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ABSTRACT 

The problem of signal synthesis from bilinear time-frequency 
representations such as the Wigner distribution has been investi-
gated [1,2,4] using methods which exploit an outer-product inter-
pretation of these distributions. The Modal distribution is a time-
frequency distribution specifically designed to model the quasi-
harmonic, multi-sinusoidal, nature of music signals and belongs to 
the Cohen general class of time-frequency distributions. Existing 
methods of synthesis from the Modal distribution [3] are based on 
a sinusoidal-analysis-synthesis procedure using estimates of in-
stantaneous frequency and amplitude values. In this paper we 
develop an innovative synthesis procedure for the Modal distribu-
tion based on the outer-product interpretation of bilinear time-
frequency distributions. We also propose a streaming object-
oriented implementation of the resynthesis in the SndObj library 
[6] based on previous work which implemented a streaming im-
plementation of the Modal distribution [7]. The theoretical back-
ground to the Modal distribution and to signal synthesis of Wigner 
distributions is first outlined followed by an explanation of the 
design and implementation of the Modal distribution synthesis. 
Suggestions for future extensions to the synthesis procedure are 
given. 

1. INTRODUCTION 

The Modal distribution was introduced by Pielemeier and Wake-
field [3] as a member of the Cohen general class of time-
frequency distributions [5] for the analysis of music signals. It is 
primarily a Wigner distribution, or more specifically, a smoothed 
pseudo-Wigner distribution (SPWD), with a kernel that takes ac-
count of the modes present in quasi-harmonic, multi-sinusoidal, 
music signals. Being based on the Wigner distribution, it provides 
a more accurate measure of time-frequency localisation and does 
not suffer from the time-bandwidth trade-off inherent in the spec-
trogram (also a member of the Cohen class) implementations. One 
drawback of the Wigner distribution is the existence of cross-
terms amounting to beats between partials not existing in the 
original signal. The Modal distribution kernel is designed to 
minimize the effect of these cross terms for music signals. Fur-
thermore, implementation of the time-smoothing kernel for the 
Modal distribution greatly reduces the number of Digital Fourier 
Transforms (DFTs) that need to be performed on the smoothed 
autocorrelation function and results in applying the DFT at hop 
steps related to the size of the time-smoothing kernel. Ultimately 
this decreases the load in computing the distribution. In order to 
apply an outer-product based synthesis procedure to the Modal 
distribution, therefore, it is necessary to devise a method of signal 
recovery from sub-sampled autocorrelation functions.  

2. THEORETICAL BACKGROUND 

Leon Cohen [5] proposed a general class of time-frequency distri-
butions which are related through linear transformations.  The set 
of all linear transformations of the Wigner distribution has come 
to be known as the Cohen general class.  A two-dimensional ker-
nel determines the linear transformation involved. The Wigner 
distribution, equation (1), in terms of the signal ( )tf  and the 
spectrum ( )ωF  is given by: 
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Here the kernel is 1. The autocorrelation with the lag variable, τ, 
produces the time-relative-time or temporal autocorrelation func-
tion given in equation (4). An important property of the Wigner 
distribution is that it is real with ( ) ( )ωω ,,* tWtW = . Also, the 
Wigner distribution gives a clear picture of the instantaneous fre-
quency and group delay, which is not the case for the spectrogram. 
These are important for resynthesis [1,7]. 

2.1. The discrete pseudo-Wigner Distribution 

The discrete implementation of the pseudo-Wigner distribution 
with a frequency smoothing window function ( )kw , with length 

12 −= LM , ( ) Lkkw ≥= for    0  is then defined by: 
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where 

 ( ) ( ) ( )kwkwkp −= *  (3) 

and: 

 ( ) ( ) ( )knfknfkng −+= *,  (4) 

( )kng ,  is known as the temporal correlation function (TCF) or 
autocorrelation function. Equation (2) can be interpreted as the 
discrete Fourier transform of the autocorrelation function ( )kng ,  
with respect to n for each value of m. 
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2.1.1. Cross terms 

Given a music signal model as follows:  

