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ABSTRACT

Object coding allows audio compression at extremely low bit-rates,
provided that the objects are correctly modelled and identified.
In this study, a codec has been implemented on the basis of a
sparse decomposition of the signal with a dictionary of Instrument-
Specific Harmonic atoms. The decomposition algorithm extracts
“molecules” i.e. linear combinations of such atoms, considered as
note-like objects. Thus, they can be coded efficiently usingnote-
specific strategies. For signals containing only harmonic sounds,
the obtained bitrates are very low, typically around 2 kbs, and
informal listening tests against a standard sinusoidal coder show
promising performances.

1. INTRODUCTION

Audio coding has traditionally evolved in two directions, depend-
ing on the target bitrate. At high rates, state-of-the-art audio coding
is transform-based (e.g. MPEG4-AAC and MPEG4-TwinVQ [1]).
At lower rates, parametric coders perform slightly better.MPEG4-
SSC [2], based on a sinusoids+transients+noise model, outper-
forms MPEG4-AAC at 24kits; but is not designed for lower bi-
trates. MPEG4-HILN [3], based on a harmonics+sinusoids+noise
model, works at lower bitrates but its performance appears to be
very signal dependent and on average it is comparable to MPEG4-
AAC at 16kbits and MPEG4-TwinVQ at 6kbits ; the benefit com-
pared to the transform-based coders is that HILN allows additional
functionality such as speed and pitch modifications at the synthe-
sis.

For more flexibility on the type of possible transform-domain
sound modifications (for instance the modification of timbrepa-
rameters of a single instrument in a polyphonic mixture), itis nec-
essary to go one step further in the understanding of the contents of
the audio file; this is the goal of so-called object-based audio cod-
ing, which fits well in the general context of MPEG4. Instead of
coding transform coefficients or parameters of a low-level model,
object audio coders consider higher-level “sound objects”, consist-
ing ideally of individual notes or chords. In [4], pitched sound ob-
jects consisting of the sum of harmonic sinusoidal partialsare ef-
ficiently estimated using a statistical approach; the resulting coder
appears to perform better than transform and parametric coders on
solo or duo of harmonic instruments at 8kbit/s and 2 kbit/s. How-
ever, this approach requires extensive computational ressources
which makes them unpractical for most applications.

In this paper, we present a novel object-based coding, which
allows the computation of objects in a reasonable computational

time. First, the sound is decomposed with a dictionary of instrument-
dependent atoms, or groups of atoms (“molecules”), with a modi-
fied version of the matching pursuit algorithm. Then, the atom pa-
rameters are encoded with variable precision. The main benefit of
this approach is that very low bit-rates can be achieved at full band-
width, while keeping an acceptable sound quality for most sound
examples. The price to pay, besides computational complexity, is
the necessity to store the full database of atoms at both encoder and
decoder, a requirement that is more and more acceptable given the
increase in storage capacities. This paper is organized as follows
: in section 2, we describe the decomposition process into sound
objects. In section 3, we detail how we encode the extracted sound
objects. Finally, preliminary results are given in section4.

2. DECOMPOSITION ALGORITHM

2.1. Signal Model

2.1.1. Instrument Specific Harmonic Atoms

The signal is modelled as a linear combination ofN harmonic
atomshsn,un,f0n

,c0n
,An,Φn

parameterized in terms of scalesn

(atom duration), time localisationun, fundamental frequencyf0n
,

fundamental chirp ratec0n
, partial amplitudesAn = {am,n}m=1:M

and partial phasesΦn = {φm,n}m=1:M :
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Each harmonic atom can be written as

hs,u,f0,c0,A,Φ(t) =

M
X

m=1

am ejφmgs,u,m.f0,m.c0(t). (2)

The amplitudes of theM partials are constrained to
PM

m=1
a2

m =
1 and the signal corresponding to each partial is given by aGabor
atom normalized to unit energy

gs,u,f,c(t) = w

„

t − u

s

«

e2jπ(ft+ c

2
t2) (3)

with w as a weighting window.
When partial amplitudes are learned from a database (see 2.3.1),

these atoms are called Instrument Specific Harmonic (ISH) atoms.
Each amplitude vectorA is then associated with a classi (in our
case an instrument) and a discrete pitch valuep, and is thus defined
as belonging to a setCip. Generally, several vectors are used for
each class and each pitch value.
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2.1.2. Instrument Specific Harmonic Molecules

