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ABSTRACT

Object coding allows audio compression at extremely lowdiies,
provided that the objects are correctly modelled and ifiedti
In this study, a codec has been implemented on the basis of
sparse decomposition of the signal with a dictionary ofrlnsent-
Specific Harmonic atoms. The decomposition algorithm exsra
“molecules” i.e. linear combinations of such atoms, coaed as
note-like objects. Thus, they can be coded efficiently usioig-
specific strategies. For signals containing only harmooimes,
the obtained bitrates are very low, typically around 2 kbsj a
informal listening tests against a standard sinusoidaécetow
promising performances.

1. INTRODUCTION

Audio coding has traditionally evolved in two directiongpend-
ing on the target bitrate. At high rates, state-of-the-adi@acoding

is transform-based (e.g. MPEG4-AAC and MPEG4-TwinVQ [1]).
At lower rates, parametric coders perform slightly bettéPEG4-
SSC [2], based on a sinusoids+transients+noise modelgwutp
forms MPEG4-AAC at 24kits; but is not designed for lower bi-
trates. MPEG4-HILN [3], based on a harmonics+sinusoidseno
model, works at lower bitrates but its performance appeatset
very signal dependent and on average it is comparable to MPEG
AAC at 16kbits and MPEG4-TwinVQ at 6kbits ; the benefit com-
pared to the transform-based coders is that HILN allowstaodil
functionality such as speed and pitch modifications at timhey
sis.

For more flexibility on the type of possible transform-domai
sound modifications (for instance the modification of timpee
rameters of a single instrument in a polyphonic mixtureiy itec-
essary to go one step further in the understanding of thentof
the audio file; this is the goal of so-called object-basedaodd-
ing, which fits well in the general context of MPEG4. Instedd o
coding transform coefficients or parameters of a low-levetiat,
object audio coders consider higher-level “sound objeciisist-
ing ideally of individual notes or chords. In [4], pitchedusal ob-
jects consisting of the sum of harmonic sinusoidal parta¢sef-
ficiently estimated using a statistical approach; the tegutoder
appears to perform better than transform and parametriersah
solo or duo of harmonic instruments at 8kbit/s and 2 kbit/swH
ever, this approach requires extensive computationabuesss
which makes them unpractical for most applications.
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time. First, the sound is decomposed with a dictionary dfimsent-
dependent atoms, or groups of atoms (“molecules”), with dimo
fied version of the matching pursuit algorithm. Then, therapa-
rameters are encoded with variable precision. The mainfivefie

%his approach is that very low bit-rates can be achievedIdidnd-

width, while keeping an acceptable sound quality for mosihso
examples. The price to pay, besides computational contplési
the necessity to store the full database of atoms at bottdenand
decoder, a requirement that is more and more acceptable thige
increase in storage capacities. This paper is organizedllas/$

. in section 2, we describe the decomposition process inindo
objects. In section 3, we detail how we encode the extractedds
objects. Finally, preliminary results are given in sectdon

2. DECOMPOSITION ALGORITHM

2.1. Signal Model
2.1.1. Instrument Specific Harmonic Atoms

The signal is modelled as a linear combinationfharmonic
atomshs,, u,,, fo, o, . An,®, Parameterized in terms of scaig
(atom duration), time localisatiam,, fundamental frequenc,, ,
fundamental chirp rate,, , partial amplitudest,, = {am,n }m=1:Mm
and partial phase®,, = {¢m,n}m=1:0 :

N
§ Qn hsn,un,fon €0y An, Pn (t)

n=1

Each harmonic atom can be written as

z(t) = 1)

M
s u, fo,00, 4,0 () = Z am 6]¢mgsyu7m<foym<co (t). 2
m=1

The amplitudes of thé/ partials are constrained @:ﬁf:l a2, =

1 and the signal corresponding to each partial is given &abor
atom normalized to unit energy

Gofe(t) =w <ﬂ) 2im(ft+5t%)
: S

with w as a weighting window.

