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ABSTRACT

A new approach to adaptive threshold selection for classification of
peaks of audio spectra is presented. We here extend the previous
work on classification of sinusoidal and noise peaks based on a set of
spectral peak descriptors in a twofold way: on one hand we propose a
compact sinusoidal model where all the modulation parameters are
defined with respect to the analysis window. This fact is of great
importance as we recall that the STFT spectra are closely related to
the analysis window properties. On the other hand, we design a
threshold selection algorithm that allows us to control the decision
thresholds in an intuitive manner. The decision thresholds calculated
from the relationships established between the noise power in the
signal and the distributions of sinusoidal peaks assures that all peaks
described as sinusoidal will be correctly classified. We also show
that the threshold selection algorithm can be used for different types
of analysis windows with only a slight parameter readjustment.

1. INTRODUCTION

The decomposition of audio spectra in sinusoids, transients and noise
is a useful tool for improving the results of parameter estimation
and/or signal manipulation applications. As has been shown for the
case of transient detection [1] and sinusoidal and noise discrimination
[2], the classification of spectral peaks is a beneficial approach to
identify signal components. Such a classification scheme that makes
optimal use of the information provided by spectral peaks can then be
used to achieve a robust segmentation into higher level signal compo-
nents, e.g. partials or unvoiced regions.

The basis for spectral peak classification is an adequate
choice of criteria that would best describe sinusoidal and noise spec-
tral peaks of audio signals. Ideally, those criteria (from now on de-
scriptors) would be able to precisely detect the nature of each peak in
the spectrum and thus provide for a complete separation between the
corresponding peak classes in the descriptor domains. Consequently,
the decision boundary for the classification process would be unam-
biguous and no misclassfication of spectral peaks would occur. This
scenario, however, is purely hypothetical as the peaks corresponding
to sinusoids (partials) in the spectra of real-world signals are usually
subject to additive noise and some type of modulation. In these cases
the descriptor distributions of the different peak classes overlap and
the optimal determination of the decision boundaries will depend on
the specific application.

The peak classification method proposed in [2] makes use
of descriptors that were designed to adequately characterize non-
stationary sinusoidal signals. These descriptors have proven to lead to
superior classification performance than other approaches devoted to
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sinudoidal detection/estimation [3,4]. It was shown in [2] that the
peak classes can be characterized by distributions in the descriptor
domains, similar to probability density functions. Once the distribu-
tions have been generated, a simple decision tree can be derived that
allows the classification of spectral peaks into sinusoids, noise and
sidelobes.

The peak classification method has been used successfully
in a number of applications. As examples we mention polyphonic FO
detection [5], adaptive noise floor determination [6] and voiced
unvoiced frequency boundary determination. Another interesting
application would be the pre-selection of the sinusoidal peaks to
reduce the number of candidate peaks considered for partial tracking
in additive analysis. A reliable classification of noise peaks could
reduce the number of incorrect connections and for probabilistic
approaches like [7] it would considerably reduce the computational
cost. The major problem with the classification scheme in [2] is the
control of the classification boundaries (classification thresholds) that
generally need adaptation for the specific problem at hand. A further
problem is that the descriptor boundaries of the different classes will
depend on the analysis window that is used. Up to know there did not
exist a high level control parameter that would allow to adjust the
sensitivity of the algorithm in an intuitive manner. There are two
signal parameters that directly affect the classification boundaries.
The first is the maximum modulation depth and period of the sinu-
soids. The second is the minimum amplitude of the sinusoids above
the noise floor. Both parameters influence the boundaries of the
sinusoidal class and accordingly both can be used to control the
decision boundaries. The problem using the modulation limits as
control parameter is the fact that the modulation is not a single pa-
rameter but a parameter vector of at least 4 dimensions (period and
depth for amplitude and frequency modulation). Therefore, it can not
be used to provide and intuitive control of the classification bounda-
ries. On the other hand the sinusoidal peak amplitude above the noise
floor is a single parameter that for a given modulation limit would
allow us to control the complex decision thresholds rather intuitively.

