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ABSTRACT

This paper proposes a new multipitch estimator based on a
likelihood maximization principle. For each tone, a sinu-
soidal model is assumed with a colored, Moving-Average,
background noise and an autoregressive spectral envelope
for the overtones. A monopitch estimator is derived follow-
ing a Weighted Maximum Likelihood principle and leads
to find the fundamental frequency (F0) which jointly max-
imally flattens the noise spectrum and the sinusoidal spec-
trum. The multipitch estimator is obtained by extending the
method for jointly estimating multipleF0’s. An application
to piano tones is presented, which takes into account the
inharmonicity of the overtone series for this instrument.

1. INTRODUCTION

Multipitch estimation is a critical topic for many applica-
tions, both in the field of speech processing (e.g. prosody
analysis) [1] and in the context of musical signal analysis
(e.g. automatic transcription) [2, 3]. The challenge offered
by the spectral interference of the overtones of simultaneous
notes has been taken up by various methods, some aiming at
detecting a periodicity in the signal [4] or in its spectrum [5]
while others use a combination of both spectral and tempo-
ral cues [6, 7]. Recent trends in the task include estimation
in a bayesian framework [8] or in a perceptually compliant
context [7]. The technique proposed in this paper is based
on a Weighted Maximum Likelihood (WML) principle and
belongs to the spectral estimators category.

This paper is organized as follows. Section 2 introduces
the Maximum Likelihood principle applied to the proposed
signal model. Section 3 then details the adaptation of the
theoretical method to the multipitch estimation task in the
case of piano sounds. Experimental results are given in sec-
tion 4. Finally, conclusions are presented in section 5.

The research leading to this paper was supported by the French GIP
ANR under contract ANR-06-JCJC-0027-01, Décomposition en Éléments
Sonores et Applications Musicales - DESAM, and by the FrenchMinistry
of Education and Research under the Music Discover project of the ACI-
Masse de données

2. WEIGHTED MAXIMUM LIKELIHOOD PITCH
ESTIMATOR

2.1. Main idea

This work focuses on signals which can be decomposed
into a sum of sinusoidal components and a colored noise.
In the following, a moving average process is assumed for
the latter, with a corresponding FIR filter of transfer func-
tion B(z). The spectral envelope of the partials is modeled
by an autoregressive filter of transfer function1

A(z) . The
technique presented herein is based on the decomposition
of the set of DFT frequencies into two subsets: the subset
N owing to the background noise properties and the other,
H, associated with the sinusoidal part. Once both1/A(z)
andB(z) have been estimated, the constructed likelihood
is maximized for the true value ofF0 since it simultane-
ously whitens the noise sub-spectrum and the sinusoidal
sub-spectrum. In the case where a badF0 candidate is se-
lected, the choice of a FIRN -support sub-spectrum and an
AR H-support sub-spectrum ensures that such a flatness of
both sub-spectra is not achieved.

2.2. Statistical framework

Let x denote theN -dimensional vector containingN suc-
cessive samples of data,X theN -dimensional vector of its
Digital Fourier Transform (DFT) andF theN × N ortho-
normal DFT matrix (F(p,q) = 1√

N
e−2iπ

pq

N ). We assume
thatx results from the circular filtering of a centered white
complex Gaussian random vectorw of varianceσ2. Let h
be the corresponding impulse response vector, andH its
N -dimensional DFT vector. SinceX = diag{H}Fw, X

is a centered Gaussian random vector of covariance matrix
σ2 diag{|H|2}.

Below, we consider that the observed data consist of a
subsetS of the DFT coefficients in vectorX. Then the
previous discussion shows that the probability law of the
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observed data is

p(XS) =
∏

k∈S

1

πσ2|H(k)|2
e
− |X(k)|2

σ2|H(k)|2 .

Thus the normalized log-likelihoodLS(σ,h) =
1

#S ln p(XS) can be written in the form

LS(σ,h) = C+
1

#S

∑

k∈S

[
ln

(
|X(k)|2

σ2|H(k)|2

)
−

|X(k)|2

σ2|H(k)|2

]

(1)
whereC = − 1

#S
∑

k∈S
ln(π|X(k)|2) is a constant with re-

spect toσ andh, and#S denotes the number of elements in
S. Normalizing the likelihood by factor1/#S aims at ob-
taining comparable, homogeneous values when#S varies.
MaximizingLS with respect toσ yields the estimate

σ̂2 =
1

#S

∑

k∈S

∣∣∣∣
X(k)

H(k)

∣∣∣∣
2

. (2)

Then substituting equation (2) into equation (1) yields

LS(h) , LS(σ̂2,h) = C − 1 + ln (ρS(h)) (3)

where

ρS(h) =

( ∏
k∈S

∣∣∣X(k)
H(k)