 ( ) ( )kk twj
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where k  is the partial series index, t  is time, and the thk  term 
in the summation represents a partial with constant amplitude 

kA , frequency kω , and phase kφ , the Wigner distribution is: 
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The partials of ( )tf  (auto terms) are given by the first term in 
equation (6). The second double summation indicates the cross 
terms, arising from products between partials, which lie between 
any pair of auto terms. The magnitude of the cross terms is the 

product lk AA  of the amplitudes of auto terms k  and l  and 

they oscillate at a frequency, ( ) 2//ωω +k  equal to the differ-

ence between the frequencies of the two auto terms. For strictly 
harmonic signals, the cross terms form a partial series an octave 
below the fundamental, resulting in cross terms which fall at the 
same frequencies of and therefore corrupt the autoterms, and also 
cross terms at partial frequencies not in the original signal. 

2.2. The Modal distribution 

The modal distribution in equation (7) was designed to minimise 
these cross terms in equation (6) for music signals. The modal 
kernel consists of two different filter functions.  The time-
smoothing window, ( )phLP

, has the effect of smoothing the cross 
terms in the time direction, and the frequency-smoothing window, 

( )lgLP
, implements cross term suppression in cases of frequency 

modulation. ( )phLP
, is chosen to be a low pass filter with an up-

per cut-off just below the minimum frequency spacing in the dis-
tribution, this being the fundamental frequency for quasi-harmonic 
signals. The discrete form of the modal distribution is defined by:  
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where ( ) ( ) ( )phlpnRlnR LPflf ,,, −=  is the time-smoothed tem-

poral autocorrelation function (STCF). Computing the time-
smoothing in the autocorrelation domain greatly reduces the num-
ber of DFTs that need to be performed. DFT’s need to be com-
puted only at hop steps that sample at a rate approximately equal 
to the period of the time smoothing window. 

2.3. The Autocorrelation Function 
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Figure 1: Extent of the windowed autocorrelation func-
tion 

The autocorrelation function ( )kng , , represented by the dia-

mond-shaped function in Figure 1, is sampled in time ( t ) at twice 
the Nyquist rate, or sf2 , and in relative-time (τ ) at rate sf . 

This function, then, has duration T2  in τ  as shown in Figure 1. 
This requires that the discrete frequency index k in equation (2) be 
interpreted relative to this 2:1 sub-sampling rate [3]. With applica-
tion of a 2-D kernel function, 

MT2  represents the length of the 
frequency smoothing filter and the diamond-shaped region in the 
( )τ,t  plane in Figure 1 is limited to the rectangular region [6]: 
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3. MODAL DISTRIBUTION SYNTHESIS METHOD 

From equation (2) the inverse discrete transform is given by: 

 ( ) ( ) ( )kpkngkny ,2, =  (9) 
resulting in the autocorrelation function written as: 
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or with appropriate change of variable as:  
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This outer-product formulation represents the product of two one-
dimensional functions separable in n and m into the odd-or even-
indexed sequences of signal samples. For the even-indexed sam-
ples, the outer-product formulation eC  can be written in matrix 

form as: 
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where there are P known even samples and L-P samples to be 
recovered. This outer-product (OP) formulation is used in [1] for 
synthesis from overlapping blocks of eC . 

For signal synthesis from the modal distribution, however, 
only hop number of frames of the autocorrelation function are 
available and therefore the OP method cannot be directly applied. 
We derive an alternative method, which requires hop number of 
known samples to recover the sequence of odd- or even-indexed 
samples on a frame-by-frame basis. 

