effects in software (e.g. on a DSP) would have been eas-
ier than in hardware. There are currently more example-
implementations available and the design process is faster
in software. Also testing would have been easier, because it
takes a lot of time to build a test environment in VHDL for
hardware effects.

One large disadvantage of FPGAs is left to be men-
tioned. The point is the multiplication. Common FPGAs
seldom provide DSP elements with more than 20 bits width.
But digital signal processors mainly calculate with an accu-
racy of 32 bits. Some DSPs (e.g. SHARC from Analog
Devices) even provides a 40 bit accuracy when multiplica-
tion is done. For high-end audio the bitwidth is crucial and
must not be neglected. When we want to use the same broad
bitwidth on FPGAs it possible to cascade the DSP elements
which will in turn increase the propagation delays through
combinatorics and makes the system working slower.

Additionally there are a number of well established li-
braries for DSP processors available, which ease and fas-
ten the development. But on the contrary there are not that
many IPs available which serve our specific needs. Further-
more, the advantage of these libraries is that they are avail-
able for free and thus have been used, tested and improved
by a huge community.

6. CONCLUSIONS

The hardware/software co-design method described in this
paper provides a practical alternative to the software cen-
tric systems dominating the market today. While dedicated
hardware units used for audio realtime processing offer op-
timum performance in terms of latency and throughput the
use of an associated software unit can still take care of the
parameterization of the system and provides the flexibility a
user is accustomed to.

The hardware/software co-design approach we have cho-
sen has proved to be a practical way for the realization of
even complex audio realtime effects units. Still there’s lots
of work left to be done. Varying bit widths throughout the
course of the audio processing assembly line would be eas-
ily implementable using dedicated hardware. Among the
topics we would like to address in future work are the imple-
mentation of digital audio interface standards (e.g. MADI)
with special emphasis on an efficient solution for the all-
pervasive problem of synchronization and the implementa-

tion of audio compression algorithms such as FLAC in ded-
icated hardware.

7. REFERENCES

[1] Klaus ten Hagen, Abstrakte Modellierung digitaler
Schaltungen, Springer-Verlag, Berlin, Heidelberg,
NewYork, 1995.

[2] Uwe Meyer-Bäse, Digital Signal Processing with
Field Programmable Gate Arrays, Signals and Com-
munication Technology. Springer-Verlag, Berlin, Hei-
delberg, NewYork, 2 edition, 2007, ISBN-13 978-
3540211198.

[3] Wolfgang Pauli, Markus Pfaff, and Stefan Reichör,
“Dsp in dedicated hardware: Raising value abstraction
for fixed point implementation,” in International Sym-
posium on Signals, Systems, and Electronics ISSSE 04,
Linz, Austria, August 2004, University of Linz, ISBN
3-9501491-3-9.

[4] Mario Huemer, Michael Lunglmayr, and Markus
Pfaff, “A lecture course series: From concept engi-
neering to implementation of signal processing algo-
rithms with FPGAS,” in Proceedings of the 13th Euro-
pean Signal Processing Conference EUSIPCO 2005,
Antalya, September 2005, Istanbul Technical Univer-
sity.

[5] D. Malzner, J. Seifert, J. Traxler, H. Weber,
and G. Wiendl, “Dafx project homepage,”
http://www.dafx-hsse.info, 2006.

[6] G. Truhlar, T. Pühringer, G. Schedelberger, M. Pfaff,
and J. Langer, “Hardware/software co-design of
a realtime-rendering architecture for embedded sys-
tems,” in Austrochip 2004, Villach, Austria, October
2004, Technikum Kärnten.

[7] Brian Dipert, “FPGAs DiSPlay their processing
prowess,” EDN Magazine, , no. 22, pp. 61–68, Octo-
ber 2002, Avaiable online from http://www.edn.com.

[8] Nick Tredennick, “The death of DSP,”
http://www.ttivanguard.com/dublin/dspdealth.pdf,
August 2000.

[9] Altera, NIOS II Processor Handbook.

[10] Udo Zölzer, Ed., Digital Audio Effects, John Wiley
& Sons, Inc., New York, 1 edition, 2002, ISBN-13
978-0471490784.

[11] Simon Haykin, Adaptive Filter Theory, Prentice Hall,
New Jersey, 2002, 0-13-090126-1.

DAFX-8

	1 Introduction
	2 Rapid Prototyping Board SandboxX
	3 System Design
	3.1 Field-Programmable Gate Arrays
	3.2 Embedded Processor
	3.3 Software Development
	3.4 Interface of Effects Units
	3.5 MIDI Control Interface

	4 Effects
	4.1 Chorus
	4.2 Delay
	4.3 Echo Cancellation
	4.4 Flanger
	4.5 WahWah
	4.5.1 System Behavior
	4.5.2 Hardware Effort

	5 Advantages, disadvantages to a Digital Signal Processor
	6 Conclusions
	7 References