∣∣∣
2
) 1

#S

1
#S

∑
k∈S

∣∣∣X(k)
H(k)

∣∣∣
2 (4)

is equal to the ratio between the geometrical mean and the

arithmetical mean of the set

{∣∣∣X(k)
H(k)

∣∣∣
2
}

k∈S
. Such a ratio

is maximal and equal to 1 when|X(k)/H(k)| is constant,
independant ofk, which means thatρS(h) measures the

whiteness, or theflatnessof
{

X(k)
H(k)

}

k∈S
. The next step con-

sists in choosing a parametric model forh, and maximizing
LS with respect to the filter parameters. This optimization
results in maximizingρS(h). For instance, ifh is modeled
as an autoregressive (AR) filter, an approximate solutionĥ

to the optimization problem can be obtained by means of
linear prediction techniques [9]. Ifh is modeled as a finite
impulse response (FIR) filter of lengthp ≪ N , an approx-
imate solutionĥ can be obtained by windowing a biased
estimate of the autocovariance function.

2.3. Application to pitch estimation

Our pitch estimator relies on a weighted maximum likeli-
hood (WML) method: for all subsetsH, i.e. for all possible

F0’s, we calculate the weighted likelihood

LH = α ln ρ̂H + (1 − α) ln ρ̂N (5)

with





ρ̂H = max

A
ρH

(
1

A(z)

)

ρ̂N = max
B

ρN (B(z))

whereN = H is the complement set ofH and0 < α < 1
(in practice we chooseα = 1/2). The pitch estimate is
given by the setĤ which maximizesLH. This maximum
depends on the sum of the twoH-dependent terms in (5):
ln ρ̂H andln ρ̂N . The flatnessρ̂H of the whitened compo-
nents has a local maximum for a smooth spectral envelope,
obtained when analyzing the trueF0 (see figure 1) or one
of its multiples (i.e. H is a subset of the right set of over-
tones, see figure 2), or whenH only contains noisy compo-
nents. Low values ofρ̂H are obtained when amplitudes at
the frequencies of̂H are alternately low and high since AR
filters have no zero, which means that they cannot fit a spec-
trum where some sinusoidal components inH are missing.
This particularly happens for a sub-harmonic of the trueF0

(see figure 3). In other respects, when considering the spec-
tral envelope of the noisy part of the sound, FIR filters have
no pole, which means that they cannot fit any sinusoidal
component: the spectral flatnesŝρN of the whitened resid-
ual part reaches high values when the frequencies of over-
tones have been selected inH, i.e. when analyzing any sub-
harmonic frequency of the trueF0 (see figure 3). As illus-
trated in figure 4, by combining both spectral flatnessesρ̂H
and ρ̂N , a global maximum is found for the trueF0 while
any other local maximum in̂ρH (or ρ̂N ) is attenuated bŷρN
(or ρ̂H), particularly harmonics and sub-harmonics.

3. APPLICATION TO MULTI-PITCH ESTIMATION
OF PIANO TONES

3.1. Inharmonicity in piano tones

In a piano note, the stiffness of strings causes the frequen-
cies of overtones to slightly differ from a perfect harmonic
distribution. We are focussing one these quasi-harmonic
sounds and exclude from this study other inharmonic tones
like bell tones. The frequency of the overtone of ordern is
thus given by the inharmonicity law [10]:

f (f0,β)
n = nf0

√
1 + β (n2 − 1) (6)

wheref0 is the fundamental frequency andβ is the inhar-
monicity coefficient. Note thatβ varies along the range of
the piano keyboard and from one instrument to the other.
Thus, the setH, characterized by these two parameters, is
defined as:

H(f0,β) =
{

f (f0,β)
n /n ∈ N, f (f0,β)

n < Fs/2
}

(7)
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Analysis of a synthetic signal with fundamental frequency1076.6602 Hz.
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Figure 1:LH estimation forH = Ĥ (trueF0). Overtones
are selected in the spectrum (top), amplitudes of compo-
nents fit the AR model (bottom left) and the residual spec-
trum is well whitened by the MA model (bottom right). In
order to avoid overlapping between curves in the graph-
ical representation, an constant offset is added to post-
whitening dB-curves.
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Figure 2:LH estimation at twice the trueF0. Amplitudes
of components fit the AR model whereas the residual spec-
trum is not perfectly whitened by the MA model, due to
remaining components.
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Figure 3:LH estimation at half the trueF0. While residual
spectrum is well whitened by the MA model, amplitudes
of components do not fit the AR model, resulting in a low
flatness of whitened amplitudes (bottom left, circles).
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Figure 4:H-dependent termsln ρ̂H (top) andln ρ̂N (mid-
dle), and weighted likelihoodLH (bottom), computed for
all possibleF0’s (i.e. all possibleH’s).
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whereFs is the sampling frequency. Optimizing the log-
likelihoodL

(
H(f0,β)

)
with respect toH(f0,β) then consists

in maximizing it with respect tof0 andβ.