Accordingly, in this paper we investigate into the relation
between the peak amplitude above the noise floor and the descriptor
boundaries for the class of sinusoidal peaks. The descriptors are
defined and their properties discussed thoroughly in [2] but for sake
of clarity we will give a brief resume of the most prominent charac-
teristics in the section 2. For the sinusoidal model described in sec-
tion 3 we define the space of sinusoidal components by selecting
particular limits of the amplitude and frequency modulation rate and
depths, as well as the modulation laws. In section 4 we present the
descriptor distributions for the different signal classes and in section
5 we establish the mathematical model for the descriptor limits of the
sinusoidal class as a function of the peak amplitude level above the
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noise floor. In the experimental part in section 6 we show that the
threshold model successfully adapts to the limits of the distributions
of sinusoidal peaks for different types of analysis windows.

2. SPECTRAL PEAK DESCRIPTORS - SUMMARY

Being an elementary classification object, we define a spectral peak
as the normalized energy spectral density between two contiguous
minima in the DFT modulus |X(k)| of the signal x(n) multiplied by the
analysis window. The spectral peak descriptors proposed in [2] are
the Normalized Bandwidth Descriptor, the Normalized Duration
Descriptor and the Frequency Coherence Descriptor. The first two are
well suited to distinguish between sinusoidal and noise peaks while
the third can be used to detect the sidelobe structure that is an artifact
of the windowing process.

2.1. Normalized Bandwidth Descriptor (NBD)

Energy distribution along the frequency grid provides useful informa-
tion for identifying the nature of the signal related to a given spectral
peak. Being X(k) the DFT of the windowed signal and considering L
to be the number of samples in the spectral peak, we have defined the
NBD as a function of mean frequency % and root mean square band-
width BW

sw, 1 |&, (k- &) x(e)’

NBD === = ; .
&)
a k‘X(k)‘ . (2)

The sums are performed over the L bins in the peak under considera-
tion.

2.2. Normalized Duration Descriptor (NDD)

As with mean frequency and bandwidth, the mean time and root
mean square duration give a rough idea of the distribution of the
signal related to a spectral peak along the time grid. The time dura-
tion for continuous signals has been defined in [8] as the standard
deviation of the time with respect to the mean time. For discrete
signals, the following expressions characterize the duration 7., and
mean time 7 respectively:

T, = é.n(n' fz)z‘x(ny 3)

— 2

n annx(n)‘ , @)
where [x(n)]* is the normalized signal’s energy. It was shown in [8]
that, from the duality of the Fourier transform, both mean time and
duration can be expressed in terms of the spectrum. This important
feature permits us to describe individual spectral peaks through the
parameters generally employed in the time domain. Considering M to

be the size of the analysis window, for discrete spectra the NDD can
be obtained by means of:

T, _ 1
NDD = = )
a/\‘ ‘ s (5)
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where g,(k) is the group delay and 4°(k) is the frequency derivative of
the continuous magnitude spectrum. The group delay gq«(k) is defined
to be the derivative of the phase spectrum with respect to frequency.
For a single bin of the DFT spectrum it equals the mean time ac-
cording to [8] and specifies the contribution of this frequency to the
center of gravity of the signal related to the spectral peak. This prop-
erty of the group delay has been used in [9] to derive the time reas-
signment operator, which together with the frequency reassignment
aims to improve signal localization in the time-frequency plane.
According to [9] the group delay can be calculated efficiently by:
g, (k) =- realM
X (k) 7 @

being Xi(k) the DFT of the signal using a time weighted analysis
window. It can be shown that 4°(k) is the imaginary counterpart of
the group delay in (7):

84 (k) =- imagM
XY’ ©

As for the NBD all the summations are done over all the bins in the
spectral peak.