The long-term structures, such as music notes, cannot be efficiently
modelled with a single ISH atom. However, building sets of ISH
atoms (namedmolecules) can overcome this issue. The constraints
for atoms to belong to a single molecule are the following:

• the atoms span a range of time locationsu, with exactly one
atom per location,

• all atoms come from the same instrument,

• the log-variation of fundamental frequency between any two
consecutive atoms is bounded by a thresholdD:

|∆ log f0| ≤ D (4)

2.2. Decomposition algorithms

2.2.1. The Matching Pursuit Algorithm

Given a ISH dictionary, the problem becomes that of decompos-
ing the signal as a collection of molecules of ISH atoms from this
dictionary. A popular and efficient method to achieve atomicde-
compositions is the Matching Pursuit algorithm [5]. It can be mod-
ified for molecular decompositions [6, 7]. The Matching Pursuit
algorithm proceeds as follows:

1. The correlations between the signal and all the atomsh of
the dictionary are computed using inner products〈x, h〉 =
PT

t=1
x(t)h(t).

2. The atomh that has the largest absolute correlation|〈x, h〉|
with the signal is selected, then subtracted from the signal
with a weighting coefficientα = 〈x, h〉.

3. Correlations are updated on the residual signal, and the al-
gorithm is iterated to step 2 until the stopping condition is
satisfied. This condition can be a target Signal-to-Residual
energy Ratio (SRR), or a fixed number of iterations.

2.2.2. Molecular Algorithm

The algorithm that is here briefly introduced is fully described
in [8]. Its flowchart is presented on Figure 1. Its main feature
is to iteratively extract molecules of ISH atoms using a Matching
Pursuit algorithm that has been modified as follows :

• Best atom path selection: an atom path is selected in instru-
ment-specific time-pitch planes using dynamic programming.
The search zone of this path is delimited around aseed
atom: the atom that is the most correlated with signal. A
threshold on the atom weightsαn is set to avoid the se-
lection of low-amplitude atoms, and as a consequence to
reduce the amount of data to encode.

• Atom parameters tuning on the path: the fundamental
chirp ratec0 is estimated jointly with the refinement of the
fundamental frequencyf0 using a maximization of the in-
ner product|〈x, h〉| with regard tof0 andc0. The partial
phasesφm of each atom of the molecule are computed us-
ing the following formula:

ejφm =
〈x, gs,u,m.f0,m.c0〉

|〈x, gs,u,m.f0,m.c0〉|
. (5)
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Figure 1: Flow chart of the algorithm for decomposing a signal
into molecules of ISH atoms

• Atom weights optimization: the respective weights of each
atom are re-estimated using an orthogonal projection of the
signal on the subspace corresponding to the atoms of the
molecule.

2.3. Sampling the dictionary

In practical applications, the search step can only be performed on
a finite number of atoms. Thus, one has to sample the dictionary
by making the atom parameterss, u andf0 discrete:

• The scales often spans a small set of powers of 2.

• The time localisationu is typically set to equally spaced
time bins, with a time shift∆u set to a fraction of the atom
scale.

• The fundamental frequencyf0 is sampled logarithmically.
This is a noticeable difference with the Harmonic MP al-
gorithm [6], where fundamental frequencies are sampled
linearly.

The amplitude vectorsA are already a discrete set of vectors and
the phase vectors are estimated using Equation 5.

2.3.1. Learning the model

For the following experiments, the vectors of partial amplitudes
{Ai,p,k}k=1...K are learned for each instrument/pitch classCi,p

on isolated notes from three databases: the RWC Musical Instru-
ment Sound Database [9], IRCAM Studio On Line [10] and the
University of Iowa Musical Instrument Samples [11]. We select
five instruments producing harmonic notes: oboe (Ob), clarinet
(Cl), cello (Co), violin (Vl) and flute (Fl).
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For each isolated note signal, the time frame with maximal en-
ergy is computed and all the subsequent time frames whose energy
lies within a certain threshold of this maximum are selected. This
relative threshold is set to a ratio of 0.05 in the following.The
partial amplitudes are computed on each of these training frames
by

am =
|〈x, gs,u,m×f0,m×c0〉|

“

PM
m′=1

|〈x, gs,u,m′×f0,m′×c0〉|
2

”1/2
(6)

wheref0 andc0 are tuned in order to maximize the SRR on this
frame, using the same optimisation method as in the parameter
tuning step. The vector of amplitudes is then associated to the
pitch classp that is the closest tof0. The resulting number of
vectors per instrument and per pitch class are indicated in Table 1.