3.2. From the theoretical model to real sounds

0 2000 4000 6000 8000 10000
−200

−150

−100

−50

0

f (Hz)

dB

H for f0 = 465.467 Hz

0 5000 10000
−200

−100

0

100

f (Hz)

dB

H set

0 5000 10000

−200

−100

0

100

f (Hz)

dB

N set (residual)

Before whiten.
Post whiten.
MA model

Before whiten.
Post whiten.
AR model

H-set spectrum
H set
AR model
Residual
MA model

Figure 5: Real piano tone: separation between note compo-
nents and residual part, and related MA and AR models

How do real piano tones fit the signal model described
above? The AR model for the sinusoidal component, the
MA noise model and the inharmonicity distribution of fre-
quencies seem to be robust hypotheses. Conversely, the
practical application of the method has to cope with two
deviations from the theoretical point of view:

1. the assumption thatfn lies in the exact center of a
frequency bin (multiple of1/N ) is usually false, and
spectral leakage thus influences theN -support sub-
spectrum.

2. the amplitude of the overtone may vary within the
analysis frame, reflecting various effects as the en-
ergy loss of the sound and the beating between close
adjacent components. This can affect the spectral en-
velope of theH-support sub-spectrum.

The windowing of the analyzed waveform by a Hann
window has proved to be a robust trade-off to overcome
these issues. It prevents the spectral leakage associated with
high energy components from masking weak overtones.
Amplitudes of every overtonek are estimated by perform-
ing a parabolic interpolation of the spectrum (in decibels)
based on the values in the nearest Fourier bins. The result-
ing (linear) value is used when computing the sinusoidal-
part spectral flatnesŝρH, i.e. in place ofX (k) in equa-
tion (4). In order to minimize the effects described above

in ρ̂N (see equation (4)), primary lobes of the frequencies
selected inH are removed fromN , which is redefined as:

N = {k′/∀f ∈ H, |k′/N − f | > ∆f/2} (8)

where∆f is the width of the primary lobe (∆f = 4
N

for
a Hann window). Note that the question of removing a
set of components is a key step in the implementation of
our algorithm. As shown in figure 5, the proposed method
performs an approximate removal that offers a satisfying
trade-off between efficiency and computational cost. Other
techniques based on amplitude estimation and adapted filter
design have been tested without bringing major improve-
ments. The non-stationary nature of signals seems to be re-
sponsible for this limitation. It should be taken into account
for enhancing the separation between a set of components
and the residual signal.

3.3. Extension to polyphonic sounds

We now consider that the deterministic signals(n) is a

sum ofM inharmonic sounds:s(n) =
M∑

m=1
s(m)(n) and

∀m ∈ {1 . . . M}, f
(m)
n = nf

(m)
0

√
1 + β(m)(n2 − 1),

wheref
(m)
0 is the pitch andβ(m) > 0 is the inharmonic-

ity coefficient of themth tone. Each note is associated with
one individual AR model, and weights in the likelihood are
uniformly distributed among notes. Thus the WML princi-
ple consists in maximizing the log-likelihood:

L(H(1), . . . ,H(M)) =
1

2M

M∑

m=1

ln ρH(m)

(
1

A(m)(z)

)

+
1

2
ln ρ̂N (9)

whereH(m) = H

�
f
(m)
0 ,β(m)

�
andN is the set of bins out-

side primary lobes of frequencies of anyH(m). The opti-
mization is performed with respect to each of the sets
H(1), . . . ,H(M). Each setH(m) is defined by the parame-
ters{(f (m)

0 , β(m))}m∈{1...M} and1/A(m)(z) is the AR fil-
ter related to notem. Two distinct setsH(m1) andH(m2)

may intersect, allowing overlap between spectra of notes
m1 and m2. The algorithm presented in section 2.3 can
be applied straightforwardly.

3.4. Multi-pitch estimator implementation

Multi-pitch estimation is often performed either in an iter-
ative or in a joint process. The proposed method belongs
to the joint estimation category. While iterative methods
consist in successively estimating and removing a predom-
inantF0, joint estimation simultaneously extracts the set of
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F0’s. Thus, a direct implementation of the algorithm de-
scribed above would require to compute the ML of all pos-
sible combinations of notes, leading to a high-order combi-
natory task. For instance, more than2.106 different chords
exist for a 4-note polyphony in the full piano range, each
of these candidates requiring several calls to the likelihood
function since the exactF0 andβ values are unknown.