2.3. Frequency Coherence Descriptor (FCD)

The frequency reassignment operator for constant amplitude chirp
signals points exactly onto the frequency trajectory of the chirp at the
position of the centre of gravity of the windowed signal. The fre-
quency offset A, between the frequency at the center of a DFT bin
and the reassigned frequency in radians is given by:

X, (k)X (k)
X (k) , )

where X4(k) is the DFT of the signal windowed by the time derivative
of the analysis window. The Frequency Coherence Descriptor is
defined as a minimum absolute frequency offset A,(k) for all the bins
belonging to that peak:

D,, (k) = imag

FCD = ﬂ min‘ D, (k){
p * , (10)

being N the number of bins in the DFT. The normalization factor in
(10) ensures that the descriptor is expressed in bins of DFT.
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3. SINUSOIDAL MODEL AND PEAK DISTRIBUTIONS

To be able to classify a sinusoidal component we need to define what
we consider to belong to the sinusoidal class. As is common for
sinusoidal modeling we are going to understand a sinusoidal compo-
nent as a sinusoid with slowly varying amplitude and frequency
parameters [10]. For an investigation into the properties of the spec-
tral peak classes this requirement is not sufficient. To completely
define the space of sinusoidal components we have to select concrete
limits of the amplitude and frequency modulation rate and depths, and
we have to specify a concrete form of the modulation laws.

For the present application there exists an obvious con-
straint for the modulation which is related to the fact that the spec-
trum of the sinusoidal component has to contain a dominant main-
lobe. Otherwise the investigation of an individual spectral peak can
not provide us with sufficient information about the underlying sinu-
soid. Accordingly, the modulation rate and depth have to be limited
such that a dominant mainlobe is present in the Fourier spectrum of
each sinusoidal component. Because frequency and time resolution
are related to the window size and form, the modulation limits will
depend on these two variables. A simple solution to ensure the
modulation constraint described above for all window sizes is to
determine the maximum modulation that respects the constraint for a
given window size and to change the worst case modulation rate
proportionally with the window size.

As the next step we need to define the worst case signal
that is the signal that will be used to derive the descriptor limits of
the sinusoidal class. From the wide range of possible modulation laws
we have chosen the sinusoidal amplitude and frequency modulation in
white Gaussian background noise as our worst case reference signal.
The choice is motivated by the fact that a wide range of FM and AM
conditions can be covered. If the window size is small compared to
the vibrato rate for example, it is easy to see that the vibrato signal
approximately creates linear FM and AM. Recent investigations have
shown [11,12] that for real world vibrato signals the AM and FM will
generally not be phase synchronous. Accordingly, the worst case
signal model exhibits arbitrary phase relations between the amplitude
and frequency modulation. A special feature of real world AM is the
fact that the dominant AM rate may either be the same as the FM
rate, or twice as high. As the letter case is more critical, we chose it
for our worst case signal scenario.

In a view of the aforementioned discussion, the following
mathematical expression for the sinusoidal model is proposed:

x(n) = cos[2pF0n + 4., sin(ZpFFMn +a )]

[1 +A4,, cos(ZpFAMn + b)]+r(n) an

where r(n) is additive Gaussian noise. The parameters are selected as
follows. According to the previous discussion we set Fir= 2Fpy. The
frequency vibrato rate Fry has to be selected such that the spectrum
always contains a significant mainlobe, which is ensured by Fpy =
1/(4.2M). Accordingly, the window covers less than the fourth part of
the FM vibrato period. The values for the amplitude and frequency
modulation depth have been chosen as A4y = 0.5 and A4py = 10.
These values ensure a dominant peak mainlobe for arbi-
trary phase angles (a and f) . The window length}, the sinusoidal
frequency F,, and the sample-rate R do not have any impact on the
results. The size of the DFT N is chosen in such a way to assure that
the Picket-Fence effect has minimal impact on a peak representation

in the discrete spectrum. For completeness we note the values that we
used for the following investigation into the descriptor distributions
(M = 40ms, N =4096, F, = 880Hz, R =44 kS/s).