When partial amplitudes are learned from a database (s€8,2.3
these atoms are called Instrument Specific Harmonic (ISthsit
Each amplitude vectod is then associated with a clas$in our
case an instrument) and a discrete pitch valiend is thus defined

®)

In this paper, we present a novel object-based coding, which as belonging to a set;,. Generally, several vectors are used for

allows the computation of objects in a reasonable commutaki

each class and each pitch value.
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2.1.2. Instrument Specific Harmonic Molecules

The long-term structures, such as music notes, cannot bieaffy
modelled with a single ISH atom. However, building sets dfl IS
atoms (namedholeculecan overcome this issue. The constraints
for atoms to belong to a single molecule are the following:

e the atoms span a range of time locatiansvith exactly one
atom per location,

e all atoms come from the same instrument,

e the log-variation of fundamental frequency between any two
consecutive atoms is bounded by a threshold

|Alog fo| <D (4)

2.2. Decomposition algorithms
2.2.1. The Matching Pursuit Algorithm

Given a ISH dictionary, the problem becomes that of decompos
ing the signal as a collection of molecules of ISH atoms frbis t
dictionary. A popular and efficient method to achieve atodge
compositions is the Matching Pursuit algorithm [5]. It carbod-
ified for molecular decompositions [6, 7]. The Matching Riitrs
algorithm proceeds as follows:

1. The correlations between the signal and all the atbrob
the dictionary are computed using inner produatsh) =

Zt,Tzl z(t) h(t).
. The atonm that has the largest absolute correlatin k)|

with the signal is selected, then subtracted from the signal
with a weighting coefficientv = (x, k).

. Correlations are updated on the residual signal, andlthe a
gorithm is iterated to step 2 until the stopping condition is
satisfied. This condition can be a target Signal-to-Residua
energy Ratio (SRR), or a fixed number of iterations.

2.2.2. Molecular Algorithm

The algorithm that is here briefly introduced is fully debed
in [8]. Its flowchart is presented on Figure 1. Its main featur
is to iteratively extract molecules of ISH atoms using a Matg
Pursuit algorithm that has been modified as follows :

e Best atom path selection: an atom path is selected in instru-

ment-specific time-pitch planes using dynamic programming

The search zone of this path is delimited aroundead
atom: the atom that is the most correlated with signal. A
threshold on the atom weights, is set to avoid the se-

lection of low-amplitude atoms, and as a consequence to

reduce the amount of data to encode.

e Atom parameters tuning on the path: the fundamental
chirp ratec is estimated jointly with the refinement of the
fundamental frequency, using a maximization of the in-
ner product|(x, h)| with regard tofo andco. The partial
phasesy,, of each atom of the molecule are computed us-
ing the following formula:

<IE, gs,u,m.fo,m.co>
|<$7 gs,u,m4f0,m4co>|

QIom

®)
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Figure 1. Flow chart of the algorithm for decomposing a signa
into molecules of ISH atoms

e Atom weightsoptimization: the respective weights of each
atom are re-estimated using an orthogonal projection of the
signal on the subspace corresponding to the atoms of the
molecule.

2.3. Samplingthedictionary

In practical applications, the search step can only be pagd on
a finite number of atoms. Thus, one has to sample the dictionar
by making the atom parametersu and f, discrete:

e The scales often spans a small set of powers of 2.

e The time localisation. is typically set to equally spaced
time bins, with a time shif\« set to a fraction of the atom
scale.

e The fundamental frequencfy is sampled logarithmically.
This is a noticeable difference with the Harmonic MP al-
gorithm [6], where fundamental frequencies are sampled
linearly.

The amplitude vectorsl are already a discrete set of vectors and
the phase vectors are estimated using Equation 5.

2.3.1. Learning the model

For the following experiments, the vectors of partial amjules
{Aip.x}k=1..K are learned for each instrument/pitch cl&ss,

on isolated notes from three databases: the RWC Musicaliinst
ment Sound Database [9], IRCAM Studio On Line [10] and the
University of lowa Musical Instrument Samples [11]. We sele
five instruments producing harmonic notes: oboe (Ob), rudri
(CI), cello (Co), violin (VI) and flute (FI).

2



Proc. of the 18 Int. Conference on Digital Audio Effects (DAFx-07), BordeaFrance, September 10-15, 2007

For each isolated note signal, the time frame with maximal en the first one, we compute differences between consecutive
ergy is computed and all the subsequent time frames whosgyene values of the fundamental frequency, and the resulting val-
lies within a certain threshold of this maximum are selectBus ues are entropy coded.

relative threshold is set to a ratio of 0.05 in the followinghe
partial amplitudes are computed on each of these trainamgds

by

where fo andc¢o are tuned in order to maximize the SRR on this
frame, using the same optimisation method as in the paramete
tuning step. The vector of amplitudes is then associatedheo t
pitch classp that is the closest tgy. The resulting number of
vectors per instrument and per pitch class are indicatedldheTl.

e The weighta of the first atom of a molecule is coded us-
ing a standard uniform quantizer + entropy coding approach
[12]. The weights of the next atoms are coded using differ-

- {2, s,u.mx fo.mxeo)| (6) ential coding and uniform quantization.