In order to reduce the cost of the ML estimation, a
two-step algorithm is proposed. First, each possible chord
is evaluated on a reduced number of pointsNp in the

(f
(m)
0 , β(m)) region aroundF0 values from the well-

tempered scale and approximateβ values.Ncandchord can-
didates are extracted among all combinations by selecting
theNcandgreatest likelihood values. Then, the likelihood of
each selected candidate is locally maximized with respect
to coefficientsf (m)

0 andβ(m). A simplex method is used
to perform this optimization, which is initialized with the
f

(m)
0 andβ(m) values selected during the first step. Finally,

the chord with maximum accurately-computed likelihood is
selected as the chord estimate.

4. EXPERIMENTAL RESULTS

The algorithm has been tested on a database composed of
about540 isolated piano tones of the RWC database [11]
and random chords generated by several virtual piano soft-
wares based on sampled sounds. About600 two-note
chords and600 three-note chords were evaluated. In each
case, the polyphony is known a priori by the algorithm and
the estimation results from the analysis of one93 ms frame,
beginning10 ms after the onset.F0 estimates are rounded
to the nearest half-tone in the well-tempered scale in order
to determine if an estimated note is correct. This approx-
imation onF0 is carried out in order to evaluate the pitch
estimation at a note level rather than at a frequency level.
The note search range spreads over 5 octaves, from MIDI
note 36 (f0 = 65 Hz) to MIDI note 95 (f0 = 1976 Hz).
These test conditions are similar to the ones used in com-
petitor systems [4, 5, 7] in terms of frame length,F0 search
range and error rate definition.

The parameters of the system have been adjusted as fol-
lows. Sounds are sampled at22050 Hz. DFT are computed
on 4096 points after zero-padding the2048-point frame.
The AR model order is set to8, the MA model order to
20. In the first step of the implementation described in sec-
tion 3.4, all chord combinations are evaluated, each one
with Np = 10 (polyphony≤ 2) or Np = 5 (polyphony

three) different(f (m)
0 , β(m)) values. ThenNcand = 75

(monophony) orNcand = 150 (polyphony≥ 2) chord can-
didates are selected for the second step.

Error rates are2.0% in monophony,7.5% in polyphony
two and23.9% in polyphony three. They are reported in
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Figure 6: Estimation results: for a given polyphony (1 to 3
from top to bottom), random chords are generated (circles)
and estimated (crosses). For visual representation clarity,
only 50 samples of them are shown (center). Distribution of
false negatives is displayed on the left. Distribution of false
positives is displayed on the right.
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Polyphony 1 2 3
Error rate 2.0% 7.5% 23.9%

±0.6% ±0.75% ±1.0%
Octave error rate 0% 1.6% 5.2%
State of the art 2 ∼ 11% 7 ∼ 25% ≈ 10 ∼ 35%

Table 1: Error rates with respect to polyphony. Lower and
upper bounds of state-of-the-art performances are also re-
ported. Confidence interval is derived as the standard devi-
ation of the error rate estimator.

table 1 and can be compared to the three competitor sys-
tems previously mentionned. Their performances have been
established in [7] for polyphony one, two, four and six:
error rates vary from2 to 11% in monophony, from7 to
25% in polyphony two and from14 to 41% in polyphony
four. Error rates in polyphony three are not given, but could
be figured out as intermediate values between results in
polyphony two and four, which would lead to approximate
error rates between10 and35%. The proposed pitch esti-
mator is comparable to competitor systems in terms of per-
formance. Error rates are particularly competitive in poly-
phonies one and two.

The evaluation task has been performed using randomly
uniformly-distributed notes in order to provide experimental
results from an objective point of view rather than from mu-
sical considerations. The distribution of errors is reported in
figure 6. The few errors in polyphony one occur in the low-
est and highest pitch regions. In polyphony two and three,
most of missed notes (or false negatives, FN) are located
in the treble part of the piano range whereas the false-alarm
notes (or false positives, FP) estimated in place of them tend
to be distributed in a more uniform manner along the piano
range. Closely-spaced chords in the medium range seem
easier to detect than widely-spaced chords. Octave error are
scarce – around one fifth of all errors for each polyphony
number –, which can be explained by the complementary
contributions of note and noise likelihoods. On the con-
trary, high-pitched FN and large-interval errors often occur,
in spite of the likelihood normalization stage, due to the
sensitivity of the ML approach to the variable number of
frequency parameters that depends onF0 candidates.

5. CONCLUSIONS

The multipitch estimation task has been performed here
through a Maximum Likelihood approach. It consists in
modeling notes and residual noise by AR and MA mod-
els, and results in a criterion on their spectral flatness af-
ter a whitening process based on the models. The method
has been validated by satisfying experimental results for
polyphony one to three.

Future works will deal with managing the overlap be-

tween notes spectra, with improving the model for the spec-
tral envelope of notes and with making the computational
cost decrease in order to both benefit from the efficiency
of the estimator and avoid the inherent complexity of joint
estimation of multipleF0’s.
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