It is clear that the present worst case signal does not cover
all modulations that may be encountered in a real world setting, even
if we respect the fact that a dominant mainlobe is required to detect a
modulated sinusoid. The explicit inclusion of time varying sinusoids
into the model will nevertheless lead to a classifier that has signifi-
cant advantages in real world situations with time varying sinusoids.

Because the part of the sinusoidal peak that can be ob-
served changes with the variance o,” of the background noise level
r(n) the peak descriptors will not only change with the modulation,
but also with the SNR. For multicomponent signals the global SNR
does not provide meaningful insight, and therefore, we will use the
Peak Signal-to-Noise Ratio (SNR;) as our noise level parameter. The
SNR; indicates the sinusoidal peak power level in dB over the noise
floor (see Figure 1) and it presents a convenient parameter to control
the limits of the sinusoidal class.

To experimentally create the descriptor distributions we
proceed as follows. For the noise class distributions we calculate the
descriptors for all spectral peaks in the DFT of white Gaussian noise
processes using an analysis window of size M. For the sinusoidal
class we create a grid of phase values covering all combinations o
and f8 over the range - to 7 and we set 6, = 0. Then we calculate the
descriptor values for the largest peak in each frame. This gives us the
distributions for an infinite SNR;. The sidelobe distributions are
calculated from all but the strongest spectral peak in the spectrum of
the worst case sinusoid. The resulting descriptor distributions are
normalized by the maximum value and shown in Figure 2 for the
Hanning window.

As we can see from Figure 2 the NBD distributions for
modulated noise free sinusoidal peaks and for noise peaks do not
overlap at all, making them a very good candidate for sinusoidal and
noise separation. The sine and noise distributions for the NDD sig-
nificantly overlap, but the sinusoidal distribution covers only a small
range of descriptor values. This fact will be used to refine the
sine/noise separation done by the NBD for signals of finite SNR; as
will be explained in the next section. Finally, the sidelobe structures
can efficiently be distinguished by means of the FCD. Note that in
Figure 2 the maximum of the sidelobe distribution is to be interpreted
as a cumulus of all the sidelobe FCD values distributed out of the
current axis range.
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Figure 1: Illustration for the parameter SNR, (peak signal-
to-noise ratio)

4. CLASSIFICATION STRATEGY

The peak classification algorithm, based on the proposed peak de-
scriptors, is established through a two-level decision tree as follows:
in the first level the sidelobe and non-sidelobe classification is per-
formed. Then in the second level the peaks previously declared non-
sidelobes are classified as sinusoids and noise. The thresholds for
both levels of classification are obtained by means of analyzing the
distributions shown in Figure 2. For infinite SNR; the classification
could be obtained by simply using FCD and NBD thresholds to per-
fectly seperate all three peak classes. Note that only in this particular
case the NBD attains almost perfect sine/non-sine classification,
therefore the contribution of the NDD is negligible.

For a finite SNR,, the sinusoidal distributions experiment a
spread proportional to the noise level in the worst case signal. In
particular, the NBD sinusoidal distribution extends towards right
while the NDD sinusoidal distribution spreads in both directions. The
sinusoidal NBD distribution overlaps partially with the noise NBD
distribution, which means that the NBD can no longer separate per-
fectly the peak classes. In order to reduce this ambiguity, we make
use of the NDD. As mentioned before, the sinusoidal NDD distribu-
tion covers only a small range of descriptor values. Hence, by consid-
ering only the peaks within the limits of the sinusoidal NDD distribu-
tion as sinusoids, we can eliminate some of the noise peaks previ-
ously classified as sinusoids and thus refine the initial sine/noise
classification. The classification scheme that is used for finite SNR,
is shown in Table 1. It is important to understand that a decreasing
SNRp will modify the limits of the sinusoidal distribution in a similar
manner as an increase in the modulation parameters would do. There-
fore, the minimum SNRp can be used to control the decision thresh-
olds in a rather intuitive manner.