1/2

(2%:1 |{x, gs’u’m/xfo’m/m)P) / e The partial amplitudes vectors,, are already vector quan-

tized. We then simply transmit the index of the correspond-
ing vector in the dictionary. The index is composed by: the
pitch class (crude version of the fundamental frequeney, al
ready coded) + the instrument class (coded one time for
each molecule) + the index in the table of the correspond-
ing pitch/instrument class. The index is entropy coded.

: - - e We do not code the fundamental chirp rage as we found
Igsbt ' ]\géig Ntm"lggr pitch that this parameter is not perceptually relevant enougémgiv
l 9048 193 the necessary bit budget needed to code it.
Co | 13868 285 e The phases are not coded. We use an alternative approach
VI 37749 700 where the phases are interpolated at the decoder to ensure a
=] 13216 330 continuity between the partials of the consecutive atoms.
Table 1: Total number of training time frames per instrurneem 4. EXPERIMENTS

average number per pitch class.

The coder is evaluated on 5 solos (clarinet, cello, flutegpbim-

number of amplitude vectors. Since the number of vectorsds t ~ €xtracted from commercial CDs (hence having no relatiqnsith
large to ensure computationally tractable decompositiweshose  the single notes database used for learning).

to reduce the number of vectors by vector quantizatisrampli- The two steps of the coding process, namely the signal decom-
tude vectors are kept for each clags, using the k-means algo- ~ POsition and the parameters coding, have been performeédtvet
rithm with the Euclidean distance. following parameters:

e Sampling parameters. for our application, the choice of a
3. PARAMETERS CODING single scales corresponding to a duration of about 50 ms is
sufficient. It is long enough to have a good frequency res-

We use a simple scheme where a representation is first estimat olution. Concerning the localization periaiu, it is here
from the signal (see previous section) and then the reptatiem set to half the.scale, short enough to track Fhe perceptuglly
parameters are quantized and coded a posteriori. At theddeco relevant amplitude and frequency modulations of the sig-
the quantized parameters are decoded and used to synthesize nal that correspond to expressive features such as vibrato
signal. or tremqlo (between _4 and 10 Hz). The fundamental fre-
Two properties of the representation allow efficient coding quency is sampled with a step bf10 tone.
very low bit rate. Firstly, the molecular algorithm buildsijects”, e Decomposition parameters: The general threshold for the
composed of a succession of atoms. The parameters of the atom decomposition has been set to 15 dB or 250 atoms per sec-
which belongs to the same molecule are highly correlatedtaursi ond. For the atom path formation, the difference between
can be efficiently coded. Secondly, due to the greedy nafuteso consecutive fundamental frequencies is the corresponding
molecular algorithm some parameters are already quarttiziede sampling step of thgo sampling:1/10 ton.

the coding stage; these parameters are consequently citiediv
any loss using entropy coding.

In the following, we list all the parameters of the model and
the method we have chosen to code them.

e The time localisation,, is on a grid with a step size, /2.

e Quantization parameters: The weight of the first atom of
a molecule is quantized on 6 bits, and the weights of the
next atoms are quantized on 4 bits. The order of the DPCM
quantizer is set to one. The entropy coder we use for all

e The scales,, is constant and thus is not coded. parameters is the adaptive arithmetic coder from Witten et

al. [13].

With these parameters, we obtain computation times equiv-
alent to 10x real-time on a 3Ghz computer and Matlab, largely
dominated by the decomposition algorithm.

Only the absolute position of the first atom of a molecule
is coded, the positions of the following atoms are then the
consecutive values on the grid. The only additional param-

eter required by the decoder is the number of atoms that
belong to the molecule. 4.1. Full codec and reduced codec