3.1. Sub sampled autocorrelation function method 

Synthesis of the signal samples from a sub sampled version of 

eC is implemented in two stages: in the first stage, 1eC , processes 

all autocorrelation frames up to ffth _ , half the DFT length (or 

ophffthl _=  frames), where the size of each frame grows 

by hop  number of samples and hop  number of samples can be 

recovered from each frame. In the second stage, 2eC recovers 

2hop  samples from all remaining frames. There are three cases 
only which must be processed separately: 

i. the first frame of eC  contains the product 

( ) ( )00 *
ee ff  and so no processing is necessary 

ii. the number of samples recovered from the second 
frame is  h/2 

iii. the number of samples recovered for frame l+1 is:  

 )1_()2(   where2 −−∗+=− ffthhlaah  (13) 

The matrix eC can now be reformulated to take the hop  step into 

account. For the even-indexed signal samples ef  we define the 

autocorrelation samples: 
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where hopthophophopn ∗∗∗= ,...,3,2,,0 , and t is the total 

number of frames.  Now we can write:  
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where hoplhophopiii k *,,3,*2,,, 21 �� ∗= , gives 

the hop frame index. Given a matrix [ ]paaaA �10=  of p=hop-

1 known even samples, and )(AdiagX e = , a diagonal matrix 

generated from A, all even indexed samples from 1eC  can be 

determined by: 

 eee XCF 11 =  (16) 

Next we can write:  
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where 121 −= hopα , vααα == 21  and 

tkkjjj s ,,3,2,,, 21 �� ++=  for even hop, and 

221 −= hopα , 122 −= hopα  and 1αα =v or 

2αα =v  depending on s, for odd hop. The sequence 

( )2,, 2121 +−++ hopjj oriori αα �  where si �,2,1= , 

represents the hop/2 known samples used to recover hop/2 even-
indexed samples from each row of 2eC . An identical formulation 

applies to the odd-indexed samples of  and so need not be out-

lined. 

4. RESULTS 

 

Figure 2: Autocorrelation function (for Bb Clarinet note 
G3) slices at time=180ms, for hop steps of 5, 32 and 81 

Figure 2 shows TCF function relative-time slices at time 180ms, 
for a Bb clarinet G3 note of length 8000 samples with 

44100=sf  and 10242 =T  for hop sizes of 5, 32 and 81 re-

spectively. In each case the peaks in the relative-time direction 
(horizontal axis) indicate the signal harmonics. For example, the 
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fundamental frequency can be seen from the 9 signal cycles in 
each plot, indicating a frequency of approximately sf2 =9.1/1024 

or ~196Hz (G3). 

 

Figure 3: Comparison of (a) original Clarinet G3 note 
with synthesized Clarinet G3 note samples (b), (c) and (d) 
from respective autocorrelation functions in Figure 2. The 
diamonds in (b), (c), and (d) indicate gaps in the signal 
where samples could not be recovered. 

Figure 3 shows the original signal (a), and the three signals recov-
ered from the autocorrelation functions with hop steps of (b) 5, (c) 
32, and (d) 81 respectively. The diamonds on plots (b)-(d) in Fig-
ure 3 indicate where zeros occur in the recovered signals. These 
missing samples are subsequently interpolated to avoid ‘clicks’ in 
the recovered signals. Hop sizes of arbitrary length were tested 
and in each case the synthesised samples recovered were identical 
to the original signal, apart from where zeros occurred, and the 
recovered signal was audibly indistinguishable from the sound of 
the original signal. 

5. CONCLUSIONS AND FUTURE WORK 

This frame-by-frame resynthesis method for Modal distributions 
exactly recovers the even- and –odd indexed signal samples for 
arbitrary hop steps. It provides an alternative signal recovery 
method for the Modal distribution based on the outer-product 
method in [1]. Current work focuses on a comparison of the outer-
product approximation (OPA) method in [1] implemented for the 
Modal distribution using eigenvalue-eigenvector decomposition 
for signal recovery, with the method outlined in this paper.  Im-
mediate further work will implement signal filtering for the Modal 
distribution using these methods. Future work will also investigate 
the effect of the Modal distribution’s smoothing kernel on this 
method and the possibility of signal modification in comparison 
with analysis-synthesis approaches. Finally, this frame-by-frame 
approach readily integrates into the SndObj library’s Modal distri-
bution routine [6,7], thus allowing a streaming implementation of 
Modal distribution synthesis in conjunction with many of the tools 
necessary for sound analysis and modification such as time 
stretching and vocoding. 
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