In order to keep track of the limit values of the sinusoidal
distributions we would need to regenerate all the sinusoidal distribu-
tions every time the minimum SNR, that is selected by the user is
changed. As shown below, however, the experimental evaluation of
the distribution limits can be avoided, due to a simple approximate
formula that expresses the relationship between the parameter SNR,
and the margins of the sinusoidal peak distributions in the descriptor
domain. These can be used to adapt the classifier to the selected
SNR,. The thresholds to be adapted are the right margin of the NBD
sinusoidal distribution and both margins of the NDD sinusoidal dis-
tribution. As for the FCD, the threshold may be kept fixed thanks to
the good sidelobe separation from the rest of the peak classes.

sidelobe / non-sidelobe FCD > N/M

sine / noise INBD <0.13 & 0.13<NDD<0.16

Table 1: Peak classification thresholds for infinite SNR,, the
window is Hanning.
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Figure 2: Normalized distributions for three peak classes in the de-
scriptor domain; o> = 0 and the window is Hanning.

5. MODELLING SNRp DEPENDENCY

The relation between the classification threshold and the SNR; is
rather complex and to be able to achieve a model of these relations
the problem requires a number of simplifications. The idea we pro-
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pose is to first experimentally determine the signal pattern that is
related to the descriptor limits for infinite SNR;,. Then we develop a
simplified model of the effect of the additive noise to be able to
achieve a mathematical formulation of the threshold dependency on
the SNR;. The relation does not take into account that the signal
pattern at the descriptor limits may depend on the SNRp.

Window Omax ,Bmax

Hanning 0.75% 0.507
Blackman 0.757 0.557
Hamming 0.707 0457

Table 2: The phase values of the sinusoidal model corre-
sponding to NBDnax for various analysis windows
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Figure 3: Envelopes of the signal patterns and noise patterns
corresponding to the NDD thresholds for SNR, = 10dB; the sign
symbols mark the carrier phase relationship between the wave-
form; the analysis window is Hanning.

5.1. NBD threshold (NBDwax)

Let us recall that the NBD is the ratio of the peak bandwidth and peak
width. As described above we first need to determine the sinusoidal
signal that will give rise to the maximum value of the descriptor
NBDpax = BW/L. This can be done by means of a straightforward
search over the two-dimensional grid of phase values o and f for a
given analysis window (see Table 2 for some prominent analysis
windows).

The presence of noise will affect both BW and L. It is clear that L will
decrease because the peak local minima get closer to the peak maxi-
mum in terms of magnitude. In a simple approximation we may
assume that BW will keep almost constant because the peak shape
around the maximum is only slightly affected by additive noise.
Accordingly, we may assume that the NBDyy is a function of L
solely, which in turn depends on the SNR,,. Practically, for the given
Omax and Pmax We calculate the spectrum of the sinusoidal signal only
once and store it in memory. Then, the NBD threshold can easily be
calculated by taking into account only the DFT bins of the mainlobe
that lie above the noise floor given by SNR;. The validity of this
simple approximation will be checked in the next section by compar-
ing its values to those obtained by measuring NBDy.x for different
SNR; and different analysis windows.