Inst. Ntrain Ntrain per pitch
Ob 5912 169
Cl 9048 193
Co 13868 285
Vl 37749 700
Fl 13216 330

Table 1: Total number of training time frames per instrumentand
average number per pitch class.

The size of the dictionary varies linearly as a function of the
number of amplitude vectors. Since the number of vectors is too
large to ensure computationally tractable decompositions, we chose
to reduce the number of vectors by vector quantization:K ampli-
tude vectors are kept for each classCi,p using the k-means algo-
rithm with the Euclidean distance.

3. PARAMETERS CODING

We use a simple scheme where a representation is first estimated
from the signal (see previous section) and then the representation
parameters are quantized and coded a posteriori. At the decoder,
the quantized parameters are decoded and used to synthesizea new
signal.

Two properties of the representation allow efficient codingat
very low bit rate. Firstly, the molecular algorithm builds “objects”,
composed of a succession of atoms. The parameters of the atoms
which belongs to the same molecule are highly correlated andthus
can be efficiently coded. Secondly, due to the greedy nature of the
molecular algorithm some parameters are already quantizedbefore
the coding stage; these parameters are consequently coded without
any loss using entropy coding.

In the following, we list all the parameters of the model and
the method we have chosen to code them.

• The scalesn is constant and thus is not coded.

• The time localisationun is on a grid with a step sizesn/2.
Only the absolute position of the first atom of a molecule
is coded, the positions of the following atoms are then the
consecutive values on the grid. The only additional param-
eter required by the decoder is the number of atoms that
belong to the molecule.

• The fundamental frequencyf0n
of every atom is coded in

its crude version (before the atom parameters tuning stage,
see previous section). For the atoms of a molecule except

the first one, we compute differences between consecutive
values of the fundamental frequency, and the resulting val-
ues are entropy coded.

• The weightα of the first atom of a molecule is coded us-
ing a standard uniform quantizer + entropy coding approach
[12]. The weights of the next atoms are coded using differ-
ential coding and uniform quantization.

• The partial amplitudes vectorsAn are already vector quan-
tized. We then simply transmit the index of the correspond-
ing vector in the dictionary. The index is composed by: the
pitch class (crude version of the fundamental frequency, al-
ready coded) + the instrument class (coded one time for
each molecule) + the index in the table of the correspond-
ing pitch/instrument class. The index is entropy coded.

• We do not code the fundamental chirp ratec0n
as we found

that this parameter is not perceptually relevant enough given
the necessary bit budget needed to code it.

• The phases are not coded. We use an alternative approach
where the phases are interpolated at the decoder to ensure a
continuity between the partials of the consecutive atoms.

4. EXPERIMENTS

The coder is evaluated on 5 solos (clarinet, cello, flute, oboe, vio-
lin) and 4 duos (clarinet/flute, cello/flute, cello/violin,flute/flute),
extracted from commercial CDs (hence having no relationship with
the single notes database used for learning).

The two steps of the coding process, namely the signal decom-
position and the parameters coding, have been performed with the
following parameters:

• Sampling parameters: for our application, the choice of a
single scales corresponding to a duration of about 50 ms is
sufficient. It is long enough to have a good frequency res-
olution. Concerning the localization period∆u, it is here
set to half the scale, short enough to track the perceptually
relevant amplitude and frequency modulations of the sig-
nal that correspond to expressive features such as vibrato
or tremolo (between 4 and 10 Hz). The fundamental fre-
quency is sampled with a step of1/10 tone.

• Decomposition parameters: The general threshold for the
decomposition has been set to 15 dB or 250 atoms per sec-
ond. For the atom path formation, the difference between
consecutive fundamental frequencies is the corresponding
sampling step of thef0 sampling:1/10 ton.

• Quantization parameters: The weight of the first atom of
a molecule is quantized on 6 bits, and the weights of the
next atoms are quantized on 4 bits. The order of the DPCM
quantizer is set to one. The entropy coder we use for all
parameters is the adaptive arithmetic coder from Witten et
al. [13].

With these parameters, we obtain computation times equiv-
alent to 10x real-time on a 3Ghz computer and Matlab, largely
dominated by the decomposition algorithm.