The fundamental frequencfp,, of every atom is coded in ~ During the analysis stage, at the end of the decompositto, t
its crude version (before the atom parameters tuning stage,molecular algorithm tends to produce molecules that do ot ¢
see previous section). For the atoms of a molecule exceptrespond to underlying music notes in the performance. These
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molecules of low energy are thus not perceptually nor plajlsic
relevant and are only extracted to reduce the overall SNRa As
consequence, the decomposition should be stopped betoepth
parition of such molecules. However, it is hard to find an wral
ical solution for a stopping criteria in the decompositidmstead,

in the framework of this study, we have prefered to manuatly d
cide the optimum number of iterations for each audio sigral.
Matlab Graphical User Interface has thus been implemerfiied (
2) where the user can listen to the synthesized signal intifamc
of the number of iterations and thus choose the optimum numbe
of iterations in the molecular algorithm. Such optima haeerb
found, except for two files (Cello solo and Cello/Violin duwehere
the original stopping criteria of the molecular algorithiavg the
best results. We call the coder based on this manipulatefréa
duced codec”; while the coder which encodes the completefset
molecules is the “full codec”.
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Figure 2: Matlab Graphical User Interface allowing the user to
visualize the representation and to select the optimalktioéd for
the decomposition. Different colors indicate differergtrmments
labels.
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Figure 3:MUSHRA overall mean scores

Full Codec (FC)| Reduced Codec (RC|

Clarinet 1.3 1.1

Cello 3.8 3.8 (%)

Flute 1.3 1.1

Oboe 2.6 1.0

Violin 4.4 2.3

CL /FL. 2.4 1.9
Ce. / Fl 1.6 1.5
Ce. VI 39 3909

FI. 7 FI. 4.6 2.6

Table 2: Bitrates (in kb per second) for each test file andle t
variants of our codec. for the 2 files marked with an asterigk (

the reduced codec was found equal to the full codec.

HR | AN | NQ | FC | RC | SC

Clarinet | 100 | 69 | 44 | 29 | 21 | 29
Cello 100 81 | 32 | 20| 20 | 6
Flute 100 76 | 29 | 31| 34 | 30
Oboe [ 100] 70 | 40 | 12| 20 | 18
Violin 100| 66 | 62 | 33 | 33 | 14
CLL/FI. |100] 74 | 41 | 36 | 42 | 36
Ce./Fl.| 100 | 74 25 15 | 21 8
Ce./VIL | 100 | 70 43 13 | 13 6
FL. / FIL. 100 | 68 30 | 23| 21 3

Table 3: Mean of the MUSHRA scores for each version of each
test signal

4.2. Listeningtests

To evaluate our codecs, we performed several listening basted

on the standard MUSHRA method [14]. 15 persons took part in
the listening tests to compare 5 versions of each signald@ehi
reference (HR), an anchor signal (AN) (3,5 kHz low-passg th
synthesized signal (NQ) obtained at the end of the moleeldgr-
rithm (without any quantization), the full codec (FC), tleeluced
codec (RC), and a simple frame-based sinusoidal coder ssad a
reference parametric codec (SC). The average bitrate obithecs

is around 3 kb per second for the Full Codec, and around 2 kb per
second for the reduced codec (see Table 2). For the Sinlisoida
Codec (SC), the bitrate was fixed at 2 kb per second. The mean
of the scores obtained for each version of each signal arabiteT

3. The overall means are in Fig. 3. These results first shotv tha
the reduced codec has performances that are similar or bedte

the full codec except for two files (Clarinet and FI. / FL. ),ase
where more bits actually decrease the quality. It also shbats

the reduced codec performs similarly or better than theeafz
sinusoidal coder except for one file (Clarinet).

5. CONCLUSION

In this paper we have described preliminary experimentsigraon-
strate that object-based coding of simple polyphonic migsioth
technically feasible and computationally tractable, wkeme hy-
pothesis on the sources are verified (in our case, this islynain
an hypothesis of harmonicity). The resulting represeoiatican
achieve coding at bitrates as low as 2 kbs for monophonicdsyun
with a sound quality that is in general comparable to sirdedoi
coding, and in some cases significantly better. Further orger

DAFX-4



Proc. of the 18 Int. Conference on Digital Audio Effects (DAFx-07), BordeaFrance, September 10-15, 2007

ments will be focused on three directions : first, we can imero
on our decomposition model, for instance on estimatinglypthe
combinations of notes that optimally explains the signalply-
phonic music. Then, we can improve the quantization and cod-
ing techniques, in order to reduce the loss of sound qualigytd
quantization. Finally, we want to investigate criteria &opping
strategies in the Matching Pursuit decomposition processe¢
sponding to the optimal codec (here called the reduced ¢odec
Another question, which is still open at the moment, is waeth
these techniques would still perform well with an increatéhe
number of instruments. It would as well be interesting tdeae
its performance on sounds that are not included in the hgisét
but still verify the harmonicity assumption (for instana@ijce).
However, other classes of sounds such as percussive sounds o
noisy sounds must be analyzed with different dictionabiaspbject-
based coding would still be relevant in this case.
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