5.2. NDD threshold (NDDpx and NDDyay)

The sinusoidal model in (11) is herein simplified in order to investi-
gate into the NDD thresholds. More specifically, the FM can be
disregarded because it does not modify the NDD of a sinusoid.
Hence,

x(n) = cos(2pF,n)’

[1 +4,, cos(2pFAMn + b)] + r(n) 12
The phase S that gives rise to the minimum and maximum values of
the NDD descriptor for the signal in (12) and after applying the
analysis window can be calculated numerically. The solution shows
that the maximum value is obtained when the minimum of the AM
envelope is located in the signal center. The minimum of the NDD is
obtained for a phase f that places the AM envelope maximum close
to the window center. Due to the interactions between the analysis
window and the envelope the AM envelope is not exactly aligned
with the window center. To simplify the discussion and due to the
fact that all values of beta in the range -t < < 0 result in a varia-
tion of the NDD of less than 1% we will use the signal pattern with
AM envelope maximum in the window center for the following
discussion. Accordingly the (approximate) signal patterns for the
shortest and longest signal in terms of the NDD are:

X,y = x(n; b=-05p )w(n),
X :x(n;b :0.5p)w(n), (13)

where w(n) is the analysis window. The envelopes of the signal
patterns Ximin and Xamax for the Hanning window are displayed in
Figure 3. For finite SNR,, the patterns in (13) are superposed to a
narrow-band Gaussian noise. Due to the small bandwidth of the
signal peak the effective noise bandwidth is rather small. For each
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SNR,, there exist two noise signal patterns, 7amin and Famax, that will
maximally increase respectively decrease the NDDpay and NDDpyiy
values. We will use a very simple signal model consisting of an
amplitude modulated carrier as basis for our noise model. The noise
model is band limited (reflecting the bandwidth of the spectral peak)
but not necessarily time limited. Due to the small bandwidth the noise
pattern may extend out of the signal window. Because for the simple
model we are aiming at we don't want to take into account the length
of the DFT we will limit the noise signal to the time segment of the
analysis window.

In order to reduce NDDuin #4min should narrow the width of
the central maximum of X min. To achieve this 7gmin must be in-phase
with Xgmin around the window’s centre and in counter-phase other-
wise. Because a strong amplitude at the window boundaries would
always enlarge the NDD we additionally assume that the noise pat-
tern r4min has the analysis window applied.

On the contrary, r4msx must be in counter-phase with Xgmax
around the window’s centre and in-phase close to the window edges.
The resulting waveform would have the energy more uniformly
distributed along the analysis window and thus larger NDDyax. 7dmax
must not be tapered in order to contribute significantly to the energy
concentration in Xgmax around the window edges.

30 T ;
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Normalized window length
Figure 4: The resulting envelopes after the superposition
of the signal patterns to the corresponding noise patterns
Jor SNR, = 10dB; the analysis window is Hanning.

According to the above discussion we have used the fol-
lowing model for the narrow-band Gaussian noise patterns:

rd min (n) = A COS(ZpE)n)[l + mmin COS(4pn/M)]W(n)

s

e (1) = - Acos(2pan)[1 -m,, cos(2pn/M)] . (14)

The noise patterns are therefore sine-modulated waveforms. The
modulation frequencies are different because the bandwidth of the
peaks related to NDDpin and NDDyy are different. They have been
selected such that they obey a simple relation to the window size.
Note that the exact frequency values are not critical for the model and
that the frequencies do not depend on the SNR,,.

The modulation indices mmin and mmax have to be greater
than one in order to ensure the phase change of 7 in the crossover
between contiguous modulation lobes. Both amplitude 4 and modula-
tion indices are function of the SNR;. 4 determines the total energy
of each pattern while #min and mmax control the distribution of that
energy along the analysis window. The amplitude is simply a scaling
factor that ensures the most of the spectral energy of the noise pat-
terns lays SNR;, decibels under the mainlobe of the worst case signal.
The values for the modulation indices are more difficult to estimate
as they change in a non-linear fashion with the SNR,. To obtain a
mathematical model we have used the signal (13) and a wide range of
SNR,;, settings and have experimentally determined the maximum and
minimum NDD as well as the values for mpmi, and mmax that would best
match the experimental data. Finally, we derived a second order
polynomial representation of the modulation indices by means of
adapting a second order polynomial to the set of modulation indices.
For various types of analysis windows the resulting functions are:

mmin = é. azSNR;z ’ mmax = é. szNR;z ’