4.1. Full codec and reduced codec

During the analysis stage, at the end of the decomposition, the
molecular algorithm tends to produce molecules that do not cor-
respond to underlying music notes in the performance. These
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molecules of low energy are thus not perceptually nor physically
relevant and are only extracted to reduce the overall SNR. Asa
consequence, the decomposition should be stopped before the ap-
parition of such molecules. However, it is hard to find an analyt-
ical solution for a stopping criteria in the decomposition.Instead,
in the framework of this study, we have prefered to manually de-
cide the optimum number of iterations for each audio signal.A
Matlab Graphical User Interface has thus been implemented (Fig.
2) where the user can listen to the synthesized signal in function
of the number of iterations and thus choose the optimum number
of iterations in the molecular algorithm. Such optima have been
found, except for two files (Cello solo and Cello/Violin duo)where
the original stopping criteria of the molecular algorithm gave the
best results. We call the coder based on this manipulation the “re-
duced codec”; while the coder which encodes the complete setof
molecules is the “full codec”.

Figure 2: Matlab Graphical User Interface allowing the user to
visualize the representation and to select the optimal threshold for
the decomposition. Different colors indicate different instruments
labels.

Figure 3:MUSHRA overall mean scores

Full Codec (FC) Reduced Codec (RC)
Clarinet 1.3 1.1
Cello 3.8 3.8 (*)
Flute 1.3 1.1
Oboe 2.6 1.0
Violin 4.4 2.3

Cl. / Fl. 2.4 1.9
Ce. / Fl. 1.6 1.5
Ce. / Vl. 3.9 3.9 (*)
Fl. / Fl. 4.6 2.6

Table 2: Bitrates (in kb per second) for each test file and the two
variants of our codec. for the 2 files marked with an asterisk (*),
the reduced codec was found equal to the full codec.

HR AN NQ FC RC SC
Clarinet 100 69 44 29 21 29
Cello 100 81 32 20 20 6
Flute 100 76 29 31 34 30
Oboe 100 70 40 12 20 18
Violin 100 66 62 33 33 14

Cl. / Fl. 100 74 41 36 42 36
Ce. / Fl. 100 74 25 15 21 8
Ce. / Vl. 100 70 43 13 13 6
Fl. / Fl. 100 68 30 23 21 3

Table 3: Mean of the MUSHRA scores for each version of each
test signal

4.2. Listening tests

To evaluate our codecs, we performed several listening tests based
on the standard MUSHRA method [14]. 15 persons took part in
the listening tests to compare 5 versions of each signal: a hidden
reference (HR), an anchor signal (AN) (3,5 kHz low-pass), the
synthesized signal (NQ) obtained at the end of the molecularalgo-
rithm (without any quantization), the full codec (FC), the reduced
codec (RC), and a simple frame-based sinusoidal coder used as a
reference parametric codec (SC). The average bitrate of thecodecs
is around 3 kb per second for the Full Codec, and around 2 kb per
second for the reduced codec (see Table 2). For the Sinusoidal
Codec (SC), the bitrate was fixed at 2 kb per second. The mean
of the scores obtained for each version of each signal are in Table
3. The overall means are in Fig. 3. These results first show that
the reduced codec has performances that are similar or better than
the full codec except for two files (Clarinet and Fl. / FL. ), a case
where more bits actually decrease the quality. It also showsthat
the reduced codec performs similarly or better than the reference
sinusoidal coder except for one file (Clarinet).

5. CONCLUSION

In this paper we have described preliminary experiments that demon-
strate that object-based coding of simple polyphonic musicis both
technically feasible and computationally tractable, whensome hy-
pothesis on the sources are verified (in our case, this is mainly
an hypothesis of harmonicity). The resulting representations can
achieve coding at bitrates as low as 2 kbs for monophonic sounds,
with a sound quality that is in general comparable to sinusoidal
coding, and in some cases significantly better. Further improve-
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ments will be focused on three directions : first, we can improve
on our decomposition model, for instance on estimating jointly the
combinations of notes that optimally explains the signal for poly-
phonic music. Then, we can improve the quantization and cod-
ing techniques, in order to reduce the loss of sound quality due to
quantization. Finally, we want to investigate criteria forstopping
strategies in the Matching Pursuit decomposition process corre-
sponding to the optimal codec (here called the reduced codec).

Another question, which is still open at the moment, is whether
these techniques would still perform well with an increase of the
number of instruments. It would as well be interesting to evaluate
its performance on sounds that are not included in the training set
but still verify the harmonicity assumption (for instance,voice).
However, other classes of sounds such as percussive sounds or
noisy sounds must be analyzed with different dictionaries,but object-
based coding would still be relevant in this case.
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