while the corresponding coefficients are given in Table 3. For the
Hanning window, the envelopes of the corresponding noise patterns
for SNR,;, = 10dB are shown on Figure 3 while the envelopes of the
resulting waveforms after the superposition are shown on Figure 4.
We can observe that the energy distributions of the signal patterns
have indeed been modified coherently to the aforementioned expla-
nation. In practical applications, the signal patterns are calculated
only once while the noise patterns are recalculated each time the
SNR,, or type of analysis window is changed such that the new
thresholds can be obtained. We will show in the following section the
behavior of this model with respect to the measured NDDy, and
NDD a for different SNR;, and various analysis window types.

6. EXPERIMENTAL RESULTS

In this section we aim to check the validity of the proposed adaptive
threshold selection algorithm. For different types of analysis windows
and for a wide range of SNR;, values, the decision thresholds NBDpyax,
NDDyin and NDDpax Were generated from the corresponding models
(Section 5) and compared to their respective measured values. The
measured values are obtained from the Gaussian noise added to the
sinusoidal model in the proportion established by the SNR;. The
approximation errors are calculated as a difference between the
measured and modeled values and are shown on Figure 5. Generally,
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the approximation errors are larger for smaller SNR;, In case of the
NBDnax and the NDDyin thresholds the experimentally obtained errors
show a systematic trend. This could be used to refine the model. For
the NDD thresholds the error is generally overestimating the change
of the boundaries that goes with the SNRp. For the NBD threshold the
threshold change is underestimated. The overall approximation error
is obtained by evaluating the correlation coefficient R between the
measured and approximated curve for each threshold and various
analysis windows. From Table 4 we can see that in almost all situa-
tions the correlation coefficient is above 0.95 which can be consid-
ered a very good approximation. Also, note that the largest approxi-
mation errors are committed in the NBDpax thresholding domain for
the Hanning window. On the contrary, the Blackman window thresh-
olding adapts well to the corresponding curve of measured threshold
values.

Window a; ( ¥ dmin) bi ( 14 dmzlx)
0.0174 -0.0006

Hanning -0.5770 0.1211
10.6280 0.8279
0.0081 -0.0022

Blackman -0.3903 0.1472
9.0630 0.7083
0.0003 -0.0037

Hamming -0.2816 0.1615
24716 0.7230

Table 3: The coefficient values for modeling the myu, and
Mumax dependency on SNRp.

Window Hanning Blackman Hamming
R(NDD\in) 0.9567 0.9685 0.9604
R(NDD ) 0.9799 0.9792 0.9840
R(NBDnax) 0.9139 0.9885 0.9585

Table 4: The correlation coefficient calculated between the measured
and approximation threshold curves for various analysis windows

7. CONCLUSIONS

In this paper we have presented a new adaptive threshold selection
algorithm that can be used for classification of spectral peaks. By
means of the set of peak descriptors from previous work and a herein
proposed compact sinusoidal model related to the analysis window,
the limit values for the distributions of sinusoidal peaks in the de-
scriptor domain can be explicitly obtained. Next, the variations of
those limit values, due to the presence of noise in the sinusoidal
model, are characterized in a deterministic fashion through only one
parameter we refer to as the peak signal/noise ratio. By means of this
user-defined parameter the descriptor limits of the classification
algorithm can be controlled intuitively using as control parameter the
peak signal to noise ratio.
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Figure 5: Approximation errors calculated as a difference
between the measured and modeled values for each SNR,
and various analysis windows. The values in the legend cor-
respond to infinite SNR,.
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The approximation accuracy given through the correlation coefficient
is shown to be large for different types of analysis window. At the
present state the new threshold selection method provides a control
precision that can be considered sufficient for interactive control of a
classification algorithm. Further investigation will be concerned with
the improving the threshold models in order to reduce the approxima-
tion errors such that the precision of the control can be improved.
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